ClickHouse/src/Functions/seriesOutliersDetectTukey.cpp
Robert Schulze 0ed3466124
Cleanup FunctionArgumentDescriptor
const char * can be nullptr, std::string_view can't.
2024-07-02 16:30:48 +00:00

257 lines
10 KiB
C++

#include <Columns/ColumnArray.h>
#include <Columns/ColumnString.h>
#include <Columns/ColumnsNumber.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/DataTypesNumber.h>
#include <Functions/FunctionFactory.h>
#include <Functions/FunctionHelpers.h>
#include <Functions/IFunction.h>
#include <Common/NaNUtils.h>
#include <cmath>
namespace DB
{
namespace ErrorCodes
{
extern const int BAD_ARGUMENTS;
extern const int ILLEGAL_COLUMN;
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
}
/// Detects a possible anomaly in series using [Tukey Fences](https://en.wikipedia.org/wiki/Outlier#Tukey%27s_fences)
class FunctionSeriesOutliersDetectTukey : public IFunction
{
public:
static constexpr auto name = "seriesOutliersDetectTukey";
static FunctionPtr create(ContextPtr) { return std::make_shared<FunctionSeriesOutliersDetectTukey>(); }
std::string getName() const override { return name; }
bool isVariadic() const override { return true; }
size_t getNumberOfArguments() const override { return 0; }
bool useDefaultImplementationForConstants() const override { return true; }
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return true; }
DataTypePtr getReturnTypeImpl(const ColumnsWithTypeAndName & arguments) const override
{
if (arguments.size() != 1 && arguments.size() != 4)
throw Exception(
ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH,
"Function {} needs either 1 or 4 arguments; passed {}.",
getName(),
arguments.size());
FunctionArgumentDescriptors mandatory_args{{"time_series", static_cast<FunctionArgumentDescriptor::TypeValidator>(&isArray), nullptr, "Array"}};
FunctionArgumentDescriptors optional_args{
{"min_percentile", static_cast<FunctionArgumentDescriptor::TypeValidator>(&isFloat), isColumnConst, "Number"},
{"max_percentile", static_cast<FunctionArgumentDescriptor::TypeValidator>(&isFloat), isColumnConst, "Number"},
{"k", static_cast<FunctionArgumentDescriptor::TypeValidator>(&isNativeNumber), isColumnConst, "Number"}};
validateFunctionArguments(*this, arguments, mandatory_args, optional_args);
return std::make_shared<DataTypeArray>(std::make_shared<DataTypeFloat64>());
}
ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return {1, 2, 3}; }
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
{
ColumnPtr col = arguments[0].column;
const ColumnArray & col_arr = checkAndGetColumn<ColumnArray>(*col);
const IColumn & arr_data = col_arr.getData();
const ColumnArray::Offsets & arr_offsets = col_arr.getOffsets();
ColumnPtr col_res;
if (input_rows_count == 0)
return ColumnArray::create(ColumnFloat64::create());
Float64 min_percentile = 0.25; /// default 25th percentile
Float64 max_percentile = 0.75; /// default 75th percentile
Float64 k = 1.50;
if (arguments.size() > 1)
{
static constexpr Float64 min_percentile_lower_bound = 0.02;
static constexpr Float64 max_percentile_upper_bound = 0.98;
min_percentile = arguments[1].column->getFloat64(0);
if (isnan(min_percentile) || !isFinite(min_percentile) || min_percentile < min_percentile_lower_bound|| min_percentile > max_percentile_upper_bound)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "The second argument of function {} must be in range [0.02, 0.98]", getName());
max_percentile = arguments[2].column->getFloat64(0);
if (isnan(max_percentile) || !isFinite(max_percentile) || max_percentile < min_percentile_lower_bound || max_percentile > max_percentile_upper_bound || max_percentile < min_percentile)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "The third argument of function {} must be in range [0.02, 0.98]", getName());
k = arguments[3].column->getFloat64(0);
if (k < 0.0 || isnan(k) || !isFinite(k))
throw Exception(ErrorCodes::BAD_ARGUMENTS, "The fourth argument of function {} must be a non-negative number", getName());
}
if (executeNumber<UInt8>(arr_data, arr_offsets, min_percentile, max_percentile, k, col_res)
|| executeNumber<UInt16>(arr_data, arr_offsets, min_percentile, max_percentile, k, col_res)
|| executeNumber<UInt32>(arr_data, arr_offsets, min_percentile, max_percentile, k, col_res)
|| executeNumber<UInt64>(arr_data, arr_offsets, min_percentile, max_percentile, k, col_res)
|| executeNumber<Int8>(arr_data, arr_offsets, min_percentile, max_percentile, k, col_res)
|| executeNumber<Int16>(arr_data, arr_offsets, min_percentile, max_percentile, k, col_res)
|| executeNumber<Int32>(arr_data, arr_offsets, min_percentile, max_percentile, k, col_res)
|| executeNumber<Int64>(arr_data, arr_offsets, min_percentile, max_percentile, k, col_res)
|| executeNumber<Float32>(arr_data, arr_offsets, min_percentile, max_percentile, k, col_res)
|| executeNumber<Float64>(arr_data, arr_offsets, min_percentile, max_percentile, k, col_res))
{
return col_res;
}
else
throw Exception(
ErrorCodes::ILLEGAL_COLUMN,
"Illegal column {} of first argument of function {}",
arguments[0].column->getName(),
getName());
}
private:
template <typename T>
bool executeNumber(
const IColumn & arr_data,
const ColumnArray::Offsets & arr_offsets,
Float64 min_percentile,
Float64 max_percentile,
Float64 k,
ColumnPtr & res_ptr) const
{
const ColumnVector<T> * src_data_concrete = checkAndGetColumn<ColumnVector<T>>(&arr_data);
if (!src_data_concrete)
return false;
const PaddedPODArray<T> & src_vec = src_data_concrete->getData();
auto outliers = ColumnFloat64::create();
auto & outlier_data = outliers->getData();
ColumnArray::ColumnOffsets::MutablePtr res_offsets = ColumnArray::ColumnOffsets::create();
auto & res_offsets_data = res_offsets->getData();
std::vector<Float64> src_sorted;
ColumnArray::Offset prev_src_offset = 0;
for (auto src_offset : arr_offsets)
{
chassert(prev_src_offset <= src_offset);
size_t len = src_offset - prev_src_offset;
if (len < 4)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "At least four data points are needed for function {}", getName());
src_sorted.assign(src_vec.begin() + prev_src_offset, src_vec.begin() + src_offset);
std::sort(src_sorted.begin(), src_sorted.end());
Float64 q1;
Float64 q2;
Float64 p1 = len * min_percentile;
if (p1 == static_cast<Int64>(p1))
{
size_t index = static_cast<size_t>(p1) - 1;
q1 = (src_sorted[index] + src_sorted[index + 1]) / 2;
}
else
{
size_t index = static_cast<size_t>(std::ceil(p1)) - 1;
q1 = src_sorted[index];
}
Float64 p2 = len * max_percentile;
if (p2 == static_cast<Int64>(p2))
{
size_t index = static_cast<size_t>(p2) - 1;
q2 = (src_sorted[index] + src_sorted[index + 1]) / 2;
}
else
{
size_t index = static_cast<size_t>(std::ceil(p2)) - 1;
q2 = src_sorted[index];
}
Float64 iqr = q2 - q1; /// interquantile range
Float64 lower_fence = q1 - k * iqr;
Float64 upper_fence = q2 + k * iqr;
for (ColumnArray::Offset j = prev_src_offset; j < src_offset; ++j)
{
auto score = std::min((src_vec[j] - lower_fence), 0.0) + std::max((src_vec[j] - upper_fence), 0.0);
outlier_data.push_back(score);
}
res_offsets_data.push_back(outlier_data.size());
prev_src_offset = src_offset;
}
res_ptr = ColumnArray::create(std::move(outliers), std::move(res_offsets));
return true;
}
};
REGISTER_FUNCTION(SeriesOutliersDetectTukey)
{
factory.registerFunction<FunctionSeriesOutliersDetectTukey>(FunctionDocumentation{
.description = R"(
Detects outliers in series data using [Tukey Fences](https://en.wikipedia.org/wiki/Outlier#Tukey%27s_fences).
**Syntax**
``` sql
seriesOutliersDetectTukey(series);
seriesOutliersDetectTukey(series, min_percentile, max_percentile, k);
```
**Arguments**
- `series` - An array of numeric values.
- `min_quantile` - The minimum quantile to be used to calculate inter-quantile range [(IQR)](https://en.wikipedia.org/wiki/Interquartile_range). The value must be in range [0.02,0.98]. The default is 0.25.
- `max_quantile` - The maximum quantile to be used to calculate inter-quantile range (IQR). The value must be in range [0.02, 0.98]. The default is 0.75.
- `k` - Non-negative constant value to detect mild or stronger outliers. The default value is 1.5
At least four data points are required in `series` to detect outliers.
**Returned value**
- Returns an array of the same length as the input array where each value represents score of possible anomaly of corresponding element in the series. A non-zero score indicates a possible anomaly.
Type: [Array](../../sql-reference/data-types/array.md).
**Examples**
Query:
``` sql
SELECT seriesOutliersDetectTukey([-3, 2, 15, 3, 5, 6, 4, 5, 12, 45, 12, 3, 3, 4, 5, 6]) AS print_0;
```
Result:
``` text
print_0
[0,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0]
```
Query:
``` sql
SELECT seriesOutliersDetectTukey([-3, 2, 15, 3, 5, 6, 4.50, 5, 12, 45, 12, 3.40, 3, 4, 5, 6], 0.2, 0.8, 1.5) AS print_0;
```
Result:
``` text
print_0
[0,0,0,0,0,0,0,0,0,19.5,0,0,0,0,0,0]
```)",
.categories{"Time series analysis"}});
}
}