ClickHouse/dbms/src/AggregateFunctions/AggregateFunctionMLMethod.cpp
2019-08-09 23:58:16 +03:00

571 lines
19 KiB
C++

#include "AggregateFunctionMLMethod.h"
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
#include <Interpreters/castColumn.h>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnTuple.h>
#include <Common/FieldVisitors.h>
#include <Common/typeid_cast.h>
#include "AggregateFunctionFactory.h"
#include "FactoryHelpers.h"
#include "Helpers.h"
namespace DB
{
namespace
{
using FuncLinearRegression = AggregateFunctionMLMethod<LinearModelData, NameLinearRegression>;
using FuncLogisticRegression = AggregateFunctionMLMethod<LinearModelData, NameLogisticRegression>;
template <class Method>
AggregateFunctionPtr
createAggregateFunctionMLMethod(const std::string & name, const DataTypes & argument_types, const Array & parameters)
{
if (parameters.size() > 4)
throw Exception(
"Aggregate function " + name
+ " requires at most four parameters: learning_rate, l2_regularization_coef, mini-batch size and weights_updater "
"method",
ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
if (argument_types.size() < 2)
throw Exception(
"Aggregate function " + name + " requires at least two arguments: target and model's parameters",
ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
for (size_t i = 0; i < argument_types.size(); ++i)
{
if (!isNativeNumber(argument_types[i]))
throw Exception(
"Argument " + std::to_string(i) + " of type " + argument_types[i]->getName()
+ " must be numeric for aggregate function " + name,
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
/// Such default parameters were picked because they did good on some tests,
/// though it still requires to fit parameters to achieve better result
auto learning_rate = Float64(1.0);
auto l2_reg_coef = Float64(0.5);
UInt64 batch_size = 15;
std::string weights_updater_name = "Adam";
std::unique_ptr<IGradientComputer> gradient_computer;
if (!parameters.empty())
{
learning_rate = applyVisitor(FieldVisitorConvertToNumber<Float64>(), parameters[0]);
}
if (parameters.size() > 1)
{
l2_reg_coef = applyVisitor(FieldVisitorConvertToNumber<Float64>(), parameters[1]);
}
if (parameters.size() > 2)
{
batch_size = applyVisitor(FieldVisitorConvertToNumber<UInt64>(), parameters[2]);
}
if (parameters.size() > 3)
{
weights_updater_name = parameters[3].safeGet<String>();
if (weights_updater_name != "SGD" && weights_updater_name != "Momentum" && weights_updater_name != "Nesterov" && weights_updater_name != "Adam")
throw Exception("Invalid parameter for weights updater. The only supported are 'SGD', 'Momentum' and 'Nesterov'",
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
if (std::is_same<Method, FuncLinearRegression>::value)
{
gradient_computer = std::make_unique<LinearRegression>();
}
else if (std::is_same<Method, FuncLogisticRegression>::value)
{
gradient_computer = std::make_unique<LogisticRegression>();
}
else
{
throw Exception("Such gradient computer is not implemented yet", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
return std::make_shared<Method>(
argument_types.size() - 1,
std::move(gradient_computer),
weights_updater_name,
learning_rate,
l2_reg_coef,
batch_size,
argument_types,
parameters);
}
}
void registerAggregateFunctionMLMethod(AggregateFunctionFactory & factory)
{
factory.registerFunction("stochasticLinearRegression", createAggregateFunctionMLMethod<FuncLinearRegression>);
factory.registerFunction("stochasticLogisticRegression", createAggregateFunctionMLMethod<FuncLogisticRegression>);
}
LinearModelData::LinearModelData(
Float64 learning_rate_,
Float64 l2_reg_coef_,
UInt64 param_num_,
UInt64 batch_capacity_,
std::shared_ptr<DB::IGradientComputer> gradient_computer_,
std::shared_ptr<DB::IWeightsUpdater> weights_updater_)
: learning_rate(learning_rate_)
, l2_reg_coef(l2_reg_coef_)
, batch_capacity(batch_capacity_)
, batch_size(0)
, gradient_computer(std::move(gradient_computer_))
, weights_updater(std::move(weights_updater_))
{
weights.resize(param_num_, Float64{0.0});
gradient_batch.resize(param_num_ + 1, Float64{0.0});
}
void LinearModelData::update_state()
{
if (batch_size == 0)
return;
weights_updater->update(batch_size, weights, bias, learning_rate, gradient_batch);
batch_size = 0;
++iter_num;
gradient_batch.assign(gradient_batch.size(), Float64{0.0});
}
void LinearModelData::predict(
ColumnVector<Float64>::Container & container,
Block & block,
size_t offset,
size_t limit,
const ColumnNumbers & arguments,
const Context & context) const
{
gradient_computer->predict(container, block, offset, limit, arguments, weights, bias, context);
}
void LinearModelData::returnWeights(IColumn & to) const
{
size_t size = weights.size() + 1;
ColumnArray & arr_to = static_cast<ColumnArray &>(to);
ColumnArray::Offsets & offsets_to = arr_to.getOffsets();
size_t old_size = offsets_to.back();
offsets_to.push_back(old_size + size);
typename ColumnFloat64::Container & val_to
= static_cast<ColumnFloat64 &>(arr_to.getData()).getData();
val_to.reserve(old_size + size);
for (size_t i = 0; i + 1 < size; ++i)
val_to.push_back(weights[i]);
val_to.push_back(bias);
}
void LinearModelData::read(ReadBuffer & buf)
{
readBinary(bias, buf);
readBinary(weights, buf);
readBinary(iter_num, buf);
readBinary(gradient_batch, buf);
readBinary(batch_size, buf);
weights_updater->read(buf);
}
void LinearModelData::write(WriteBuffer & buf) const
{
writeBinary(bias, buf);
writeBinary(weights, buf);
writeBinary(iter_num, buf);
writeBinary(gradient_batch, buf);
writeBinary(batch_size, buf);
weights_updater->write(buf);
}
void LinearModelData::merge(const DB::LinearModelData & rhs)
{
if (iter_num == 0 && rhs.iter_num == 0)
return;
update_state();
/// can't update rhs state because it's constant
/// squared mean is more stable (in sence of quality of prediction) when two states with quietly different number of learning steps are merged
Float64 frac = (static_cast<Float64>(iter_num) * iter_num) / (iter_num * iter_num + rhs.iter_num * rhs.iter_num);
for (size_t i = 0; i < weights.size(); ++i)
{
weights[i] = weights[i] * frac + rhs.weights[i] * (1 - frac);
}
bias = bias * frac + rhs.bias * (1 - frac);
iter_num += rhs.iter_num;
weights_updater->merge(*rhs.weights_updater, frac, 1 - frac);
}
void LinearModelData::add(const IColumn ** columns, size_t row_num)
{
/// first column stores target; features start from (columns + 1)
Float64 target = (*columns[0]).getFloat64(row_num);
/// Here we have columns + 1 as first column corresponds to target value, and others - to features
weights_updater->add_to_batch(
gradient_batch, *gradient_computer, weights, bias, l2_reg_coef, target, columns + 1, row_num);
++batch_size;
if (batch_size == batch_capacity)
{
update_state();
}
}
/// Weights updaters
void Adam::write(WriteBuffer & buf) const
{
writeBinary(average_gradient, buf);
writeBinary(average_squared_gradient, buf);
}
void Adam::read(ReadBuffer & buf)
{
readBinary(average_gradient, buf);
readBinary(average_squared_gradient, buf);
}
void Adam::merge(const IWeightsUpdater & rhs, Float64 frac, Float64 rhs_frac)
{
auto & adam_rhs = static_cast<const Adam &>(rhs);
if (average_gradient.empty())
{
if (!average_squared_gradient.empty() ||
adam_rhs.average_gradient.size() != adam_rhs.average_squared_gradient.size())
throw Exception("Average_gradient and average_squared_gradient must have same size", ErrorCodes::LOGICAL_ERROR);
average_gradient.resize(adam_rhs.average_gradient.size(), Float64{0.0});
average_squared_gradient.resize(adam_rhs.average_squared_gradient.size(), Float64{0.0});
}
for (size_t i = 0; i < average_gradient.size(); ++i)
{
average_gradient[i] = average_gradient[i] * frac + adam_rhs.average_gradient[i] * rhs_frac;
average_squared_gradient[i] = average_squared_gradient[i] * frac + adam_rhs.average_squared_gradient[i] * rhs_frac;
}
beta1_powered_ *= adam_rhs.beta1_powered_;
beta2_powered_ *= adam_rhs.beta2_powered_;
}
void Adam::update(UInt64 batch_size, std::vector<Float64> & weights, Float64 & bias, Float64 learning_rate, const std::vector<Float64> & batch_gradient)
{
if (average_gradient.empty())
{
if (!average_squared_gradient.empty())
throw Exception("Average_gradient and average_squared_gradient must have same size", ErrorCodes::LOGICAL_ERROR);
average_gradient.resize(batch_gradient.size(), Float64{0.0});
average_squared_gradient.resize(batch_gradient.size(), Float64{0.0});
}
for (size_t i = 0; i != average_gradient.size(); ++i)
{
Float64 normed_gradient = batch_gradient[i] / batch_size;
average_gradient[i] = beta1_ * average_gradient[i] + (1 - beta1_) * normed_gradient;
average_squared_gradient[i] = beta2_ * average_squared_gradient[i] +
(1 - beta2_) * normed_gradient * normed_gradient;
}
for (size_t i = 0; i < weights.size(); ++i)
{
weights[i] += (learning_rate * average_gradient[i]) /
((1 - beta1_powered_) * (sqrt(average_squared_gradient[i] / (1 - beta2_powered_)) + eps_));
}
bias += (learning_rate * average_gradient[weights.size()]) /
((1 - beta1_powered_) * (sqrt(average_squared_gradient[weights.size()] / (1 - beta2_powered_)) + eps_));
beta1_powered_ *= beta1_;
beta2_powered_ *= beta2_;
}
void Adam::add_to_batch(
std::vector<Float64> & batch_gradient,
IGradientComputer & gradient_computer,
const std::vector<Float64> & weights,
Float64 bias,
Float64 l2_reg_coef,
Float64 target,
const IColumn ** columns,
size_t row_num)
{
if (average_gradient.empty())
{
average_gradient.resize(batch_gradient.size(), Float64{0.0});
average_squared_gradient.resize(batch_gradient.size(), Float64{0.0});
}
gradient_computer.compute(batch_gradient, weights, bias, l2_reg_coef, target, columns, row_num);
}
void Nesterov::read(ReadBuffer & buf)
{
readBinary(accumulated_gradient, buf);
}
void Nesterov::write(WriteBuffer & buf) const
{
writeBinary(accumulated_gradient, buf);
}
void Nesterov::merge(const IWeightsUpdater & rhs, Float64 frac, Float64 rhs_frac)
{
auto & nesterov_rhs = static_cast<const Nesterov &>(rhs);
if (accumulated_gradient.empty())
accumulated_gradient.resize(nesterov_rhs.accumulated_gradient.size(), Float64{0.0});
for (size_t i = 0; i < accumulated_gradient.size(); ++i)
{
accumulated_gradient[i] = accumulated_gradient[i] * frac + nesterov_rhs.accumulated_gradient[i] * rhs_frac;
}
}
void Nesterov::update(UInt64 batch_size, std::vector<Float64> & weights, Float64 & bias, Float64 learning_rate, const std::vector<Float64> & batch_gradient)
{
if (accumulated_gradient.empty())
{
accumulated_gradient.resize(batch_gradient.size(), Float64{0.0});
}
for (size_t i = 0; i < batch_gradient.size(); ++i)
{
accumulated_gradient[i] = accumulated_gradient[i] * alpha_ + (learning_rate * batch_gradient[i]) / batch_size;
}
for (size_t i = 0; i < weights.size(); ++i)
{
weights[i] += accumulated_gradient[i];
}
bias += accumulated_gradient[weights.size()];
}
void Nesterov::add_to_batch(
std::vector<Float64> & batch_gradient,
IGradientComputer & gradient_computer,
const std::vector<Float64> & weights,
Float64 bias,
Float64 l2_reg_coef,
Float64 target,
const IColumn ** columns,
size_t row_num)
{
if (accumulated_gradient.empty())
{
accumulated_gradient.resize(batch_gradient.size(), Float64{0.0});
}
std::vector<Float64> shifted_weights(weights.size());
for (size_t i = 0; i != shifted_weights.size(); ++i)
{
shifted_weights[i] = weights[i] + accumulated_gradient[i] * alpha_;
}
auto shifted_bias = bias + accumulated_gradient[weights.size()] * alpha_;
gradient_computer.compute(batch_gradient, shifted_weights, shifted_bias, l2_reg_coef, target, columns, row_num);
}
void Momentum::read(ReadBuffer & buf)
{
readBinary(accumulated_gradient, buf);
}
void Momentum::write(WriteBuffer & buf) const
{
writeBinary(accumulated_gradient, buf);
}
void Momentum::merge(const IWeightsUpdater & rhs, Float64 frac, Float64 rhs_frac)
{
auto & momentum_rhs = static_cast<const Momentum &>(rhs);
for (size_t i = 0; i < accumulated_gradient.size(); ++i)
{
accumulated_gradient[i] = accumulated_gradient[i] * frac + momentum_rhs.accumulated_gradient[i] * rhs_frac;
}
}
void Momentum::update(UInt64 batch_size, std::vector<Float64> & weights, Float64 & bias, Float64 learning_rate, const std::vector<Float64> & batch_gradient)
{
/// batch_size is already checked to be greater than 0
if (accumulated_gradient.empty())
{
accumulated_gradient.resize(batch_gradient.size(), Float64{0.0});
}
for (size_t i = 0; i < batch_gradient.size(); ++i)
{
accumulated_gradient[i] = accumulated_gradient[i] * alpha_ + (learning_rate * batch_gradient[i]) / batch_size;
}
for (size_t i = 0; i < weights.size(); ++i)
{
weights[i] += accumulated_gradient[i];
}
bias += accumulated_gradient[weights.size()];
}
void StochasticGradientDescent::update(
UInt64 batch_size, std::vector<Float64> & weights, Float64 & bias, Float64 learning_rate, const std::vector<Float64> & batch_gradient)
{
/// batch_size is already checked to be greater than 0
for (size_t i = 0; i < weights.size(); ++i)
{
weights[i] += (learning_rate * batch_gradient[i]) / batch_size;
}
bias += (learning_rate * batch_gradient[weights.size()]) / batch_size;
}
void IWeightsUpdater::add_to_batch(
std::vector<Float64> & batch_gradient,
IGradientComputer & gradient_computer,
const std::vector<Float64> & weights,
Float64 bias,
Float64 l2_reg_coef,
Float64 target,
const IColumn ** columns,
size_t row_num)
{
gradient_computer.compute(batch_gradient, weights, bias, l2_reg_coef, target, columns, row_num);
}
/// Gradient computers
void LogisticRegression::predict(
ColumnVector<Float64>::Container & container,
Block & block,
size_t offset,
size_t limit,
const ColumnNumbers & arguments,
const std::vector<Float64> & weights,
Float64 bias,
const Context & /*context*/) const
{
size_t rows_num = block.rows();
if (offset > rows_num || offset + limit > rows_num)
throw Exception("Invalid offset and limit for LogisticRegression::predict. "
"Block has " + toString(rows_num) + " rows, but offset is " + toString(offset) +
" and limit is " + toString(limit), ErrorCodes::LOGICAL_ERROR);
std::vector<Float64> results(limit, bias);
for (size_t i = 1; i < arguments.size(); ++i)
{
const ColumnWithTypeAndName & cur_col = block.getByPosition(arguments[i]);
if (!isNativeNumber(cur_col.type))
throw Exception("Prediction arguments must have numeric type", ErrorCodes::BAD_ARGUMENTS);
auto & features_column = cur_col.column;
for (size_t row_num = 0; row_num < limit; ++row_num)
results[row_num] += weights[i - 1] * features_column->getFloat64(offset + row_num);
}
container.reserve(container.size() + limit);
for (size_t row_num = 0; row_num < limit; ++row_num)
container.emplace_back(1 / (1 + exp(-results[row_num])));
}
void LogisticRegression::compute(
std::vector<Float64> & batch_gradient,
const std::vector<Float64> & weights,
Float64 bias,
Float64 l2_reg_coef,
Float64 target,
const IColumn ** columns,
size_t row_num)
{
Float64 derivative = bias;
for (size_t i = 0; i < weights.size(); ++i)
{
auto value = (*columns[i]).getFloat64(row_num);
derivative += weights[i] * value;
}
derivative *= target;
derivative = exp(derivative);
batch_gradient[weights.size()] += target / (derivative + 1);
for (size_t i = 0; i < weights.size(); ++i)
{
auto value = (*columns[i]).getFloat64(row_num);
batch_gradient[i] += target * value / (derivative + 1) - 2 * l2_reg_coef * weights[i];
}
}
void LinearRegression::predict(
ColumnVector<Float64>::Container & container,
Block & block,
size_t offset,
size_t limit,
const ColumnNumbers & arguments,
const std::vector<Float64> & weights,
Float64 bias,
const Context & /*context*/) const
{
if (weights.size() + 1 != arguments.size())
{
throw Exception("In predict function number of arguments differs from the size of weights vector", ErrorCodes::LOGICAL_ERROR);
}
size_t rows_num = block.rows();
if (offset > rows_num || offset + limit > rows_num)
throw Exception("Invalid offset and limit for LogisticRegression::predict. "
"Block has " + toString(rows_num) + " rows, but offset is " + toString(offset) +
" and limit is " + toString(limit), ErrorCodes::LOGICAL_ERROR);
std::vector<Float64> results(limit, bias);
for (size_t i = 1; i < arguments.size(); ++i)
{
const ColumnWithTypeAndName & cur_col = block.getByPosition(arguments[i]);
if (!isNativeNumber(cur_col.type))
throw Exception("Prediction arguments must have numeric type", ErrorCodes::BAD_ARGUMENTS);
auto features_column = cur_col.column;
if (!features_column)
throw Exception("Unexpectedly cannot dynamically cast features column " + std::to_string(i), ErrorCodes::LOGICAL_ERROR);
for (size_t row_num = 0; row_num < limit; ++row_num)
results[row_num] += weights[i - 1] * features_column->getFloat64(row_num + offset);
}
container.reserve(container.size() + limit);
for (size_t row_num = 0; row_num < limit; ++row_num)
container.emplace_back(results[row_num]);
}
void LinearRegression::compute(
std::vector<Float64> & batch_gradient,
const std::vector<Float64> & weights,
Float64 bias,
Float64 l2_reg_coef,
Float64 target,
const IColumn ** columns,
size_t row_num)
{
Float64 derivative = (target - bias);
for (size_t i = 0; i < weights.size(); ++i)
{
auto value = (*columns[i]).getFloat64(row_num);
derivative -= weights[i] * value;
}
derivative *= 2;
batch_gradient[weights.size()] += derivative;
for (size_t i = 0; i < weights.size(); ++i)
{
auto value = (*columns[i]).getFloat64(row_num);
batch_gradient[i] += derivative * value - 2 * l2_reg_coef * weights[i];
}
}
}