ClickHouse/src/Functions/geometryConverters.h
Azat Khuzhin 79b83c4fd2 Remove superfluous includes of logger_userful.h from headers
Signed-off-by: Azat Khuzhin <a.khuzhin@semrush.com>
2023-04-10 17:59:30 +02:00

374 lines
11 KiB
C++

#pragma once
#include <Core/ColumnWithTypeAndName.h>
#include <Core/Types.h>
#include <boost/geometry/geometries/geometries.hpp>
#include <boost/geometry.hpp>
#include <boost/geometry/geometries/point_xy.hpp>
#include <Columns/ColumnsNumber.h>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnTuple.h>
#include <Common/NaNUtils.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/IDataType.h>
#include <DataTypes/DataTypeFactory.h>
#include <IO/WriteHelpers.h>
#include <Interpreters/castColumn.h>
#include <cmath>
namespace DB
{
namespace ErrorCodes
{
extern const int BAD_ARGUMENTS;
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
}
template <typename Point>
using Ring = boost::geometry::model::ring<Point>;
template <typename Point>
using Polygon = boost::geometry::model::polygon<Point>;
template <typename Point>
using MultiPolygon = boost::geometry::model::multi_polygon<Polygon<Point>>;
using CartesianPoint = boost::geometry::model::d2::point_xy<Float64>;
using CartesianRing = Ring<CartesianPoint>;
using CartesianPolygon = Polygon<CartesianPoint>;
using CartesianMultiPolygon = MultiPolygon<CartesianPoint>;
using SphericalPoint = boost::geometry::model::point<Float64, 2, boost::geometry::cs::spherical_equatorial<boost::geometry::degree>>;
using SphericalRing = Ring<SphericalPoint>;
using SphericalPolygon = Polygon<SphericalPoint>;
using SphericalMultiPolygon = MultiPolygon<SphericalPoint>;
/**
* Class which takes converts Column with type Tuple(Float64, Float64) to a vector of boost point type.
* They are (x,y) in case of cartesian coordinated and (lon,lat) in case of Spherical.
*/
template <typename Point>
struct ColumnToPointsConverter
{
static std::vector<Point> convert(ColumnPtr col)
{
const auto * tuple = typeid_cast<const ColumnTuple *>(col.get());
const auto & tuple_columns = tuple->getColumns();
const auto * x_data = typeid_cast<const ColumnFloat64 *>(tuple_columns[0].get());
const auto * y_data = typeid_cast<const ColumnFloat64 *>(tuple_columns[1].get());
const auto * first_container = x_data->getData().data();
const auto * second_container = y_data->getData().data();
std::vector<Point> answer(col->size());
for (size_t i = 0; i < col->size(); ++i)
{
const Float64 first = first_container[i];
const Float64 second = second_container[i];
if (isNaN(first) || isNaN(second))
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Point's component must not be NaN");
if (std::isinf(first) || std::isinf(second))
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Point's component must not be infinite");
answer[i] = Point(first, second);
}
return answer;
}
};
/**
* Class which converts Column with type Array(Tuple(Float64, Float64)) to a vector of boost ring type.
*/
template <typename Point>
struct ColumnToRingsConverter
{
static std::vector<Ring<Point>> convert(ColumnPtr col)
{
const IColumn::Offsets & offsets = typeid_cast<const ColumnArray &>(*col).getOffsets();
size_t prev_offset = 0;
std::vector<Ring<Point>> answer;
answer.reserve(offsets.size());
auto tmp = ColumnToPointsConverter<Point>::convert(typeid_cast<const ColumnArray &>(*col).getDataPtr());
for (size_t offset : offsets)
{
answer.emplace_back(tmp.begin() + prev_offset, tmp.begin() + offset);
prev_offset = offset;
}
return answer;
}
};
/**
* Class which converts Column with type Array(Array(Tuple(Float64, Float64))) to a vector of boost polygon type.
*/
template <typename Point>
struct ColumnToPolygonsConverter
{
static std::vector<Polygon<Point>> convert(ColumnPtr col)
{
const IColumn::Offsets & offsets = typeid_cast<const ColumnArray &>(*col).getOffsets();
std::vector<Polygon<Point>> answer(offsets.size());
auto all_rings = ColumnToRingsConverter<Point>::convert(typeid_cast<const ColumnArray &>(*col).getDataPtr());
size_t prev_offset = 0;
for (size_t iter = 0; iter < offsets.size(); ++iter)
{
const auto current_array_size = offsets[iter] - prev_offset;
if (current_array_size == 0)
{
answer.emplace_back();
continue;
}
answer[iter].outer() = std::move(all_rings[prev_offset]);
answer[iter].inners().reserve(current_array_size);
for (size_t inner_holes = prev_offset + 1; inner_holes < offsets[iter]; ++inner_holes)
answer[iter].inners().emplace_back(std::move(all_rings[inner_holes]));
prev_offset = offsets[iter];
}
return answer;
}
};
/**
* Class which converts Column with type Array(Array(Array(Tuple(Float64, Float64)))) to a vector of boost multi_polygon type.
*/
template <typename Point>
struct ColumnToMultiPolygonsConverter
{
static std::vector<MultiPolygon<Point>> convert(ColumnPtr col)
{
const IColumn::Offsets & offsets = typeid_cast<const ColumnArray &>(*col).getOffsets();
size_t prev_offset = 0;
std::vector<MultiPolygon<Point>> answer(offsets.size());
auto all_polygons = ColumnToPolygonsConverter<Point>::convert(typeid_cast<const ColumnArray &>(*col).getDataPtr());
for (size_t iter = 0; iter < offsets.size() && iter < all_polygons.size(); ++iter)
{
for (size_t polygon_iter = prev_offset; polygon_iter < offsets[iter]; ++polygon_iter)
answer[iter].emplace_back(std::move(all_polygons[polygon_iter]));
prev_offset = offsets[iter];
}
return answer;
}
};
/// To serialize Spherical or Cartesian point (a pair of numbers in both cases).
template <typename Point>
class PointSerializer
{
public:
PointSerializer()
: first(ColumnFloat64::create())
, second(ColumnFloat64::create())
, first_container(first->getData())
, second_container(second->getData())
{}
explicit PointSerializer(size_t n)
: first(ColumnFloat64::create(n))
, second(ColumnFloat64::create(n))
, first_container(first->getData())
, second_container(second->getData())
{}
void add(const Point & point)
{
first_container.emplace_back(point.template get<0>());
second_container.emplace_back(point.template get<1>());
}
ColumnPtr finalize()
{
Columns columns(2);
columns[0] = std::move(first);
columns[1] = std::move(second);
return ColumnTuple::create(columns);
}
private:
ColumnFloat64::MutablePtr first;
ColumnFloat64::MutablePtr second;
ColumnFloat64::Container & first_container;
ColumnFloat64::Container & second_container;
};
/// Serialize Point, Ring as Ring
template <typename Point>
class RingSerializer
{
public:
RingSerializer()
: offsets(ColumnUInt64::create())
{}
explicit RingSerializer(size_t n)
: offsets(ColumnUInt64::create(n))
{}
void add(const Ring<Point> & ring)
{
size += ring.size();
offsets->insertValue(size);
for (const auto & point : ring)
point_serializer.add(point);
}
ColumnPtr finalize()
{
return ColumnArray::create(point_serializer.finalize(), std::move(offsets));
}
private:
size_t size = 0;
PointSerializer<Point> point_serializer;
ColumnUInt64::MutablePtr offsets;
};
/// Serialize Point, Ring, Polygon as Polygon
template <typename Point>
class PolygonSerializer
{
public:
PolygonSerializer()
: offsets(ColumnUInt64::create())
{}
explicit PolygonSerializer(size_t n)
: offsets(ColumnUInt64::create(n))
{}
void add(const Ring<Point> & ring)
{
size++;
offsets->insertValue(size);
ring_serializer.add(ring);
}
void add(const Polygon<Point> & polygon)
{
/// Outer ring + all inner rings (holes).
size += 1 + polygon.inners().size();
offsets->insertValue(size);
ring_serializer.add(polygon.outer());
for (const auto & ring : polygon.inners())
ring_serializer.add(ring);
}
ColumnPtr finalize()
{
return ColumnArray::create(ring_serializer.finalize(), std::move(offsets));
}
private:
size_t size = 0;
RingSerializer<Point> ring_serializer;
ColumnUInt64::MutablePtr offsets;
};
/// Serialize Point, Ring, Polygon, MultiPolygon as MultiPolygon
template <typename Point>
class MultiPolygonSerializer
{
public:
MultiPolygonSerializer()
: offsets(ColumnUInt64::create())
{}
explicit MultiPolygonSerializer(size_t n)
: offsets(ColumnUInt64::create(n))
{}
void add(const Ring<Point> & ring)
{
size++;
offsets->insertValue(size);
polygon_serializer.add(ring);
}
void add(const Polygon<Point> & polygon)
{
size++;
offsets->insertValue(size);
polygon_serializer.add(polygon);
}
void add(const MultiPolygon<Point> & multi_polygon)
{
size += multi_polygon.size();
offsets->insertValue(size);
for (const auto & polygon : multi_polygon)
{
polygon_serializer.add(polygon);
}
}
ColumnPtr finalize()
{
return ColumnArray::create(polygon_serializer.finalize(), std::move(offsets));
}
private:
size_t size = 0;
PolygonSerializer<Point> polygon_serializer;
ColumnUInt64::MutablePtr offsets;
};
template <typename PType>
struct ConverterType
{
using Type = PType;
};
template <typename Point, typename F>
static void callOnGeometryDataType(DataTypePtr type, F && f)
{
const auto & factory = DataTypeFactory::instance();
/// There is no Point type, because for most of geometry functions it is useless.
if (factory.get("Point")->equals(*type))
return f(ConverterType<ColumnToPointsConverter<Point>>());
else if (factory.get("Ring")->equals(*type))
return f(ConverterType<ColumnToRingsConverter<Point>>());
else if (factory.get("Polygon")->equals(*type))
return f(ConverterType<ColumnToPolygonsConverter<Point>>());
else if (factory.get("MultiPolygon")->equals(*type))
return f(ConverterType<ColumnToMultiPolygonsConverter<Point>>());
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Unknown geometry type {}", type->getName());
}
template <typename Point, typename F>
static void callOnTwoGeometryDataTypes(DataTypePtr left_type, DataTypePtr right_type, F && func)
{
return callOnGeometryDataType<Point>(left_type, [&](const auto & left_types)
{
using LeftConverterType = std::decay_t<decltype(left_types)>;
return callOnGeometryDataType<Point>(right_type, [&](const auto & right_types)
{
using RightConverterType = std::decay_t<decltype(right_types)>;
return func(LeftConverterType(), RightConverterType());
});
});
}
}