mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-17 13:13:36 +00:00
1326 lines
49 KiB
C++
1326 lines
49 KiB
C++
#include <experimental/optional>
|
|
|
|
#include <DataStreams/ExpressionBlockInputStream.h>
|
|
#include <DataStreams/FilterBlockInputStream.h>
|
|
#include <DataStreams/LimitBlockInputStream.h>
|
|
#include <DataStreams/LimitByBlockInputStream.h>
|
|
#include <DataStreams/PartialSortingBlockInputStream.h>
|
|
#include <DataStreams/MergeSortingBlockInputStream.h>
|
|
#include <DataStreams/MergingSortedBlockInputStream.h>
|
|
#include <DataStreams/AggregatingBlockInputStream.h>
|
|
#include <DataStreams/MergingAggregatedBlockInputStream.h>
|
|
#include <DataStreams/MergingAggregatedMemoryEfficientBlockInputStream.h>
|
|
#include <DataStreams/AsynchronousBlockInputStream.h>
|
|
#include <DataStreams/UnionBlockInputStream.h>
|
|
#include <DataStreams/ParallelAggregatingBlockInputStream.h>
|
|
#include <DataStreams/DistinctBlockInputStream.h>
|
|
#include <DataStreams/DistinctSortedBlockInputStream.h>
|
|
#include <DataStreams/NullBlockInputStream.h>
|
|
#include <DataStreams/TotalsHavingBlockInputStream.h>
|
|
#include <DataStreams/copyData.h>
|
|
#include <DataStreams/CreatingSetsBlockInputStream.h>
|
|
#include <DataStreams/MaterializingBlockInputStream.h>
|
|
#include <DataStreams/ConcatBlockInputStream.h>
|
|
|
|
#include <Parsers/ASTSelectQuery.h>
|
|
#include <Parsers/ASTIdentifier.h>
|
|
#include <Parsers/ASTFunction.h>
|
|
#include <Parsers/ASTLiteral.h>
|
|
#include <Parsers/ASTOrderByElement.h>
|
|
#include <Parsers/ASTTablesInSelectQuery.h>
|
|
|
|
#include <Interpreters/InterpreterSelectQuery.h>
|
|
#include <Interpreters/InterpreterSetQuery.h>
|
|
#include <Interpreters/ExpressionAnalyzer.h>
|
|
|
|
#include <Storages/IStorage.h>
|
|
|
|
#include <TableFunctions/ITableFunction.h>
|
|
#include <TableFunctions/TableFunctionFactory.h>
|
|
|
|
#include <Core/Field.h>
|
|
#include <Common/Collator.h>
|
|
|
|
|
|
namespace ProfileEvents
|
|
{
|
|
extern const Event SelectQuery;
|
|
}
|
|
|
|
namespace DB
|
|
{
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int TOO_DEEP_SUBQUERIES;
|
|
extern const int THERE_IS_NO_COLUMN;
|
|
extern const int UNION_ALL_RESULT_STRUCTURES_MISMATCH;
|
|
extern const int SAMPLING_NOT_SUPPORTED;
|
|
extern const int ILLEGAL_FINAL;
|
|
extern const int ILLEGAL_PREWHERE;
|
|
extern const int TOO_MUCH_COLUMNS;
|
|
}
|
|
|
|
|
|
InterpreterSelectQuery::~InterpreterSelectQuery() = default;
|
|
|
|
|
|
void InterpreterSelectQuery::init(BlockInputStreamPtr input, const Names & required_column_names)
|
|
{
|
|
ProfileEvents::increment(ProfileEvents::SelectQuery);
|
|
|
|
initSettings();
|
|
|
|
original_max_threads = settings.max_threads;
|
|
|
|
if (settings.limits.max_subquery_depth && subquery_depth > settings.limits.max_subquery_depth)
|
|
throw Exception("Too deep subqueries. Maximum: " + settings.limits.max_subquery_depth.toString(),
|
|
ErrorCodes::TOO_DEEP_SUBQUERIES);
|
|
|
|
if (is_first_select_inside_union_all)
|
|
{
|
|
/// Create a SELECT query chain.
|
|
InterpreterSelectQuery * interpreter = this;
|
|
ASTPtr tail = query.next_union_all;
|
|
|
|
while (tail)
|
|
{
|
|
ASTPtr head = tail;
|
|
|
|
ASTSelectQuery & head_query = static_cast<ASTSelectQuery &>(*head);
|
|
tail = head_query.next_union_all;
|
|
|
|
interpreter->next_select_in_union_all = std::make_unique<InterpreterSelectQuery>(head, context, to_stage, subquery_depth);
|
|
interpreter = interpreter->next_select_in_union_all.get();
|
|
}
|
|
}
|
|
|
|
if (is_first_select_inside_union_all && hasAsterisk())
|
|
{
|
|
basicInit(input);
|
|
|
|
// We execute this code here, because otherwise the following kind of query would not work
|
|
// SELECT X FROM (SELECT * FROM (SELECT 1 AS X, 2 AS Y) UNION ALL SELECT 3, 4)
|
|
// because the asterisk is replaced with columns only when query_analyzer objects are created in basicInit().
|
|
renameColumns();
|
|
|
|
if (!required_column_names.empty() && (table_column_names.size() != required_column_names.size()))
|
|
{
|
|
rewriteExpressionList(required_column_names);
|
|
/// Now there is obsolete information to execute the query. We update this information.
|
|
initQueryAnalyzer();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
renameColumns();
|
|
if (!required_column_names.empty())
|
|
rewriteExpressionList(required_column_names);
|
|
|
|
basicInit(input);
|
|
}
|
|
}
|
|
|
|
void InterpreterSelectQuery::basicInit(BlockInputStreamPtr input_)
|
|
{
|
|
auto query_table = query.table();
|
|
|
|
if (query_table && typeid_cast<ASTSelectQuery *>(query_table.get()))
|
|
{
|
|
if (table_column_names.empty())
|
|
{
|
|
table_column_names = InterpreterSelectQuery::getSampleBlock(query_table, context).getColumnsList();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (query_table && typeid_cast<const ASTFunction *>(query_table.get()))
|
|
{
|
|
/// Get the table function
|
|
TableFunctionPtr table_function_ptr = context.getTableFunctionFactory().get(typeid_cast<const ASTFunction *>(query_table.get())->name, context);
|
|
/// Run it and remember the result
|
|
storage = table_function_ptr->execute(query_table, context);
|
|
}
|
|
else
|
|
{
|
|
String database_name;
|
|
String table_name;
|
|
|
|
getDatabaseAndTableNames(database_name, table_name);
|
|
|
|
storage = context.getTable(database_name, table_name);
|
|
}
|
|
|
|
table_lock = storage->lockStructure(false);
|
|
if (table_column_names.empty())
|
|
table_column_names = storage->getColumnsListNonMaterialized();
|
|
}
|
|
|
|
if (table_column_names.empty())
|
|
throw Exception("There are no available columns", ErrorCodes::THERE_IS_NO_COLUMN);
|
|
|
|
query_analyzer = std::make_unique<ExpressionAnalyzer>(query_ptr, context, storage, table_column_names, subquery_depth, !only_analyze);
|
|
|
|
/// Save the new temporary tables in the query context
|
|
for (auto & it : query_analyzer->getExternalTables())
|
|
if (!context.tryGetExternalTable(it.first))
|
|
context.addExternalTable(it.first, it.second);
|
|
|
|
if (input_)
|
|
streams.push_back(input_);
|
|
|
|
if (is_first_select_inside_union_all)
|
|
{
|
|
/// We check that the results of all SELECT queries are compatible.
|
|
Block first = getSampleBlock();
|
|
for (auto p = next_select_in_union_all.get(); p != nullptr; p = p->next_select_in_union_all.get())
|
|
{
|
|
Block current = p->getSampleBlock();
|
|
if (!blocksHaveEqualStructure(first, current))
|
|
throw Exception("Result structures mismatch in the SELECT queries of the UNION ALL chain. Found result structure:\n\n" + current.dumpStructure()
|
|
+ "\n\nwhile expecting:\n\n" + first.dumpStructure() + "\n\ninstead",
|
|
ErrorCodes::UNION_ALL_RESULT_STRUCTURES_MISMATCH);
|
|
}
|
|
}
|
|
}
|
|
|
|
void InterpreterSelectQuery::initQueryAnalyzer()
|
|
{
|
|
query_analyzer.reset(
|
|
new ExpressionAnalyzer(query_ptr, context, storage, table_column_names, subquery_depth, !only_analyze));
|
|
|
|
for (auto p = next_select_in_union_all.get(); p != nullptr; p = p->next_select_in_union_all.get())
|
|
p->query_analyzer.reset(
|
|
new ExpressionAnalyzer(p->query_ptr, p->context, p->storage, p->table_column_names, p->subquery_depth, !only_analyze));
|
|
}
|
|
|
|
InterpreterSelectQuery::InterpreterSelectQuery(ASTPtr query_ptr_, const Context & context_, QueryProcessingStage::Enum to_stage_,
|
|
size_t subquery_depth_, BlockInputStreamPtr input_)
|
|
: query_ptr(query_ptr_)
|
|
, query(typeid_cast<ASTSelectQuery &>(*query_ptr))
|
|
, context(context_)
|
|
, to_stage(to_stage_)
|
|
, subquery_depth(subquery_depth_)
|
|
, is_first_select_inside_union_all(query.isUnionAllHead())
|
|
, log(&Logger::get("InterpreterSelectQuery"))
|
|
{
|
|
init(input_);
|
|
}
|
|
|
|
InterpreterSelectQuery::InterpreterSelectQuery(OnlyAnalyzeTag, ASTPtr query_ptr_, const Context & context_)
|
|
: query_ptr(query_ptr_)
|
|
, query(typeid_cast<ASTSelectQuery &>(*query_ptr))
|
|
, context(context_)
|
|
, to_stage(QueryProcessingStage::Complete)
|
|
, subquery_depth(0)
|
|
, is_first_select_inside_union_all(false), only_analyze(true)
|
|
, log(&Logger::get("InterpreterSelectQuery"))
|
|
{
|
|
init({});
|
|
}
|
|
|
|
InterpreterSelectQuery::InterpreterSelectQuery(ASTPtr query_ptr_, const Context & context_,
|
|
const Names & required_column_names_,
|
|
QueryProcessingStage::Enum to_stage_, size_t subquery_depth_, BlockInputStreamPtr input_)
|
|
: InterpreterSelectQuery(query_ptr_, context_, required_column_names_, {}, to_stage_, subquery_depth_, input_)
|
|
{
|
|
}
|
|
|
|
InterpreterSelectQuery::InterpreterSelectQuery(ASTPtr query_ptr_, const Context & context_,
|
|
const Names & required_column_names_,
|
|
const NamesAndTypesList & table_column_names_, QueryProcessingStage::Enum to_stage_, size_t subquery_depth_, BlockInputStreamPtr input_)
|
|
: query_ptr(query_ptr_)
|
|
, query(typeid_cast<ASTSelectQuery &>(*query_ptr))
|
|
, context(context_)
|
|
, to_stage(to_stage_)
|
|
, subquery_depth(subquery_depth_)
|
|
, table_column_names(table_column_names_)
|
|
, is_first_select_inside_union_all(query.isUnionAllHead())
|
|
, log(&Logger::get("InterpreterSelectQuery"))
|
|
{
|
|
init(input_, required_column_names_);
|
|
}
|
|
|
|
bool InterpreterSelectQuery::hasAsterisk() const
|
|
{
|
|
if (query.hasAsterisk())
|
|
return true;
|
|
|
|
if (is_first_select_inside_union_all)
|
|
{
|
|
for (auto p = next_select_in_union_all.get(); p != nullptr; p = p->next_select_in_union_all.get())
|
|
{
|
|
if (p->query.hasAsterisk())
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void InterpreterSelectQuery::renameColumns()
|
|
{
|
|
if (is_first_select_inside_union_all)
|
|
{
|
|
for (auto p = next_select_in_union_all.get(); p != nullptr; p = p->next_select_in_union_all.get())
|
|
p->query.renameColumns(query);
|
|
}
|
|
}
|
|
|
|
void InterpreterSelectQuery::rewriteExpressionList(const Names & required_column_names)
|
|
{
|
|
if (query.distinct)
|
|
return;
|
|
|
|
if (is_first_select_inside_union_all)
|
|
{
|
|
for (auto p = next_select_in_union_all.get(); p != nullptr; p = p->next_select_in_union_all.get())
|
|
{
|
|
if (p->query.distinct)
|
|
return;
|
|
}
|
|
}
|
|
|
|
query.rewriteSelectExpressionList(required_column_names);
|
|
|
|
if (is_first_select_inside_union_all)
|
|
{
|
|
for (auto p = next_select_in_union_all.get(); p != nullptr; p = p->next_select_in_union_all.get())
|
|
p->query.rewriteSelectExpressionList(required_column_names);
|
|
}
|
|
}
|
|
|
|
void InterpreterSelectQuery::getDatabaseAndTableNames(String & database_name, String & table_name)
|
|
{
|
|
auto query_database = query.database();
|
|
auto query_table = query.table();
|
|
|
|
/** If the table is not specified - use the table `system.one`.
|
|
* If the database is not specified - use the current database.
|
|
*/
|
|
if (query_database)
|
|
database_name = typeid_cast<ASTIdentifier &>(*query_database).name;
|
|
if (query_table)
|
|
table_name = typeid_cast<ASTIdentifier &>(*query_table).name;
|
|
|
|
if (!query_table)
|
|
{
|
|
database_name = "system";
|
|
table_name = "one";
|
|
}
|
|
else if (!query_database)
|
|
{
|
|
if (context.tryGetTable("", table_name))
|
|
database_name = "";
|
|
else
|
|
database_name = context.getCurrentDatabase();
|
|
}
|
|
}
|
|
|
|
|
|
DataTypes InterpreterSelectQuery::getReturnTypes()
|
|
{
|
|
DataTypes res;
|
|
const NamesAndTypesList & columns = query_analyzer->getSelectSampleBlock().getColumnsList();
|
|
for (auto & column : columns)
|
|
res.push_back(column.type);
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
Block InterpreterSelectQuery::getSampleBlock()
|
|
{
|
|
Block block = query_analyzer->getSelectSampleBlock();
|
|
/// create non-zero columns so that SampleBlock can be
|
|
/// written (read) with BlockOut(In)putStreams
|
|
for (size_t i = 0; i < block.columns(); ++i)
|
|
{
|
|
ColumnWithTypeAndName & col = block.safeGetByPosition(i);
|
|
col.column = col.type->createColumn();
|
|
}
|
|
return block;
|
|
}
|
|
|
|
|
|
Block InterpreterSelectQuery::getSampleBlock(ASTPtr query_ptr_, const Context & context_)
|
|
{
|
|
return InterpreterSelectQuery(OnlyAnalyzeTag(), query_ptr_, context_).getSampleBlock();
|
|
}
|
|
|
|
|
|
BlockIO InterpreterSelectQuery::execute()
|
|
{
|
|
(void) executeWithoutUnion();
|
|
|
|
if (hasNoData())
|
|
{
|
|
BlockIO res;
|
|
res.in = std::make_shared<NullBlockInputStream>();
|
|
res.in_sample = getSampleBlock();
|
|
return res;
|
|
}
|
|
|
|
executeUnion();
|
|
|
|
/// Constraints on the result, the quota on the result, and also callback for progress.
|
|
if (IProfilingBlockInputStream * stream = dynamic_cast<IProfilingBlockInputStream *>(streams[0].get()))
|
|
{
|
|
/// Constraints apply only to the final result.
|
|
if (to_stage == QueryProcessingStage::Complete)
|
|
{
|
|
IProfilingBlockInputStream::LocalLimits limits;
|
|
limits.mode = IProfilingBlockInputStream::LIMITS_CURRENT;
|
|
limits.max_rows_to_read = settings.limits.max_result_rows;
|
|
limits.max_bytes_to_read = settings.limits.max_result_bytes;
|
|
limits.read_overflow_mode = settings.limits.result_overflow_mode;
|
|
|
|
stream->setLimits(limits);
|
|
stream->setQuota(context.getQuota());
|
|
}
|
|
}
|
|
|
|
BlockIO res;
|
|
res.in = streams[0];
|
|
res.in_sample = getSampleBlock();
|
|
|
|
return res;
|
|
}
|
|
|
|
const BlockInputStreams & InterpreterSelectQuery::executeWithoutUnion()
|
|
{
|
|
if (is_first_select_inside_union_all)
|
|
{
|
|
executeSingleQuery();
|
|
for (auto p = next_select_in_union_all.get(); p != nullptr; p = p->next_select_in_union_all.get())
|
|
{
|
|
p->executeSingleQuery();
|
|
const auto & others = p->streams;
|
|
streams.insert(streams.end(), others.begin(), others.end());
|
|
}
|
|
|
|
transformStreams([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<MaterializingBlockInputStream>(stream);
|
|
});
|
|
}
|
|
else
|
|
executeSingleQuery();
|
|
|
|
return streams;
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeSingleQuery()
|
|
{
|
|
/** Streams of data. When the query is executed in parallel, we have several data streams.
|
|
* If there is no GROUP BY, then perform all operations before ORDER BY and LIMIT in parallel, then
|
|
* if there is an ORDER BY, then glue the streams using UnionBlockInputStream, and then MergeSortingBlockInputStream,
|
|
* if not, then glue it using UnionBlockInputStream,
|
|
* then apply LIMIT.
|
|
* If there is GROUP BY, then we will perform all operations up to GROUP BY, inclusive, in parallel;
|
|
* a parallel GROUP BY will glue streams into one,
|
|
* then perform the remaining operations with one resulting stream.
|
|
* If the query is a member of the UNION ALL chain and does not contain GROUP BY, ORDER BY, DISTINCT, or LIMIT,
|
|
* then the data sources are merged not at this level, but at the upper level.
|
|
*/
|
|
|
|
union_within_single_query = false;
|
|
|
|
/** Take out the data from Storage. from_stage - to what stage the request was completed in Storage. */
|
|
QueryProcessingStage::Enum from_stage = executeFetchColumns();
|
|
|
|
LOG_TRACE(log, QueryProcessingStage::toString(from_stage) << " -> " << QueryProcessingStage::toString(to_stage));
|
|
|
|
if (to_stage > QueryProcessingStage::FetchColumns)
|
|
{
|
|
bool has_join = false;
|
|
bool has_where = false;
|
|
bool need_aggregate = false;
|
|
bool has_having = false;
|
|
bool has_order_by = false;
|
|
|
|
ExpressionActionsPtr before_join; /// including JOIN
|
|
ExpressionActionsPtr before_where;
|
|
ExpressionActionsPtr before_aggregation;
|
|
ExpressionActionsPtr before_having;
|
|
ExpressionActionsPtr before_order_and_select;
|
|
ExpressionActionsPtr final_projection;
|
|
|
|
/// Columns from the SELECT list, before renaming them to aliases.
|
|
Names selected_columns;
|
|
|
|
/// Do I need to perform the first part of the pipeline - running on remote servers during distributed processing.
|
|
bool first_stage = from_stage < QueryProcessingStage::WithMergeableState
|
|
&& to_stage >= QueryProcessingStage::WithMergeableState;
|
|
/// Do I need to execute the second part of the pipeline - running on the initiating server during distributed processing.
|
|
bool second_stage = from_stage <= QueryProcessingStage::WithMergeableState
|
|
&& to_stage > QueryProcessingStage::WithMergeableState;
|
|
|
|
/** First we compose a chain of actions and remember the necessary steps from it.
|
|
* Regardless of from_stage and to_stage, we will compose a complete sequence of actions to perform optimization and
|
|
* throw out unnecessary columns based on the entire query. In unnecessary parts of the query, we will not execute subqueries.
|
|
*/
|
|
|
|
{
|
|
ExpressionActionsChain chain;
|
|
|
|
need_aggregate = query_analyzer->hasAggregation();
|
|
|
|
query_analyzer->appendArrayJoin(chain, !first_stage);
|
|
|
|
if (query_analyzer->appendJoin(chain, !first_stage))
|
|
{
|
|
has_join = true;
|
|
before_join = chain.getLastActions();
|
|
chain.addStep();
|
|
|
|
const ASTTableJoin & join = static_cast<const ASTTableJoin &>(*query.join()->table_join);
|
|
if (join.kind == ASTTableJoin::Kind::Full || join.kind == ASTTableJoin::Kind::Right)
|
|
stream_with_non_joined_data = before_join->createStreamWithNonJoinedDataIfFullOrRightJoin(settings.max_block_size);
|
|
}
|
|
|
|
if (query_analyzer->appendWhere(chain, !first_stage))
|
|
{
|
|
has_where = true;
|
|
before_where = chain.getLastActions();
|
|
chain.addStep();
|
|
}
|
|
|
|
if (need_aggregate)
|
|
{
|
|
query_analyzer->appendGroupBy(chain, !first_stage);
|
|
query_analyzer->appendAggregateFunctionsArguments(chain, !first_stage);
|
|
before_aggregation = chain.getLastActions();
|
|
|
|
chain.finalize();
|
|
chain.clear();
|
|
|
|
if (query_analyzer->appendHaving(chain, !second_stage))
|
|
{
|
|
has_having = true;
|
|
before_having = chain.getLastActions();
|
|
chain.addStep();
|
|
}
|
|
}
|
|
|
|
/// If there is aggregation, we execute expressions in SELECT and ORDER BY on the initiating server, otherwise on the source servers.
|
|
query_analyzer->appendSelect(chain, need_aggregate ? !second_stage : !first_stage);
|
|
selected_columns = chain.getLastStep().required_output;
|
|
has_order_by = query_analyzer->appendOrderBy(chain, need_aggregate ? !second_stage : !first_stage);
|
|
before_order_and_select = chain.getLastActions();
|
|
chain.addStep();
|
|
|
|
query_analyzer->appendProjectResult(chain, !second_stage);
|
|
final_projection = chain.getLastActions();
|
|
|
|
chain.finalize();
|
|
chain.clear();
|
|
}
|
|
|
|
/** If there is no data.
|
|
* This check is specially postponed slightly lower than it could be (immediately after executeFetchColumns),
|
|
* for the query to be analyzed, and errors (for example, type mismatches) could be found in it.
|
|
* Otherwise, the empty result could be returned for the incorrect query.
|
|
*/
|
|
if (hasNoData())
|
|
return;
|
|
|
|
/// Before executing WHERE and HAVING, remove the extra columns from the block (mostly the aggregation keys).
|
|
if (has_where)
|
|
before_where->prependProjectInput();
|
|
if (has_having)
|
|
before_having->prependProjectInput();
|
|
|
|
/// Now we will compose block streams that perform the necessary actions.
|
|
|
|
/// Do I need to aggregate in a separate row rows that have not passed max_rows_to_group_by.
|
|
bool aggregate_overflow_row =
|
|
need_aggregate &&
|
|
query.group_by_with_totals &&
|
|
settings.limits.max_rows_to_group_by &&
|
|
settings.limits.group_by_overflow_mode == OverflowMode::ANY &&
|
|
settings.totals_mode != TotalsMode::AFTER_HAVING_EXCLUSIVE;
|
|
|
|
/// Do I need to immediately finalize the aggregate functions after the aggregation?
|
|
bool aggregate_final =
|
|
need_aggregate &&
|
|
to_stage > QueryProcessingStage::WithMergeableState &&
|
|
!query.group_by_with_totals;
|
|
|
|
if (first_stage)
|
|
{
|
|
if (has_join)
|
|
for (auto & stream : streams) /// Applies to all sources except stream_with_non_joined_data.
|
|
stream = std::make_shared<ExpressionBlockInputStream>(stream, before_join);
|
|
|
|
if (has_where)
|
|
executeWhere(before_where);
|
|
|
|
if (need_aggregate)
|
|
executeAggregation(before_aggregation, aggregate_overflow_row, aggregate_final);
|
|
else
|
|
{
|
|
executeExpression(before_order_and_select);
|
|
executeDistinct(true, selected_columns);
|
|
}
|
|
|
|
/** For distributed query processing,
|
|
* if no GROUP, HAVING set,
|
|
* but there is an ORDER or LIMIT,
|
|
* then we will perform the preliminary sorting and LIMIT on the remote server.
|
|
*/
|
|
if (!second_stage && !need_aggregate && !has_having)
|
|
{
|
|
if (has_order_by)
|
|
executeOrder();
|
|
|
|
if (has_order_by && query.limit_length)
|
|
executeDistinct(false, selected_columns);
|
|
|
|
if (query.limit_length)
|
|
executePreLimit();
|
|
}
|
|
}
|
|
|
|
if (second_stage)
|
|
{
|
|
bool need_second_distinct_pass;
|
|
|
|
if (need_aggregate)
|
|
{
|
|
/// If you need to combine aggregated results from multiple servers
|
|
if (!first_stage)
|
|
executeMergeAggregated(aggregate_overflow_row, aggregate_final);
|
|
|
|
if (!aggregate_final)
|
|
executeTotalsAndHaving(has_having, before_having, aggregate_overflow_row);
|
|
else if (has_having)
|
|
executeHaving(before_having);
|
|
|
|
executeExpression(before_order_and_select);
|
|
executeDistinct(true, selected_columns);
|
|
|
|
need_second_distinct_pass = query.distinct && hasMoreThanOneStream();
|
|
}
|
|
else
|
|
{
|
|
need_second_distinct_pass = query.distinct && hasMoreThanOneStream();
|
|
|
|
if (query.group_by_with_totals && !aggregate_final)
|
|
executeTotalsAndHaving(false, nullptr, aggregate_overflow_row);
|
|
}
|
|
|
|
if (has_order_by)
|
|
{
|
|
/** If there is an ORDER BY for distributed query processing,
|
|
* but there is no aggregation, then on the remote servers ORDER BY was made
|
|
* - therefore, we merge the sorted streams from remote servers.
|
|
*/
|
|
if (!first_stage && !need_aggregate && !(query.group_by_with_totals && !aggregate_final))
|
|
executeMergeSorted();
|
|
else /// Otherwise, just sort.
|
|
executeOrder();
|
|
}
|
|
|
|
executeProjection(final_projection);
|
|
|
|
/// At this stage, we can calculate the minimums and maximums, if necessary.
|
|
if (settings.extremes)
|
|
{
|
|
transformStreams([&](auto & stream)
|
|
{
|
|
if (IProfilingBlockInputStream * p_stream = dynamic_cast<IProfilingBlockInputStream *>(stream.get()))
|
|
p_stream->enableExtremes();
|
|
});
|
|
}
|
|
|
|
/** Optimization - if there are several sources and there is LIMIT, then first apply the preliminary LIMIT,
|
|
* limiting the number of entries in each up to `offset + limit`.
|
|
*/
|
|
if (query.limit_length && hasMoreThanOneStream() && !query.distinct && !query.limit_by_expression_list)
|
|
executePreLimit();
|
|
|
|
if (union_within_single_query || stream_with_non_joined_data || need_second_distinct_pass)
|
|
union_within_single_query = true;
|
|
|
|
/// To execute LIMIT BY we should merge all streams together.
|
|
if (query.limit_by_expression_list && hasMoreThanOneStream())
|
|
union_within_single_query = true;
|
|
|
|
if (union_within_single_query)
|
|
executeUnion();
|
|
|
|
if (streams.size() == 1)
|
|
{
|
|
/** If there was more than one stream,
|
|
* then DISTINCT needs to be performed once again after merging all streams.
|
|
*/
|
|
if (need_second_distinct_pass)
|
|
executeDistinct(false, Names());
|
|
|
|
executeLimitBy();
|
|
executeLimit();
|
|
}
|
|
}
|
|
}
|
|
|
|
/** If there is no data. */
|
|
if (hasNoData())
|
|
return;
|
|
|
|
SubqueriesForSets subqueries_for_sets = query_analyzer->getSubqueriesForSets();
|
|
if (!subqueries_for_sets.empty())
|
|
executeSubqueriesInSetsAndJoins(subqueries_for_sets);
|
|
}
|
|
|
|
|
|
static void getLimitLengthAndOffset(ASTSelectQuery & query, size_t & length, size_t & offset)
|
|
{
|
|
length = 0;
|
|
offset = 0;
|
|
if (query.limit_length)
|
|
{
|
|
length = safeGet<UInt64>(typeid_cast<ASTLiteral &>(*query.limit_length).value);
|
|
if (query.limit_offset)
|
|
offset = safeGet<UInt64>(typeid_cast<ASTLiteral &>(*query.limit_offset).value);
|
|
}
|
|
}
|
|
|
|
QueryProcessingStage::Enum InterpreterSelectQuery::executeFetchColumns()
|
|
{
|
|
if (!hasNoData())
|
|
return QueryProcessingStage::FetchColumns;
|
|
|
|
/// The subquery interpreter, if the subquery
|
|
std::experimental::optional<InterpreterSelectQuery> interpreter_subquery;
|
|
|
|
/// List of columns to read to execute the query.
|
|
Names required_columns = query_analyzer->getRequiredColumns();
|
|
/// Actions to calculate ALIAS if required.
|
|
ExpressionActionsPtr alias_actions;
|
|
/// Are ALIAS columns required for query execution?
|
|
auto alias_columns_required = false;
|
|
|
|
if (storage && !storage->alias_columns.empty())
|
|
{
|
|
for (const auto & column : required_columns)
|
|
{
|
|
const auto default_it = storage->column_defaults.find(column);
|
|
if (default_it != std::end(storage->column_defaults) && default_it->second.type == ColumnDefaultType::Alias)
|
|
{
|
|
alias_columns_required = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (alias_columns_required)
|
|
{
|
|
/// We will create an expression to return all the requested columns, with the calculation of the required ALIAS columns.
|
|
auto required_columns_expr_list = std::make_shared<ASTExpressionList>();
|
|
|
|
for (const auto & column : required_columns)
|
|
{
|
|
const auto default_it = storage->column_defaults.find(column);
|
|
if (default_it != std::end(storage->column_defaults) && default_it->second.type == ColumnDefaultType::Alias)
|
|
required_columns_expr_list->children.emplace_back(setAlias(default_it->second.expression->clone(), column));
|
|
else
|
|
required_columns_expr_list->children.emplace_back(std::make_shared<ASTIdentifier>(StringRange(), column));
|
|
}
|
|
|
|
alias_actions = ExpressionAnalyzer{required_columns_expr_list, context, storage, table_column_names}.getActions(true);
|
|
|
|
/// The set of required columns could be added as a result of adding an action to calculate ALIAS.
|
|
required_columns = alias_actions->getRequiredColumns();
|
|
}
|
|
}
|
|
|
|
auto query_table = query.table();
|
|
if (query_table && typeid_cast<ASTSelectQuery *>(query_table.get()))
|
|
{
|
|
/** There are no limits on the maximum size of the result for the subquery.
|
|
* Since the result of the query is not the result of the entire query.
|
|
*/
|
|
Context subquery_context = context;
|
|
Settings subquery_settings = context.getSettings();
|
|
subquery_settings.limits.max_result_rows = 0;
|
|
subquery_settings.limits.max_result_bytes = 0;
|
|
/// The calculation of extremes does not make sense and is not necessary (if you do it, then the extremes of the subquery can be taken for whole query).
|
|
subquery_settings.extremes = 0;
|
|
subquery_context.setSettings(subquery_settings);
|
|
|
|
interpreter_subquery.emplace(
|
|
query_table, subquery_context, required_columns, QueryProcessingStage::Complete, subquery_depth + 1);
|
|
|
|
/// If there is an aggregation in the outer query, WITH TOTALS is ignored in the subquery.
|
|
if (query_analyzer->hasAggregation())
|
|
interpreter_subquery->ignoreWithTotals();
|
|
}
|
|
|
|
if (query.sample_size() && (!storage || !storage->supportsSampling()))
|
|
throw Exception("Illegal SAMPLE: table doesn't support sampling", ErrorCodes::SAMPLING_NOT_SUPPORTED);
|
|
|
|
if (query.final() && (!storage || !storage->supportsFinal()))
|
|
throw Exception(storage ? "Storage " + storage->getName() + " doesn't support FINAL" : "Illegal FINAL", ErrorCodes::ILLEGAL_FINAL);
|
|
|
|
if (query.prewhere_expression && (!storage || !storage->supportsPrewhere()))
|
|
throw Exception(storage ? "Storage " + storage->getName() + " doesn't support PREWHERE" : "Illegal PREWHERE", ErrorCodes::ILLEGAL_PREWHERE);
|
|
|
|
/** With distributed query processing, almost no computations are done in the threads,
|
|
* but wait and receive data from remote servers.
|
|
* If we have 20 remote servers, and max_threads = 8, then it would not be very good
|
|
* connect and ask only 8 servers at a time.
|
|
* To simultaneously query more remote servers,
|
|
* instead of max_threads, max_distributed_connections is used.
|
|
*
|
|
* Save the initial value of max_threads in settings_for_storage
|
|
* - these settings will be passed to remote servers for distributed query processing,
|
|
* and there must be an original value of max_threads, not an increased value.
|
|
*/
|
|
bool is_remote = false;
|
|
Settings settings_for_storage = settings;
|
|
if (storage && storage->isRemote())
|
|
{
|
|
is_remote = true;
|
|
settings.max_threads = settings.max_distributed_connections;
|
|
}
|
|
|
|
/// Limitation on the number of columns to read.
|
|
if (settings.limits.max_columns_to_read && required_columns.size() > settings.limits.max_columns_to_read)
|
|
throw Exception("Limit for number of columns to read exceeded. "
|
|
"Requested: " + toString(required_columns.size())
|
|
+ ", maximum: " + settings.limits.max_columns_to_read.toString(),
|
|
ErrorCodes::TOO_MUCH_COLUMNS);
|
|
|
|
size_t limit_length = 0;
|
|
size_t limit_offset = 0;
|
|
getLimitLengthAndOffset(query, limit_length, limit_offset);
|
|
|
|
/** Optimization - if not specified DISTINCT, WHERE, GROUP, HAVING, ORDER, LIMIT BY but LIMIT is specified, and limit + offset < max_block_size,
|
|
* then as the block size we will use limit + offset (not to read more from the table than requested),
|
|
* and also set the number of threads to 1.
|
|
*/
|
|
if (!query.distinct
|
|
&& !query.prewhere_expression
|
|
&& !query.where_expression
|
|
&& !query.group_expression_list
|
|
&& !query.having_expression
|
|
&& !query.order_expression_list
|
|
&& !query.limit_by_expression_list
|
|
&& query.limit_length
|
|
&& !query_analyzer->hasAggregation()
|
|
&& limit_length + limit_offset < settings.max_block_size)
|
|
{
|
|
settings.max_block_size = limit_length + limit_offset;
|
|
settings.max_threads = 1;
|
|
}
|
|
|
|
QueryProcessingStage::Enum from_stage = QueryProcessingStage::FetchColumns;
|
|
|
|
query_analyzer->makeSetsForIndex();
|
|
|
|
/// Initialize the initial data streams to which the query transforms are superimposed. Table or subquery?
|
|
if (!interpreter_subquery)
|
|
{
|
|
size_t max_streams = settings.max_threads;
|
|
|
|
if (max_streams == 0)
|
|
throw Exception("Logical error: zero number of streams requested", ErrorCodes::LOGICAL_ERROR);
|
|
|
|
/// If necessary, we request more sources than the number of threads - to distribute the work evenly over the threads.
|
|
if (max_streams > 1 && !is_remote)
|
|
max_streams *= settings.max_streams_to_max_threads_ratio;
|
|
|
|
ASTPtr actual_query_ptr;
|
|
if (storage->isRemote())
|
|
{
|
|
/// In case of a remote query, we send only SELECT, which will be executed.
|
|
actual_query_ptr = query.cloneFirstSelect();
|
|
}
|
|
else
|
|
actual_query_ptr = query_ptr;
|
|
|
|
streams = storage->read(required_columns, actual_query_ptr,
|
|
context, settings_for_storage, from_stage,
|
|
settings.max_block_size, max_streams);
|
|
|
|
if (alias_actions)
|
|
/// Wrap each stream returned from the table to calculate and add ALIAS columns
|
|
transformStreams([&] (auto & stream)
|
|
{
|
|
stream = std::make_shared<ExpressionBlockInputStream>(stream, alias_actions);
|
|
});
|
|
|
|
transformStreams([&](auto & stream)
|
|
{
|
|
stream->addTableLock(table_lock);
|
|
});
|
|
}
|
|
else
|
|
{
|
|
const auto & subquery_streams = interpreter_subquery->executeWithoutUnion();
|
|
streams.insert(streams.end(), subquery_streams.begin(), subquery_streams.end());
|
|
}
|
|
|
|
/** Set the limits and quota for reading data, the speed and time of the query.
|
|
* Such restrictions are checked on the initiating server of the request, and not on remote servers.
|
|
* Because the initiating server has a summary of the execution of the request on all servers.
|
|
*/
|
|
if (storage && to_stage == QueryProcessingStage::Complete)
|
|
{
|
|
IProfilingBlockInputStream::LocalLimits limits;
|
|
limits.mode = IProfilingBlockInputStream::LIMITS_TOTAL;
|
|
limits.max_rows_to_read = settings.limits.max_rows_to_read;
|
|
limits.max_bytes_to_read = settings.limits.max_bytes_to_read;
|
|
limits.read_overflow_mode = settings.limits.read_overflow_mode;
|
|
limits.max_execution_time = settings.limits.max_execution_time;
|
|
limits.timeout_overflow_mode = settings.limits.timeout_overflow_mode;
|
|
limits.min_execution_speed = settings.limits.min_execution_speed;
|
|
limits.timeout_before_checking_execution_speed = settings.limits.timeout_before_checking_execution_speed;
|
|
|
|
QuotaForIntervals & quota = context.getQuota();
|
|
|
|
transformStreams([&](auto & stream)
|
|
{
|
|
if (IProfilingBlockInputStream * p_stream = dynamic_cast<IProfilingBlockInputStream *>(stream.get()))
|
|
{
|
|
p_stream->setLimits(limits);
|
|
p_stream->setQuota(quota);
|
|
}
|
|
});
|
|
}
|
|
|
|
return from_stage;
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeWhere(ExpressionActionsPtr expression)
|
|
{
|
|
transformStreams([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<FilterBlockInputStream>(stream, expression, query.where_expression->getColumnName());
|
|
});
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeAggregation(ExpressionActionsPtr expression, bool overflow_row, bool final)
|
|
{
|
|
transformStreams([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<ExpressionBlockInputStream>(stream, expression);
|
|
});
|
|
|
|
Names key_names;
|
|
AggregateDescriptions aggregates;
|
|
query_analyzer->getAggregateInfo(key_names, aggregates);
|
|
|
|
/** Two-level aggregation is useful in two cases:
|
|
* 1. Parallel aggregation is done, and the results should be measured in parallel.
|
|
* 2. An aggregation is done with store of temporary data on the disk, and they need to be merged memory efficient.
|
|
*/
|
|
bool allow_to_use_two_level_group_by = streams.size() > 1 || settings.limits.max_bytes_before_external_group_by != 0;
|
|
|
|
Aggregator::Params params(key_names, aggregates,
|
|
overflow_row, settings.limits.max_rows_to_group_by, settings.limits.group_by_overflow_mode,
|
|
settings.compile ? &context.getCompiler() : nullptr, settings.min_count_to_compile,
|
|
allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold : SettingUInt64(0),
|
|
allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold_bytes : SettingUInt64(0),
|
|
settings.limits.max_bytes_before_external_group_by, context.getTemporaryPath());
|
|
|
|
/// If there are several sources, then we perform parallel aggregation
|
|
if (streams.size() > 1)
|
|
{
|
|
streams[0] = std::make_shared<ParallelAggregatingBlockInputStream>(
|
|
streams, stream_with_non_joined_data, params, final,
|
|
settings.max_threads,
|
|
settings.aggregation_memory_efficient_merge_threads
|
|
? settings.aggregation_memory_efficient_merge_threads
|
|
: settings.max_threads);
|
|
|
|
stream_with_non_joined_data = nullptr;
|
|
streams.resize(1);
|
|
}
|
|
else
|
|
{
|
|
BlockInputStreams inputs;
|
|
if (!streams.empty())
|
|
inputs.push_back(streams[0]);
|
|
else
|
|
streams.resize(1);
|
|
|
|
if (stream_with_non_joined_data)
|
|
inputs.push_back(stream_with_non_joined_data);
|
|
|
|
streams[0] = std::make_shared<AggregatingBlockInputStream>(std::make_shared<ConcatBlockInputStream>(inputs), params, final);
|
|
|
|
stream_with_non_joined_data = nullptr;
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeMergeAggregated(bool overflow_row, bool final)
|
|
{
|
|
Names key_names;
|
|
AggregateDescriptions aggregates;
|
|
query_analyzer->getAggregateInfo(key_names, aggregates);
|
|
|
|
/** There are two modes of distributed aggregation.
|
|
*
|
|
* 1. In different threads read from the remote servers blocks.
|
|
* Save all the blocks in the RAM. Merge blocks.
|
|
* If the aggregation is two-level - parallelize to the number of buckets.
|
|
*
|
|
* 2. In one thread, read blocks from different servers in order.
|
|
* RAM stores only one block from each server.
|
|
* If the aggregation is a two-level aggregation, we consistently merge the blocks of each next level.
|
|
*
|
|
* The second option consumes less memory (up to 256 times less)
|
|
* in the case of two-level aggregation, which is used for large results after GROUP BY,
|
|
* but it can work more slowly.
|
|
*/
|
|
|
|
Aggregator::Params params(key_names, aggregates, overflow_row);
|
|
|
|
if (!settings.distributed_aggregation_memory_efficient)
|
|
{
|
|
/// We union several sources into one, parallelizing the work.
|
|
executeUnion();
|
|
|
|
/// Now merge the aggregated blocks
|
|
streams[0] = std::make_shared<MergingAggregatedBlockInputStream>(streams[0], params, final, original_max_threads);
|
|
}
|
|
else
|
|
{
|
|
streams[0] = std::make_shared<MergingAggregatedMemoryEfficientBlockInputStream>(streams, params, final,
|
|
settings.max_threads,
|
|
settings.aggregation_memory_efficient_merge_threads
|
|
? size_t(settings.aggregation_memory_efficient_merge_threads)
|
|
: original_max_threads);
|
|
|
|
streams.resize(1);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeHaving(ExpressionActionsPtr expression)
|
|
{
|
|
transformStreams([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<FilterBlockInputStream>(stream, expression, query.having_expression->getColumnName());
|
|
});
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeTotalsAndHaving(bool has_having, ExpressionActionsPtr expression, bool overflow_row)
|
|
{
|
|
executeUnion();
|
|
|
|
streams[0] = std::make_shared<TotalsHavingBlockInputStream>(
|
|
streams[0], overflow_row, expression,
|
|
has_having ? query.having_expression->getColumnName() : "", settings.totals_mode, settings.totals_auto_threshold);
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeExpression(ExpressionActionsPtr expression)
|
|
{
|
|
transformStreams([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<ExpressionBlockInputStream>(stream, expression);
|
|
});
|
|
}
|
|
|
|
|
|
static SortDescription getSortDescription(ASTSelectQuery & query)
|
|
{
|
|
SortDescription order_descr;
|
|
order_descr.reserve(query.order_expression_list->children.size());
|
|
for (const auto & elem : query.order_expression_list->children)
|
|
{
|
|
String name = elem->children.front()->getColumnName();
|
|
const ASTOrderByElement & order_by_elem = typeid_cast<const ASTOrderByElement &>(*elem);
|
|
|
|
std::shared_ptr<Collator> collator;
|
|
if (order_by_elem.collation)
|
|
collator = std::make_shared<Collator>(typeid_cast<const ASTLiteral &>(*order_by_elem.collation).value.get<String>());
|
|
|
|
order_descr.emplace_back(name, order_by_elem.direction, order_by_elem.nulls_direction, collator);
|
|
}
|
|
|
|
return order_descr;
|
|
}
|
|
|
|
static size_t getLimitForSorting(ASTSelectQuery & query)
|
|
{
|
|
/// Partial sort can be done if there is LIMIT but no DISTINCT or LIMIT BY.
|
|
size_t limit = 0;
|
|
if (!query.distinct && !query.limit_by_expression_list)
|
|
{
|
|
size_t limit_length = 0;
|
|
size_t limit_offset = 0;
|
|
getLimitLengthAndOffset(query, limit_length, limit_offset);
|
|
limit = limit_length + limit_offset;
|
|
}
|
|
|
|
return limit;
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeOrder()
|
|
{
|
|
SortDescription order_descr = getSortDescription(query);
|
|
size_t limit = getLimitForSorting(query);
|
|
|
|
transformStreams([&](auto & stream)
|
|
{
|
|
auto sorting_stream = std::make_shared<PartialSortingBlockInputStream>(stream, order_descr, limit);
|
|
|
|
/// Limits on sorting
|
|
IProfilingBlockInputStream::LocalLimits limits;
|
|
limits.mode = IProfilingBlockInputStream::LIMITS_TOTAL;
|
|
limits.max_rows_to_read = settings.limits.max_rows_to_sort;
|
|
limits.max_bytes_to_read = settings.limits.max_bytes_to_sort;
|
|
limits.read_overflow_mode = settings.limits.sort_overflow_mode;
|
|
sorting_stream->setLimits(limits);
|
|
|
|
stream = sorting_stream;
|
|
});
|
|
|
|
/// If there are several streams, we merge them into one
|
|
executeUnion();
|
|
|
|
/// Merge the sorted blocks.
|
|
streams[0] = std::make_shared<MergeSortingBlockInputStream>(
|
|
streams[0], order_descr, settings.max_block_size, limit,
|
|
settings.limits.max_bytes_before_external_sort, context.getTemporaryPath());
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeMergeSorted()
|
|
{
|
|
SortDescription order_descr = getSortDescription(query);
|
|
size_t limit = getLimitForSorting(query);
|
|
|
|
/// If there are several streams, then we merge them into one
|
|
if (hasMoreThanOneStream())
|
|
{
|
|
/** MergingSortedBlockInputStream reads the sources sequentially.
|
|
* To make the data on the remote servers prepared in parallel, we wrap it in AsynchronousBlockInputStream.
|
|
*/
|
|
transformStreams([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<AsynchronousBlockInputStream>(stream);
|
|
});
|
|
|
|
/// Merge the sorted sources into one sorted source.
|
|
streams[0] = std::make_shared<MergingSortedBlockInputStream>(streams, order_descr, settings.max_block_size, limit);
|
|
streams.resize(1);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeProjection(ExpressionActionsPtr expression)
|
|
{
|
|
transformStreams([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<ExpressionBlockInputStream>(stream, expression);
|
|
});
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeDistinct(bool before_order, Names columns)
|
|
{
|
|
if (query.distinct)
|
|
{
|
|
size_t limit_length = 0;
|
|
size_t limit_offset = 0;
|
|
getLimitLengthAndOffset(query, limit_length, limit_offset);
|
|
|
|
size_t limit_for_distinct = 0;
|
|
|
|
/// If after this stage of DISTINCT ORDER BY is not executed, then you can get no more than limit_length + limit_offset of different rows.
|
|
if (!query.order_expression_list || !before_order)
|
|
limit_for_distinct = limit_length + limit_offset;
|
|
|
|
transformStreams([&](auto & stream)
|
|
{
|
|
if (stream->isGroupedOutput())
|
|
stream = std::make_shared<DistinctSortedBlockInputStream>(stream, settings.limits, limit_for_distinct, columns);
|
|
else
|
|
stream = std::make_shared<DistinctBlockInputStream>(stream, settings.limits, limit_for_distinct, columns);
|
|
});
|
|
|
|
if (hasMoreThanOneStream())
|
|
union_within_single_query = true;
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeUnion()
|
|
{
|
|
/// If there are still several streams, then we combine them into one
|
|
if (hasMoreThanOneStream())
|
|
{
|
|
streams[0] = std::make_shared<UnionBlockInputStream<>>(streams, stream_with_non_joined_data, settings.max_threads);
|
|
stream_with_non_joined_data = nullptr;
|
|
streams.resize(1);
|
|
union_within_single_query = false;
|
|
}
|
|
else if (stream_with_non_joined_data)
|
|
{
|
|
streams.push_back(stream_with_non_joined_data);
|
|
stream_with_non_joined_data = nullptr;
|
|
union_within_single_query = false;
|
|
}
|
|
}
|
|
|
|
|
|
/// Preliminary LIMIT - is used in every source, if there are several sources, before they are combined.
|
|
void InterpreterSelectQuery::executePreLimit()
|
|
{
|
|
size_t limit_length = 0;
|
|
size_t limit_offset = 0;
|
|
getLimitLengthAndOffset(query, limit_length, limit_offset);
|
|
|
|
/// If there is LIMIT
|
|
if (query.limit_length)
|
|
{
|
|
transformStreams([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<LimitBlockInputStream>(stream, limit_length + limit_offset, false);
|
|
});
|
|
|
|
if (hasMoreThanOneStream())
|
|
union_within_single_query = true;
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeLimitBy()
|
|
{
|
|
if (!query.limit_by_value || !query.limit_by_expression_list)
|
|
return;
|
|
|
|
Names columns;
|
|
size_t value = safeGet<UInt64>(typeid_cast<ASTLiteral &>(*query.limit_by_value).value);
|
|
|
|
for (const auto & elem : query.limit_by_expression_list->children)
|
|
{
|
|
columns.emplace_back(elem->getAliasOrColumnName());
|
|
}
|
|
|
|
transformStreams([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<LimitByBlockInputStream>(
|
|
stream, value, columns
|
|
);
|
|
});
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeLimit()
|
|
{
|
|
size_t limit_length = 0;
|
|
size_t limit_offset = 0;
|
|
getLimitLengthAndOffset(query, limit_length, limit_offset);
|
|
|
|
/// If there is LIMIT
|
|
if (query.limit_length)
|
|
{
|
|
/** Rare case:
|
|
* if there is no WITH TOTALS and there is a subquery in FROM, and there is WITH TOTALS on one of the levels,
|
|
* then when using LIMIT, you should read the data to the end, rather than cancel the query earlier,
|
|
* because if you cancel the query, we will not get `totals` data from the remote server.
|
|
*
|
|
* Another case:
|
|
* if there is WITH TOTALS and there is no ORDER BY, then read the data to the end,
|
|
* otherwise TOTALS is counted according to incomplete data.
|
|
*/
|
|
bool always_read_till_end = false;
|
|
|
|
if (query.group_by_with_totals && !query.order_expression_list)
|
|
{
|
|
always_read_till_end = true;
|
|
}
|
|
|
|
auto query_table = query.table();
|
|
if (!query.group_by_with_totals && query_table && typeid_cast<const ASTSelectQuery *>(query_table.get()))
|
|
{
|
|
const ASTSelectQuery * subquery = static_cast<const ASTSelectQuery *>(query_table.get());
|
|
|
|
while (subquery->table())
|
|
{
|
|
if (subquery->group_by_with_totals)
|
|
{
|
|
/** NOTE You can also check that the table in the subquery is distributed, and that it only looks at one shard.
|
|
* In other cases, totals will be computed on the initiating server of the query, and it is not necessary to read the data to the end.
|
|
*/
|
|
|
|
always_read_till_end = true;
|
|
break;
|
|
}
|
|
|
|
auto subquery_table = subquery->table();
|
|
if (typeid_cast<const ASTSelectQuery *>(subquery_table.get()))
|
|
subquery = static_cast<const ASTSelectQuery *>(subquery_table.get());
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
transformStreams([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<LimitBlockInputStream>(stream, limit_length, limit_offset, always_read_till_end);
|
|
});
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeSubqueriesInSetsAndJoins(SubqueriesForSets & subqueries_for_sets)
|
|
{
|
|
/// If the query is not distributed, then remove the creation of temporary tables from subqueries (intended for sending to remote servers).
|
|
if (!(storage && storage->isRemote()))
|
|
for (auto & elem : subqueries_for_sets)
|
|
elem.second.table.reset();
|
|
|
|
executeUnion();
|
|
streams[0] = std::make_shared<CreatingSetsBlockInputStream>(streams[0], subqueries_for_sets, settings.limits);
|
|
}
|
|
|
|
template <typename Transform>
|
|
void InterpreterSelectQuery::transformStreams(Transform && transform)
|
|
{
|
|
for (auto & stream : streams)
|
|
transform(stream);
|
|
|
|
if (stream_with_non_joined_data)
|
|
transform(stream_with_non_joined_data);
|
|
}
|
|
|
|
|
|
bool InterpreterSelectQuery::hasNoData() const
|
|
{
|
|
return streams.empty() && !stream_with_non_joined_data;
|
|
}
|
|
|
|
|
|
bool InterpreterSelectQuery::hasMoreThanOneStream() const
|
|
{
|
|
return streams.size() + (stream_with_non_joined_data ? 1 : 0) > 1;
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::ignoreWithTotals()
|
|
{
|
|
query.group_by_with_totals = false;
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::initSettings()
|
|
{
|
|
if (query.settings)
|
|
InterpreterSetQuery(query.settings, context).executeForCurrentContext();
|
|
|
|
settings = context.getSettings();
|
|
}
|
|
|
|
}
|