ClickHouse/src/Functions/multiIf.cpp
2024-08-10 13:01:55 +00:00

542 lines
21 KiB
C++

#include <Functions/FunctionFactory.h>
#include <Functions/FunctionIfBase.h>
#include <Columns/ColumnNullable.h>
#include <Columns/ColumnConst.h>
#include <Columns/ColumnsNumber.h>
#include <Columns/ColumnDecimal.h>
#include <Columns/MaskOperations.h>
#include <Core/Settings.h>
#include <Interpreters/castColumn.h>
#include <Common/assert_cast.h>
#include <Common/typeid_cast.h>
#include <Interpreters/Context.h>
#include <DataTypes/DataTypeNullable.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeEnum.h>
#include <DataTypes/DataTypesDecimal.h>
#include <DataTypes/DataTypeDate.h>
#include <DataTypes/DataTypeDate32.h>
#include <DataTypes/DataTypeDateTime.h>
#include <DataTypes/DataTypeDateTime64.h>
#include <DataTypes/DataTypeVariant.h>
#include <DataTypes/getLeastSupertype.h>
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
extern const int NOT_IMPLEMENTED;
extern const int BAD_ARGUMENTS;
}
namespace
{
/// Function multiIf, which generalizes the function if.
///
/// Syntax: multiIf(cond_1, then_1, ..., cond_N, then_N, else)
/// where N >= 1.
///
/// For all 1 <= i <= N, "cond_i" has type UInt8.
/// Types of all the branches "then_i" and "else" have a common type.
///
/// Additionally the arguments, conditions or branches, support nullable types
/// and the NULL value, with a NULL condition treated as false.
class FunctionMultiIf final : public FunctionIfBase
{
public:
static constexpr auto name = "multiIf";
static FunctionPtr create(ContextPtr context_)
{
const auto & settings = context_->getSettingsRef();
return std::make_shared<FunctionMultiIf>(settings.allow_execute_multiif_columnar, settings.allow_experimental_variant_type, settings.use_variant_as_common_type);
}
explicit FunctionMultiIf(bool allow_execute_multiif_columnar_, bool allow_experimental_variant_type_, bool use_variant_as_common_type_)
: allow_execute_multiif_columnar(allow_execute_multiif_columnar_)
, allow_experimental_variant_type(allow_experimental_variant_type_)
, use_variant_as_common_type(use_variant_as_common_type_)
{}
String getName() const override { return name; }
bool isVariadic() const override { return true; }
bool isShortCircuit(ShortCircuitSettings & settings, size_t number_of_arguments) const override
{
settings.arguments_with_disabled_lazy_execution.insert(0);
settings.enable_lazy_execution_for_common_descendants_of_arguments = (number_of_arguments != 3);
settings.force_enable_lazy_execution = false;
return true;
}
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return false; }
size_t getNumberOfArguments() const override { return 0; }
bool useDefaultImplementationForNulls() const override { return false; }
bool useDefaultImplementationForNothing() const override { return false; }
bool canBeExecutedOnLowCardinalityDictionary() const override { return false; }
ColumnNumbers getArgumentsThatDontImplyNullableReturnType(size_t number_of_arguments) const override
{
ColumnNumbers args;
for (size_t i = 0; i + 1 < number_of_arguments; i += 2)
args.push_back(i);
return args;
}
DataTypePtr getReturnTypeImpl(const DataTypes & args) const override
{
/// Arguments are the following: cond1, then1, cond2, then2, ... condN, thenN, else.
auto for_conditions = [&args](auto && f)
{
size_t conditions_end = args.size() - 1;
for (size_t i = 0; i < conditions_end; i += 2)
f(args[i]);
};
auto for_branches = [&args](auto && f)
{
size_t branches_end = args.size();
for (size_t i = 1; i < branches_end; i += 2)
f(args[i]);
f(args.back());
};
if (!(args.size() >= 3 && args.size() % 2 == 1))
throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH, "Invalid number of arguments for function {}", getName());
for_conditions([&](const DataTypePtr & arg)
{
const IDataType * nested_type;
if (arg->isNullable())
{
if (arg->onlyNull())
return;
const DataTypeNullable & nullable_type = static_cast<const DataTypeNullable &>(*arg);
nested_type = nullable_type.getNestedType().get();
}
else
{
nested_type = arg.get();
}
if (!WhichDataType(nested_type).isUInt8())
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument (condition) of function {}. "
"Must be UInt8.", arg->getName(), getName());
});
DataTypes types_of_branches;
types_of_branches.reserve(args.size() / 2 + 1);
for_branches([&](const DataTypePtr & arg)
{
types_of_branches.emplace_back(arg);
});
if (allow_experimental_variant_type && use_variant_as_common_type)
return getLeastSupertypeOrVariant(types_of_branches);
return getLeastSupertype(types_of_branches);
}
struct Instruction
{
IColumn::Ptr condition = nullptr;
IColumn::Ptr source = nullptr;
bool condition_always_true = false;
bool condition_is_nullable = false;
bool source_is_constant = false;
};
ColumnPtr executeImpl(const ColumnsWithTypeAndName & args, const DataTypePtr & result_type, size_t input_rows_count) const override
{
/// Fast path when data is empty
if (input_rows_count == 0)
return result_type->createColumn();
ColumnsWithTypeAndName arguments = args;
executeShortCircuitArguments(arguments);
/** We will gather values from columns in branches to result column,
* depending on values of conditions.
*/
std::vector<Instruction> instructions;
instructions.reserve(arguments.size() / 2 + 1);
Columns converted_columns_holder;
converted_columns_holder.reserve(instructions.capacity());
const DataTypePtr & return_type = result_type;
for (size_t i = 0; i < arguments.size(); i += 2)
{
Instruction instruction;
size_t source_idx = i + 1;
bool last_else_branch = source_idx == arguments.size();
if (last_else_branch)
{
/// The last, "else" branch can be treated as a branch with always true condition "else if (true)".
--source_idx;
instruction.condition_always_true = true;
}
else
{
IColumn::Ptr cond_col = arguments[i].column->convertToFullColumnIfLowCardinality();
/// We skip branches that are always false.
/// If we encounter a branch that is always true, we can finish.
if (cond_col->onlyNull())
continue;
if (const auto * column_const = checkAndGetColumn<ColumnConst>(&*cond_col))
{
Field value = column_const->getField();
if (value.isNull())
continue;
if (value.safeGet<UInt64>() == 0)
continue;
instruction.condition_always_true = true;
}
else
{
instruction.condition = cond_col;
instruction.condition_is_nullable = instruction.condition->isNullable();
}
}
const ColumnWithTypeAndName & source_col = arguments[source_idx];
if (source_col.type->equals(*return_type))
{
instruction.source = source_col.column;
}
else
{
/// Cast all columns to result type.
converted_columns_holder.emplace_back(castColumn(source_col, return_type));
instruction.source = converted_columns_holder.back();
}
if (instruction.source && isColumnConst(*instruction.source))
instruction.source_is_constant = true;
instructions.emplace_back(std::move(instruction));
if (instructions.back().condition_always_true)
break;
}
/// Special case if first instruction condition is always true and source is constant
if (instructions.size() == 1 && instructions.front().source_is_constant
&& instructions.front().condition_always_true)
{
MutableColumnPtr res = return_type->createColumn();
auto & instruction = instructions.front();
res->insertFrom(assert_cast<const ColumnConst &>(*instruction.source).getDataColumn(), 0);
return ColumnConst::create(std::move(res), instruction.source->size());
}
const WhichDataType which(removeNullable(result_type));
bool execute_multiif_columnar = allow_execute_multiif_columnar && instructions.size() <= std::numeric_limits<UInt8>::max()
&& (which.isInt() || which.isUInt() || which.isFloat() || which.isDecimal() || which.isDateOrDate32OrDateTimeOrDateTime64()
|| which.isEnum() || which.isIPv4() || which.isIPv6());
size_t rows = input_rows_count;
if (!execute_multiif_columnar)
{
MutableColumnPtr res = return_type->createColumn();
res->reserve(rows);
executeInstructions(instructions, rows, res);
return std::move(res);
}
#define EXECUTE_INSTRUCTIONS_COLUMNAR(TYPE, FIELD, INDEX) \
if (which.is##TYPE()) \
{ \
MutableColumnPtr res = result_type->createColumn(); \
if (result_type->isNullable()) \
{ \
auto & res_nullable = assert_cast<ColumnNullable &>(*res); \
auto & res_data = assert_cast<ColumnVectorOrDecimal<FIELD> &>(res_nullable.getNestedColumn()).getData(); \
auto & res_null_map = res_nullable.getNullMapData(); \
executeInstructionsColumnar<FIELD, INDEX, true>(instructions, rows, res_data, &res_null_map); \
} \
else \
{ \
auto & res_data = assert_cast<ColumnVectorOrDecimal<FIELD> &>(*res).getData(); \
executeInstructionsColumnar<FIELD, INDEX, false>(instructions, rows, res_data, nullptr); \
} \
return std::move(res); \
}
#define ENUMERATE_NUMERIC_TYPES(M, INDEX) \
M(UInt8, UInt8, INDEX) \
M(UInt16, UInt16, INDEX) \
M(UInt32, UInt32, INDEX) \
M(UInt64, UInt64, INDEX) \
M(Int8, Int8, INDEX) \
M(Int16, Int16, INDEX) \
M(Int32, Int32, INDEX) \
M(Int64, Int64, INDEX) \
M(Float32, Float32, INDEX) \
M(Float64, Float64, INDEX) \
M(UInt128, UInt128, INDEX) \
M(UInt256, UInt256, INDEX) \
M(Int128, Int128, INDEX) \
M(Int256, Int256, INDEX) \
M(Decimal32, Decimal32, INDEX) \
M(Decimal64, Decimal64, INDEX) \
M(Decimal128, Decimal128, INDEX) \
M(Decimal256, Decimal256, INDEX) \
M(Date, UInt16, INDEX) \
M(Date32, Int32, INDEX) \
M(DateTime, UInt32, INDEX) \
M(DateTime64, DateTime64, INDEX) \
M(Enum8, Int8, INDEX) \
M(Enum16, Int16, INDEX) \
M(IPv4, IPv4, INDEX) \
M(IPv6, IPv6, INDEX) \
throw Exception( \
ErrorCodes::NOT_IMPLEMENTED, "Columnar execution of function {} not implemented for type {}", getName(), result_type->getName());
ENUMERATE_NUMERIC_TYPES(EXECUTE_INSTRUCTIONS_COLUMNAR, UInt8)
}
#undef ENUMERATE_NUMERIC_TYPES
#undef EXECUTE_INSTRUCTIONS_COLUMNAR
private:
static void executeInstructions(std::vector<Instruction> & instructions, size_t rows, const MutableColumnPtr & res)
{
for (size_t i = 0; i < rows; ++i)
{
for (auto & instruction : instructions)
{
bool insert = false;
if (instruction.condition_always_true)
insert = true;
else if (!instruction.condition_is_nullable)
insert = assert_cast<const ColumnUInt8 &>(*instruction.condition).getData()[i];
else
{
const ColumnNullable & condition_nullable = assert_cast<const ColumnNullable &>(*instruction.condition);
const ColumnUInt8 & condition_nested = assert_cast<const ColumnUInt8 &>(condition_nullable.getNestedColumn());
const NullMap & condition_null_map = condition_nullable.getNullMapData();
insert = !condition_null_map[i] && condition_nested.getData()[i];
}
if (insert)
{
if (!instruction.source_is_constant)
res->insertFrom(*instruction.source, i);
else
res->insertFrom(assert_cast<const ColumnConst &>(*instruction.source).getDataColumn(), 0);
break;
}
}
}
}
/// We should read source from which instruction on each row?
template <typename S>
static NO_INLINE void calculateInserts(const std::vector<Instruction> & instructions, size_t rows, PaddedPODArray<S> & inserts)
{
for (S i = instructions.size() - 1; i != static_cast<S>(-1); --i)
{
const auto & instruction = instructions[i];
if (instruction.condition_always_true)
{
for (size_t row_i = 0; row_i < rows; ++row_i)
inserts[row_i] = i;
}
else if (!instruction.condition_is_nullable)
{
const auto & cond_data = assert_cast<const ColumnUInt8 &>(*instruction.condition).getData();
for (size_t row_i = 0; row_i < rows; ++row_i)
{
/// Equivalent to below code. But it is able to utilize SIMD instructions.
/// if (cond_data[row_i])
/// inserts[row_i] = i;
inserts[row_i] += (!!cond_data[row_i]) * (i - inserts[row_i]);
}
}
else
{
const ColumnNullable & condition_nullable = assert_cast<const ColumnNullable &>(*instruction.condition);
const ColumnUInt8 & condition_nested = assert_cast<const ColumnUInt8 &>(condition_nullable.getNestedColumn());
const auto & condition_nested_data = condition_nested.getData();
const NullMap & condition_null_map = condition_nullable.getNullMapData();
for (size_t row_i = 0; row_i < rows; ++row_i)
{
/// Equivalent to below code. But it is able to utilize SIMD instructions.
/// if (!condition_null_map[row_i] && condition_nested_data[row_i])
/// inserts[row_i] = i;
inserts[row_i] += (~condition_null_map[row_i] & (!!condition_nested_data[row_i])) * (i - inserts[row_i]);
}
}
}
}
template <typename T, typename S, bool nullable_result = false>
static NO_INLINE void executeInstructionsColumnar(
const std::vector<Instruction> & instructions,
size_t rows,
PaddedPODArray<T> & res_data,
PaddedPODArray<UInt8> * res_null_map = nullptr)
{
PaddedPODArray<S> inserts(rows, static_cast<S>(instructions.size()));
calculateInserts(instructions, rows, inserts);
res_data.resize_exact(rows);
if constexpr (nullable_result)
{
if (!res_null_map)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Invalid result null_map while result type is nullable");
res_null_map->resize_exact(rows);
}
std::vector<const T *> data_cols(instructions.size(), nullptr);
std::vector<const UInt8 *> null_map_cols(instructions.size(), nullptr);
for (size_t i = 0; i < instructions.size(); ++i)
{
const auto & instruction = instructions[i];
const IColumn * non_const_col = instructions[i].source_is_constant
? &assert_cast<const ColumnConst &>(*instruction.source).getDataColumn()
: instruction.source.get();
const ColumnNullable * nullable_col = checkAndGetColumn<ColumnNullable>(non_const_col);
data_cols[i] = nullable_col ? assert_cast<const ColumnVectorOrDecimal<T> &>(nullable_col->getNestedColumn()).getData().data()
: assert_cast<const ColumnVectorOrDecimal<T> &>(*non_const_col).getData().data();
null_map_cols[i] = nullable_col ? assert_cast<const ColumnUInt8 &>(nullable_col->getNullMapColumn()).getData().data() : nullptr;
}
std::unique_ptr<PaddedPODArray<UInt8>> shared_null_map;
if constexpr (nullable_result)
{
for (auto & col : null_map_cols)
{
if (!col)
{
if (!shared_null_map)
shared_null_map = std::make_unique<PaddedPODArray<UInt8>>(rows, 0);
col = shared_null_map->data();
}
}
}
for (size_t row_i = 0; row_i < rows; ++row_i)
{
S insert = inserts[row_i];
const auto & instruction = instructions[insert];
size_t index = instruction.source_is_constant ? 0 : row_i;
res_data[row_i] = *(data_cols[insert] + index);
if constexpr (nullable_result)
(*res_null_map)[row_i] = *(null_map_cols[insert] + index);
}
}
static void executeShortCircuitArguments(ColumnsWithTypeAndName & arguments)
{
int last_short_circuit_argument_index = checkShortCircuitArguments(arguments);
if (last_short_circuit_argument_index < 0)
return;
executeColumnIfNeeded(arguments[0]);
/// Let's denote x_i' = maskedExecute(x_i, mask).
/// multiIf(x_0, y_0, x_1, y_1, x_2, y_2, ..., x_{n-1}, y_{n-1}, y_n)
/// We will support mask_i = !x_0 & !x_1 & ... & !x_i
/// and condition_i = !x_0 & ... & !x_{i - 1} & x_i
/// Base:
/// mask_0 and condition_0 is 1 everywhere, x_0' = x_0.
/// Iteration:
/// condition_i = extractMask(mask_{i - 1}, x_{i - 1}')
/// y_i' = maskedExecute(y_i, condition)
/// mask_i = extractMask(mask_{i - 1}, !x_{i - 1}')
/// x_i' = maskedExecute(x_i, mask)
/// Also we will treat NULL as 0 if x_i' is Nullable.
IColumn::Filter mask(arguments[0].column->size(), 1);
MaskInfo mask_info = {.has_ones = true, .has_zeros = false};
IColumn::Filter condition_mask(arguments[0].column->size());
MaskInfo condition_mask_info = {.has_ones = true, .has_zeros = false};
int i = 1;
while (i <= last_short_circuit_argument_index)
{
auto & cond_column = arguments[i - 1].column;
/// If condition is const or null and value is false, we can skip execution of expression after this condition.
if ((isColumnConst(*cond_column) || cond_column->onlyNull()) && !cond_column->empty() && !cond_column->getBool(0))
{
condition_mask_info.has_ones = false;
condition_mask_info.has_zeros = true;
}
else
{
copyMask(mask, condition_mask);
condition_mask_info = extractMask(condition_mask, cond_column);
maskedExecute(arguments[i], condition_mask, condition_mask_info);
}
/// Check if the condition is always true and we don't need to execute the rest arguments.
if (!condition_mask_info.has_zeros)
break;
++i;
if (i > last_short_circuit_argument_index)
break;
/// Extract mask only if it make sense.
if (condition_mask_info.has_ones)
mask_info = extractInvertedMask(mask, cond_column);
/// mask is a inverted disjunction of previous conditions and if it doesn't have once, we don't need to execute the rest arguments.
if (!mask_info.has_ones)
break;
maskedExecute(arguments[i], mask, mask_info);
++i;
}
/// We could skip some arguments execution, but we cannot leave them as ColumnFunction.
/// So, create an empty column with the execution result type.
for (; i <= last_short_circuit_argument_index; ++i)
executeColumnIfNeeded(arguments[i], true);
}
const bool allow_execute_multiif_columnar;
const bool allow_experimental_variant_type;
const bool use_variant_as_common_type;
};
}
REGISTER_FUNCTION(MultiIf)
{
factory.registerFunction<FunctionMultiIf>();
/// These are obsolete function names.
factory.registerAlias("caseWithoutExpr", "multiIf");
factory.registerAlias("caseWithoutExpression", "multiIf");
}
FunctionOverloadResolverPtr createInternalMultiIfOverloadResolver(bool allow_execute_multiif_columnar, bool allow_experimental_variant_type, bool use_variant_as_common_type)
{
return std::make_unique<FunctionToOverloadResolverAdaptor>(std::make_shared<FunctionMultiIf>(allow_execute_multiif_columnar, allow_experimental_variant_type, use_variant_as_common_type));
}
}