mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-23 16:12:01 +00:00
151 lines
5.4 KiB
Python
Executable File
151 lines
5.4 KiB
Python
Executable File
#!/usr/bin/python3.4
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import sys
|
|
import argparse
|
|
import tempfile
|
|
import random
|
|
import subprocess
|
|
import bisect
|
|
from copy import deepcopy
|
|
|
|
# Псевдослучайный генератор уникальных чисел.
|
|
# http://preshing.com/20121224/how-to-generate-a-sequence-of-unique-random-integers/
|
|
class UniqueRandomGenerator:
|
|
prime = 4294967291
|
|
|
|
def __init__(self, seed_base, seed_offset):
|
|
self.index = self.permutePQR(self.permutePQR(seed_base) + 0x682f0161)
|
|
self.intermediate_offset = self.permutePQR(self.permutePQR(seed_offset) + 0x46790905)
|
|
|
|
def next(self):
|
|
val = self.permutePQR((self.permutePQR(self.index) + self.intermediate_offset) ^ 0x5bf03635)
|
|
self.index = self.index + 1
|
|
return val
|
|
|
|
def permutePQR(self, x):
|
|
if x >=self.prime:
|
|
return x
|
|
else:
|
|
residue = (x * x) % self.prime
|
|
if x <= self.prime/2:
|
|
return residue
|
|
else:
|
|
return self.prime - residue
|
|
|
|
# Создать таблицу содержащую уникальные значения.
|
|
def generate_data_source(host, port, http_port, min_cardinality, max_cardinality, count):
|
|
chunk_size = round((max_cardinality - (min_cardinality + 1)) / float(count))
|
|
used_values = 0
|
|
|
|
cur_count = 0
|
|
next_size = 0
|
|
|
|
sup = 32768
|
|
n1 = random.randrange(0, sup)
|
|
n2 = random.randrange(0, sup)
|
|
urng = UniqueRandomGenerator(n1, n2)
|
|
|
|
is_first = True
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
filename = tmp_dir + '/table.txt'
|
|
with open(filename, 'w+b') as file_handle:
|
|
while cur_count < count:
|
|
|
|
if is_first == True:
|
|
is_first = False
|
|
if min_cardinality != 0:
|
|
next_size = min_cardinality + 1
|
|
else:
|
|
next_size = chunk_size
|
|
else:
|
|
next_size += chunk_size
|
|
|
|
while used_values < next_size:
|
|
h = urng.next()
|
|
used_values = used_values + 1
|
|
out = str(h) + "\t" + str(cur_count) + "\n";
|
|
file_handle.write(bytes(out, 'UTF-8'));
|
|
cur_count = cur_count + 1
|
|
|
|
query = "DROP TABLE IF EXISTS data_source"
|
|
subprocess.check_output(["clickhouse-client", "--host", host, "--port", str(port), "--query", query])
|
|
query = "CREATE TABLE data_source(UserID UInt64, KeyID UInt64) ENGINE=TinyLog"
|
|
subprocess.check_output(["clickhouse-client", "--host", host, "--port", str(port), "--query", query])
|
|
|
|
cat = subprocess.Popen(("cat", filename), stdout=subprocess.PIPE)
|
|
subprocess.check_output(("POST", "http://{0}:{1}/?query=INSERT INTO data_source FORMAT TabSeparated".format(host, http_port)), stdin=cat.stdout)
|
|
cat.wait()
|
|
|
|
def perform_query(host, port):
|
|
query = "SELECT runningAccumulate(uniqExactState(UserID)) AS exact, "
|
|
query += "runningAccumulate(uniqCombinedRawState(UserID)) AS raw, "
|
|
query += "runningAccumulate(uniqCombinedLinearCountingState(UserID)) AS linear_counting, "
|
|
query += "runningAccumulate(uniqCombinedBiasCorrectedState(UserID)) AS bias_corrected "
|
|
query += "FROM data_source GROUP BY KeyID"
|
|
return subprocess.check_output(["clickhouse-client", "--host", host, "--port", port, "--query", query])
|
|
|
|
def parse_clickhouse_response(response):
|
|
parsed = []
|
|
lines = response.decode().split("\n")
|
|
for cur_line in lines:
|
|
rows = cur_line.split("\t")
|
|
if len(rows) == 4:
|
|
parsed.append([float(rows[0]), float(rows[1]), float(rows[2]), float(rows[3])])
|
|
return parsed
|
|
|
|
def accumulate_data(accumulated_data, data):
|
|
if not accumulated_data:
|
|
accumulated_data = deepcopy(data)
|
|
else:
|
|
for row1, row2 in zip(accumulated_data, data):
|
|
row1[1] += row2[1];
|
|
row1[2] += row2[2];
|
|
row1[3] += row2[3];
|
|
return accumulated_data
|
|
|
|
def dump_graphs(data, count):
|
|
with open("raw_graph.txt", "w+b") as fh1, open("linear_counting_graph.txt", "w+b") as fh2, open("bias_corrected_graph.txt", "w+b") as fh3:
|
|
expected_tab = []
|
|
bias_tab = []
|
|
for row in data:
|
|
exact = row[0]
|
|
raw = row[1] / count;
|
|
linear_counting = row[2] / count;
|
|
bias_corrected = row[3] / count;
|
|
|
|
outstr = "{0}\t{1}\n".format(exact, abs(raw - exact) / exact)
|
|
fh1.write(bytes(outstr, 'UTF-8'))
|
|
|
|
outstr = "{0}\t{1}\n".format(exact, abs(linear_counting - exact) / exact)
|
|
fh2.write(bytes(outstr, 'UTF-8'))
|
|
|
|
outstr = "{0}\t{1}\n".format(exact, abs(bias_corrected - exact) / exact)
|
|
fh3.write(bytes(outstr, 'UTF-8'))
|
|
|
|
def start():
|
|
parser = argparse.ArgumentParser(description = "Generate graphs that help to determine the linear counting threshold.")
|
|
parser.add_argument("-x", "--host", default="127.0.0.1", help="clickhouse host name");
|
|
parser.add_argument("-p", "--port", type=int, default=9000, help="clickhouse client TCP port");
|
|
parser.add_argument("-t", "--http_port", type=int, default=8123, help="clickhouse HTTP port");
|
|
parser.add_argument("-i", "--iterations", type=int, default=5000, help="number of iterations");
|
|
parser.add_argument("-m", "--min_cardinality", type=int, default=16384, help="minimal cardinality");
|
|
parser.add_argument("-M", "--max_cardinality", type=int, default=655360, help="maximal cardinality");
|
|
args = parser.parse_args()
|
|
|
|
accumulated_data = []
|
|
|
|
for i in range(0, args.iterations):
|
|
print(i + 1)
|
|
sys.stdout.flush()
|
|
|
|
generate_data_source(args.host, str(args.port), str(args.http_port), args.min_cardinality, args.max_cardinality, 1000)
|
|
response = perform_query(args.host, str(args.port))
|
|
data = parse_clickhouse_response(response)
|
|
accumulated_data = accumulate_data(accumulated_data, data)
|
|
|
|
dump_graphs(accumulated_data, args.iterations)
|
|
|
|
if __name__ == "__main__": start()
|