ClickHouse/src/Columns/ColumnVector.cpp
2024-05-27 09:41:29 +00:00

1013 lines
35 KiB
C++

#include "ColumnVector.h"
#include <Columns/ColumnCompressed.h>
#include <Columns/ColumnsCommon.h>
#include <Columns/ColumnConst.h>
#include <Columns/MaskOperations.h>
#include <Columns/RadixSortHelper.h>
#include <IO/WriteHelpers.h>
#include <Processors/Transforms/ColumnGathererTransform.h>
#include <base/bit_cast.h>
#include <base/scope_guard.h>
#include <base/sort.h>
#include <base/unaligned.h>
#include <Common/Arena.h>
#include <Common/Exception.h>
#include <Common/HashTable/Hash.h>
#include <Common/HashTable/StringHashSet.h>
#include <Common/NaNUtils.h>
#include <Common/RadixSort.h>
#include <Common/SipHash.h>
#include <Common/TargetSpecific.h>
#include <Common/WeakHash.h>
#include <Common/assert_cast.h>
#include <Common/findExtreme.h>
#include <Common/iota.h>
#include <bit>
#include <cmath>
#include <cstring>
#if defined(__SSE2__)
# include <emmintrin.h>
#endif
#if USE_MULTITARGET_CODE
# include <immintrin.h>
#endif
#if USE_EMBEDDED_COMPILER
#include <DataTypes/Native.h>
#include <llvm/IR/IRBuilder.h>
#endif
namespace DB
{
namespace ErrorCodes
{
extern const int PARAMETER_OUT_OF_BOUND;
extern const int SIZES_OF_COLUMNS_DOESNT_MATCH;
extern const int LOGICAL_ERROR;
extern const int NOT_IMPLEMENTED;
}
template <typename T>
const char * ColumnVector<T>::deserializeAndInsertFromArena(const char * pos)
{
data.emplace_back(unalignedLoad<T>(pos));
return pos + sizeof(T);
}
template <typename T>
const char * ColumnVector<T>::skipSerializedInArena(const char * pos) const
{
return pos + sizeof(T);
}
template <typename T>
void ColumnVector<T>::updateHashWithValue(size_t n, SipHash & hash) const
{
hash.update(data[n]);
}
template <typename T>
void ColumnVector<T>::updateWeakHash32(WeakHash32 & hash) const
{
auto s = data.size();
if (hash.getData().size() != s)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Size of WeakHash32 does not match size of column: "
"column size is {}, hash size is {}", std::to_string(s), std::to_string(hash.getData().size()));
const T * begin = data.data();
const T * end = begin + s;
UInt32 * hash_data = hash.getData().data();
while (begin < end)
{
*hash_data = static_cast<UInt32>(hashCRC32(*begin, *hash_data));
++begin;
++hash_data;
}
}
template <typename T>
void ColumnVector<T>::updateHashFast(SipHash & hash) const
{
hash.update(reinterpret_cast<const char *>(data.data()), size() * sizeof(data[0]));
}
template <typename T>
struct ColumnVector<T>::less
{
const Self & parent;
int nan_direction_hint;
less(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const { return CompareHelper<T>::less(parent.data[lhs], parent.data[rhs], nan_direction_hint); }
};
template <typename T>
struct ColumnVector<T>::less_stable
{
const Self & parent;
int nan_direction_hint;
less_stable(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const
{
if (unlikely(parent.data[lhs] == parent.data[rhs]))
return lhs < rhs;
if constexpr (std::is_floating_point_v<T>)
{
if (unlikely(std::isnan(parent.data[lhs]) && std::isnan(parent.data[rhs])))
{
return lhs < rhs;
}
}
return CompareHelper<T>::less(parent.data[lhs], parent.data[rhs], nan_direction_hint);
}
};
template <typename T>
struct ColumnVector<T>::greater
{
const Self & parent;
int nan_direction_hint;
greater(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const { return CompareHelper<T>::greater(parent.data[lhs], parent.data[rhs], nan_direction_hint); }
};
template <typename T>
struct ColumnVector<T>::greater_stable
{
const Self & parent;
int nan_direction_hint;
greater_stable(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const
{
if (unlikely(parent.data[lhs] == parent.data[rhs]))
return lhs < rhs;
if constexpr (std::is_floating_point_v<T>)
{
if (unlikely(std::isnan(parent.data[lhs]) && std::isnan(parent.data[rhs])))
{
return lhs < rhs;
}
}
return CompareHelper<T>::greater(parent.data[lhs], parent.data[rhs], nan_direction_hint);
}
};
template <typename T>
struct ColumnVector<T>::equals
{
const Self & parent;
int nan_direction_hint;
equals(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const { return CompareHelper<T>::equals(parent.data[lhs], parent.data[rhs], nan_direction_hint); }
};
#if USE_EMBEDDED_COMPILER
template <typename T>
bool ColumnVector<T>::isComparatorCompilable() const
{
/// TODO: for std::is_floating_point_v<T> we need implement is_nan in LLVM IR.
return std::is_integral_v<T>;
}
template <typename T>
llvm::Value * ColumnVector<T>::compileComparator(llvm::IRBuilderBase & builder, llvm::Value * lhs, llvm::Value * rhs, llvm::Value *) const
{
llvm::IRBuilder<> & b = static_cast<llvm::IRBuilder<> &>(builder);
if constexpr (std::is_integral_v<T>)
{
// a > b ? 1 : (a < b ? -1 : 0);
bool is_signed = std::is_signed_v<T>;
auto * lhs_greater_than_rhs_result = llvm::ConstantInt::getSigned(b.getInt8Ty(), 1);
auto * lhs_less_than_rhs_result = llvm::ConstantInt::getSigned(b.getInt8Ty(), -1);
auto * lhs_equals_rhs_result = llvm::ConstantInt::getSigned(b.getInt8Ty(), 0);
auto * lhs_greater_than_rhs = is_signed ? b.CreateICmpSGT(lhs, rhs) : b.CreateICmpUGT(lhs, rhs);
auto * lhs_less_than_rhs = is_signed ? b.CreateICmpSLT(lhs, rhs) : b.CreateICmpULT(lhs, rhs);
auto * if_lhs_less_than_rhs_result = b.CreateSelect(lhs_less_than_rhs, lhs_less_than_rhs_result, lhs_equals_rhs_result);
return b.CreateSelect(lhs_greater_than_rhs, lhs_greater_than_rhs_result, if_lhs_less_than_rhs_result);
}
else
{
throw Exception(ErrorCodes::LOGICAL_ERROR, "Method compileComparator is not supported for type {}", TypeName<T>);
}
}
#endif
template <typename T>
void ColumnVector<T>::getPermutation(IColumn::PermutationSortDirection direction, IColumn::PermutationSortStability stability,
size_t limit, int nan_direction_hint, IColumn::Permutation & res) const
{
size_t data_size = data.size();
res.resize_exact(data_size);
if (data_size == 0)
return;
if (limit >= data_size)
limit = 0;
iota(res.data(), data_size, IColumn::Permutation::value_type(0));
if constexpr (has_find_extreme_implementation<T> && !std::is_floating_point_v<T>)
{
/// Disabled for:floating point
/// * floating point: We don't deal with nan_direction_hint
/// * stability::Stable: We might return any value, not the first
if ((limit == 1) && (stability == IColumn::PermutationSortStability::Unstable))
{
std::optional<size_t> index;
if (direction == IColumn::PermutationSortDirection::Ascending)
index = findExtremeMinIndex(data.data(), 0, data.size());
else
index = findExtremeMaxIndex(data.data(), 0, data.size());
if (index)
{
res.data()[0] = *index;
return;
}
}
}
if constexpr (is_arithmetic_v<T> && !is_big_int_v<T>)
{
if (!limit)
{
/// A case for radix sort
/// LSD RadixSort is stable
bool reverse = direction == IColumn::PermutationSortDirection::Descending;
bool ascending = direction == IColumn::PermutationSortDirection::Ascending;
bool sort_is_stable = stability == IColumn::PermutationSortStability::Stable;
/// TODO: LSD RadixSort is currently not stable if direction is descending, or value is floating point
bool use_radix_sort = (sort_is_stable && ascending && !std::is_floating_point_v<T>) || !sort_is_stable;
/// Thresholds on size. Lower threshold is arbitrary. Upper threshold is chosen by the type for histogram counters.
if (data_size >= 256 && data_size <= std::numeric_limits<UInt32>::max() && use_radix_sort)
{
bool try_sort = false;
if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable)
try_sort = trySort(res.begin(), res.end(), less(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable)
try_sort = trySort(res.begin(), res.end(), less_stable(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable)
try_sort = trySort(res.begin(), res.end(), greater(*this, nan_direction_hint));
else
try_sort = trySort(res.begin(), res.end(), greater_stable(*this, nan_direction_hint));
if (try_sort)
return;
PaddedPODArray<ValueWithIndex<T>> pairs(data_size);
for (UInt32 i = 0; i < static_cast<UInt32>(data_size); ++i)
pairs[i] = {data[i], i};
RadixSort<RadixSortTraits<T>>::executeLSD(pairs.data(), data_size, reverse, res.data());
/// Radix sort treats all NaNs to be greater than all numbers.
/// If the user needs the opposite, we must move them accordingly.
if (std::is_floating_point_v<T> && nan_direction_hint < 0)
{
size_t nans_to_move = 0;
for (size_t i = 0; i < data_size; ++i)
{
if (isNaN(data[res[reverse ? i : data_size - 1 - i]]))
++nans_to_move;
else
break;
}
if (nans_to_move)
{
std::rotate(std::begin(res), std::begin(res) + (reverse ? nans_to_move : data_size - nans_to_move), std::end(res));
}
}
return;
}
}
}
if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable)
this->getPermutationImpl(limit, res, less(*this, nan_direction_hint), DefaultSort(), DefaultPartialSort());
else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable)
this->getPermutationImpl(limit, res, less_stable(*this, nan_direction_hint), DefaultSort(), DefaultPartialSort());
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable)
this->getPermutationImpl(limit, res, greater(*this, nan_direction_hint), DefaultSort(), DefaultPartialSort());
else
this->getPermutationImpl(limit, res, greater_stable(*this, nan_direction_hint), DefaultSort(), DefaultPartialSort());
}
template <typename T>
void ColumnVector<T>::updatePermutation(IColumn::PermutationSortDirection direction, IColumn::PermutationSortStability stability,
size_t limit, int nan_direction_hint, IColumn::Permutation & res, EqualRanges & equal_ranges) const
{
auto sort = [&](auto begin, auto end, auto pred)
{
bool reverse = direction == IColumn::PermutationSortDirection::Descending;
bool ascending = direction == IColumn::PermutationSortDirection::Ascending;
bool sort_is_stable = stability == IColumn::PermutationSortStability::Stable;
/// A case for radix sort
if constexpr (is_arithmetic_v<T> && !is_big_int_v<T>)
{
/// TODO: LSD RadixSort is currently not stable if direction is descending, or value is floating point
bool use_radix_sort = (sort_is_stable && ascending && !std::is_floating_point_v<T>) || !sort_is_stable;
size_t size = end - begin;
/// Thresholds on size. Lower threshold is arbitrary. Upper threshold is chosen by the type for histogram counters.
if (size >= 256 && size <= std::numeric_limits<UInt32>::max() && use_radix_sort)
{
bool try_sort = trySort(begin, end, pred);
if (try_sort)
return;
PaddedPODArray<ValueWithIndex<T>> pairs(size);
size_t index = 0;
for (auto * it = begin; it != end; ++it)
{
pairs[index] = {data[*it], static_cast<UInt32>(*it)};
++index;
}
RadixSort<RadixSortTraits<T>>::executeLSD(pairs.data(), size, reverse, begin);
/// Radix sort treats all NaNs to be greater than all numbers.
/// If the user needs the opposite, we must move them accordingly.
if (std::is_floating_point_v<T> && nan_direction_hint < 0)
{
size_t nans_to_move = 0;
for (size_t i = 0; i < size; ++i)
{
if (isNaN(data[begin[reverse ? i : size - 1 - i]]))
++nans_to_move;
else
break;
}
if (nans_to_move)
{
std::rotate(begin, begin + (reverse ? nans_to_move : size - nans_to_move), end);
}
}
return;
}
}
::sort(begin, end, pred);
};
auto partial_sort = [](auto begin, auto mid, auto end, auto pred) { ::partial_sort(begin, mid, end, pred); };
if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable)
{
this->updatePermutationImpl(
limit, res, equal_ranges,
less(*this, nan_direction_hint),
equals(*this, nan_direction_hint),
sort, partial_sort);
}
else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable)
{
this->updatePermutationImpl(
limit, res, equal_ranges,
less_stable(*this, nan_direction_hint),
equals(*this, nan_direction_hint),
sort, partial_sort);
}
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable)
{
this->updatePermutationImpl(
limit, res, equal_ranges,
greater(*this, nan_direction_hint),
equals(*this, nan_direction_hint),
sort, partial_sort);
}
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Stable)
{
this->updatePermutationImpl(
limit, res, equal_ranges,
greater_stable(*this, nan_direction_hint),
equals(*this, nan_direction_hint),
sort, partial_sort);
}
}
template<typename T>
size_t ColumnVector<T>::estimateCardinalityInPermutedRange(const IColumn::Permutation & permutation, const EqualRange & equal_range) const
{
const size_t range_size = equal_range.size();
if (range_size <= 1)
return range_size;
/// TODO use sampling if the range is too large (e.g. 16k elements, but configurable)
StringHashSet elements;
bool inserted = false;
for (size_t i = equal_range.from; i < equal_range.to; ++i)
{
size_t permuted_i = permutation[i];
StringRef value = getDataAt(permuted_i);
elements.emplace(value, inserted);
}
return elements.size();
}
template <typename T>
MutableColumnPtr ColumnVector<T>::cloneResized(size_t size) const
{
auto res = this->create(size);
if (size > 0)
{
auto & new_col = static_cast<Self &>(*res);
new_col.data.resize_exact(size);
size_t count = std::min(this->size(), size);
memcpy(new_col.data.data(), data.data(), count * sizeof(data[0]));
if (size > count)
memset(static_cast<void *>(&new_col.data[count]), 0, (size - count) * sizeof(ValueType));
}
return res;
}
template <typename T>
UInt64 ColumnVector<T>::get64(size_t n [[maybe_unused]]) const
{
if constexpr (is_arithmetic_v<T>)
return bit_cast<UInt64>(data[n]);
else
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Cannot get the value of {} as UInt64", TypeName<T>);
}
template <typename T>
inline Float64 ColumnVector<T>::getFloat64(size_t n [[maybe_unused]]) const
{
if constexpr (is_arithmetic_v<T>)
return static_cast<Float64>(data[n]);
else
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Cannot get the value of {} as Float64", TypeName<T>);
}
template <typename T>
Float32 ColumnVector<T>::getFloat32(size_t n [[maybe_unused]]) const
{
if constexpr (is_arithmetic_v<T>)
return static_cast<Float32>(data[n]);
else
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Cannot get the value of {} as Float32", TypeName<T>);
}
template <typename T>
bool ColumnVector<T>::tryInsert(const DB::Field & x)
{
NearestFieldType<T> value;
if (!x.tryGet<NearestFieldType<T>>(value))
{
if constexpr (std::is_same_v<T, UInt8>)
{
/// It's also possible to insert boolean values into UInt8 column.
bool boolean_value;
if (x.tryGet<bool>(boolean_value))
{
data.push_back(static_cast<T>(boolean_value));
return true;
}
}
return false;
}
data.push_back(static_cast<T>(value));
return true;
}
template <typename T>
void ColumnVector<T>::insertRangeFrom(const IColumn & src, size_t start, size_t length)
{
const ColumnVector & src_vec = assert_cast<const ColumnVector &>(src);
if (start + length > src_vec.data.size())
throw Exception(ErrorCodes::PARAMETER_OUT_OF_BOUND,
"Parameters start = {}, length = {} are out of bound "
"in ColumnVector<T>::insertRangeFrom method (data.size() = {}).",
toString(start), toString(length), toString(src_vec.data.size()));
size_t old_size = data.size();
data.resize(old_size + length);
memcpy(data.data() + old_size, &src_vec.data[start], length * sizeof(data[0]));
}
static inline UInt64 blsr(UInt64 mask)
{
#ifdef __BMI__
return _blsr_u64(mask);
#else
return mask & (mask-1);
#endif
}
/// If mask is a number of this kind: [0]*[1]* function returns the length of the cluster of 1s.
/// Otherwise it returns the special value: 0xFF.
uint8_t prefixToCopy(UInt64 mask)
{
if (mask == 0)
return 0;
if (mask == static_cast<UInt64>(-1))
return 64;
/// Row with index 0 correspond to the least significant bit.
/// So the length of the prefix to copy is 64 - #(leading zeroes).
const UInt64 leading_zeroes = __builtin_clzll(mask);
if (mask == ((static_cast<UInt64>(-1) << leading_zeroes) >> leading_zeroes))
return 64 - leading_zeroes;
else
return 0xFF;
}
uint8_t suffixToCopy(UInt64 mask)
{
const auto prefix_to_copy = prefixToCopy(~mask);
return prefix_to_copy >= 64 ? prefix_to_copy : 64 - prefix_to_copy;
}
DECLARE_DEFAULT_CODE(
template <typename T, typename Container, size_t SIMD_ELEMENTS>
inline void doFilterAligned(const UInt8 *& filt_pos, const UInt8 *& filt_end_aligned, const T *& data_pos, Container & res_data)
{
while (filt_pos < filt_end_aligned)
{
UInt64 mask = bytes64MaskToBits64Mask(filt_pos);
const uint8_t prefix_to_copy = prefixToCopy(mask);
if (0xFF != prefix_to_copy)
{
res_data.insert(data_pos, data_pos + prefix_to_copy);
}
else
{
const uint8_t suffix_to_copy = suffixToCopy(mask);
if (0xFF != suffix_to_copy)
{
res_data.insert(data_pos + SIMD_ELEMENTS - suffix_to_copy, data_pos + SIMD_ELEMENTS);
}
else
{
while (mask)
{
size_t index = std::countr_zero(mask);
res_data.push_back(data_pos[index]);
mask = blsr(mask);
}
}
}
filt_pos += SIMD_ELEMENTS;
data_pos += SIMD_ELEMENTS;
}
}
)
namespace
{
template <typename T, typename Container>
void resize(Container & res_data, size_t reserve_size)
{
#if defined(MEMORY_SANITIZER)
res_data.resize_fill(reserve_size, static_cast<T>(0)); // MSan doesn't recognize that all allocated memory is written by AVX-512 intrinsics.
#else
res_data.resize(reserve_size);
#endif
}
}
DECLARE_AVX512VBMI2_SPECIFIC_CODE(
template <size_t ELEMENT_WIDTH>
inline void compressStoreAVX512(const void *src, void *dst, const UInt64 mask)
{
__m512i vsrc = _mm512_loadu_si512(src);
if constexpr (ELEMENT_WIDTH == 1)
_mm512_mask_compressstoreu_epi8(dst, static_cast<__mmask64>(mask), vsrc);
else if constexpr (ELEMENT_WIDTH == 2)
_mm512_mask_compressstoreu_epi16(dst, static_cast<__mmask32>(mask), vsrc);
else if constexpr (ELEMENT_WIDTH == 4)
_mm512_mask_compressstoreu_epi32(dst, static_cast<__mmask16>(mask), vsrc);
else if constexpr (ELEMENT_WIDTH == 8)
_mm512_mask_compressstoreu_epi64(dst, static_cast<__mmask8>(mask), vsrc);
}
template <typename T, typename Container, size_t SIMD_ELEMENTS>
inline void doFilterAligned(const UInt8 *& filt_pos, const UInt8 *& filt_end_aligned, const T *& data_pos, Container & res_data)
{
static constexpr size_t VEC_LEN = 64; /// AVX512 vector length - 64 bytes
static constexpr size_t ELEMENT_WIDTH = sizeof(T);
static constexpr size_t ELEMENTS_PER_VEC = VEC_LEN / ELEMENT_WIDTH;
static constexpr UInt64 KMASK = 0xffffffffffffffff >> (64 - ELEMENTS_PER_VEC);
size_t current_offset = res_data.size();
size_t reserve_size = res_data.size();
size_t alloc_size = SIMD_ELEMENTS * 2;
while (filt_pos < filt_end_aligned)
{
/// to avoid calling resize too frequently, resize to reserve buffer.
if (reserve_size - current_offset < SIMD_ELEMENTS)
{
reserve_size += alloc_size;
resize<T>(res_data, reserve_size);
alloc_size *= 2;
}
UInt64 mask = bytes64MaskToBits64Mask(filt_pos);
if (0xffffffffffffffff == mask)
{
for (size_t i = 0; i < SIMD_ELEMENTS; i += ELEMENTS_PER_VEC)
_mm512_storeu_si512(reinterpret_cast<void *>(&res_data[current_offset + i]),
_mm512_loadu_si512(reinterpret_cast<const void *>(data_pos + i)));
current_offset += SIMD_ELEMENTS;
}
else
{
if (mask)
{
for (size_t i = 0; i < SIMD_ELEMENTS; i += ELEMENTS_PER_VEC)
{
compressStoreAVX512<ELEMENT_WIDTH>(reinterpret_cast<const void *>(data_pos + i),
reinterpret_cast<void *>(&res_data[current_offset]), mask & KMASK);
current_offset += std::popcount(mask & KMASK);
/// prepare mask for next iter, if ELEMENTS_PER_VEC = 64, no next iter
if (ELEMENTS_PER_VEC < 64)
{
mask >>= ELEMENTS_PER_VEC;
}
}
}
}
filt_pos += SIMD_ELEMENTS;
data_pos += SIMD_ELEMENTS;
}
/// Resize to the real size.
res_data.resize_exact(current_offset);
}
)
template <typename T>
ColumnPtr ColumnVector<T>::filter(const IColumn::Filter & filt, ssize_t result_size_hint) const
{
size_t size = data.size();
if (size != filt.size())
throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH, "Size of filter ({}) doesn't match size of column ({})", filt.size(), size);
auto res = this->create();
Container & res_data = res->getData();
if (result_size_hint)
res_data.reserve_exact(result_size_hint > 0 ? result_size_hint : size);
const UInt8 * filt_pos = filt.data();
const UInt8 * filt_end = filt_pos + size;
const T * data_pos = data.data();
/** A slightly more optimized version.
* Based on the assumption that often pieces of consecutive values
* completely pass or do not pass the filter.
* Therefore, we will optimistically check the parts of `SIMD_ELEMENTS` values.
*/
static constexpr size_t SIMD_ELEMENTS = 64;
const UInt8 * filt_end_aligned = filt_pos + size / SIMD_ELEMENTS * SIMD_ELEMENTS;
#if USE_MULTITARGET_CODE
static constexpr bool VBMI2_CAPABLE = sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8;
if (VBMI2_CAPABLE && isArchSupported(TargetArch::AVX512VBMI2))
TargetSpecific::AVX512VBMI2::doFilterAligned<T, Container, SIMD_ELEMENTS>(filt_pos, filt_end_aligned, data_pos, res_data);
else
#endif
TargetSpecific::Default::doFilterAligned<T, Container, SIMD_ELEMENTS>(filt_pos, filt_end_aligned, data_pos, res_data);
while (filt_pos < filt_end)
{
if (*filt_pos)
res_data.push_back(*data_pos);
++filt_pos;
++data_pos;
}
return res;
}
template <typename T>
void ColumnVector<T>::expand(const IColumn::Filter & mask, bool inverted)
{
expandDataByMask<T>(data, mask, inverted);
}
template <typename T>
void ColumnVector<T>::applyZeroMap(const IColumn::Filter & filt, bool inverted)
{
size_t size = data.size();
if (size != filt.size())
throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH, "Size of filter ({}) doesn't match size of column ({})", filt.size(), size);
const UInt8 * filt_pos = filt.data();
const UInt8 * filt_end = filt_pos + size;
T * data_pos = data.data();
if (inverted)
{
for (; filt_pos < filt_end; ++filt_pos, ++data_pos)
if (!*filt_pos)
*data_pos = 0;
}
else
{
for (; filt_pos < filt_end; ++filt_pos, ++data_pos)
if (*filt_pos)
*data_pos = 0;
}
}
template <typename T>
ColumnPtr ColumnVector<T>::permute(const IColumn::Permutation & perm, size_t limit) const
{
return permuteImpl(*this, perm, limit);
}
template <typename T>
ColumnPtr ColumnVector<T>::index(const IColumn & indexes, size_t limit) const
{
return selectIndexImpl(*this, indexes, limit);
}
#ifdef __SSE2__
namespace
{
/** Optimization for ColumnVector replicate using SIMD instructions.
* For such optimization it is important that data is right padded with 15 bytes.
*
* Replicate span size is offsets[i] - offsets[i - 1].
*
* Split spans into 3 categories.
* 1. Span with 0 size. Continue iteration.
*
* 2. Span with 1 size. Update pointer from which data must be copied into result.
* Then if we see span with size 1 or greater than 1 copy data directly into result data and reset pointer.
* Example:
* Data: 1 2 3 4
* Offsets: 1 2 3 4
* Result data: 1 2 3 4
*
* 3. Span with size greater than 1. Save single data element into register and copy it into result data.
* Example:
* Data: 1 2 3 4
* Offsets: 4 4 4 4
* Result data: 1 1 1 1
*
* Additional handling for tail is needed if pointer from which data must be copied from span with size 1 is not null.
*/
template<typename IntType>
requires (std::is_same_v<IntType, Int32> || std::is_same_v<IntType, UInt32>)
void replicateSSE2Int32(const IntType * __restrict data, IntType * __restrict result_data, const IColumn::Offsets & offsets)
{
const IntType * data_copy_begin_ptr = nullptr;
size_t offsets_size = offsets.size();
for (size_t offset_index = 0; offset_index < offsets_size; ++offset_index)
{
size_t span = offsets[offset_index] - offsets[offset_index - 1];
if (span == 1)
{
if (!data_copy_begin_ptr)
data_copy_begin_ptr = data + offset_index;
continue;
}
/// Copy data
if (data_copy_begin_ptr)
{
size_t copy_size = (data + offset_index) - data_copy_begin_ptr;
bool remainder = copy_size % 4;
size_t sse_copy_counter = (copy_size / 4) + remainder;
auto * result_data_copy = result_data;
while (sse_copy_counter)
{
__m128i copy_batch = _mm_loadu_si128(reinterpret_cast<const __m128i *>(data_copy_begin_ptr));
_mm_storeu_si128(reinterpret_cast<__m128i *>(result_data_copy), copy_batch);
result_data_copy += 4;
data_copy_begin_ptr += 4;
--sse_copy_counter;
}
result_data += copy_size;
data_copy_begin_ptr = nullptr;
}
if (span == 0)
continue;
/// Copy single data element into result data
bool span_remainder = span % 4;
size_t copy_counter = (span / 4) + span_remainder;
auto * result_data_tmp = result_data;
__m128i copy_element_data = _mm_set1_epi32(data[offset_index]);
while (copy_counter)
{
_mm_storeu_si128(reinterpret_cast<__m128i *>(result_data_tmp), copy_element_data);
result_data_tmp += 4;
--copy_counter;
}
result_data += span;
}
/// Copy tail if needed
if (data_copy_begin_ptr)
{
size_t copy_size = (data + offsets_size) - data_copy_begin_ptr;
bool remainder = copy_size % 4;
size_t sse_copy_counter = (copy_size / 4) + remainder;
while (sse_copy_counter)
{
__m128i copy_batch = _mm_loadu_si128(reinterpret_cast<const __m128i *>(data_copy_begin_ptr));
_mm_storeu_si128(reinterpret_cast<__m128i *>(result_data), copy_batch);
result_data += 4;
data_copy_begin_ptr += 4;
--sse_copy_counter;
}
}
}
}
#endif
template <typename T>
ColumnPtr ColumnVector<T>::replicate(const IColumn::Offsets & offsets) const
{
const size_t size = data.size();
if (size != offsets.size())
throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH, "Size of offsets {} doesn't match size of column {}", offsets.size(), size);
if (0 == size)
return this->create();
auto res = this->create(offsets.back());
#ifdef __SSE2__
if constexpr (std::is_same_v<T, UInt32>)
{
replicateSSE2Int32(getData().data(), res->getData().data(), offsets);
return res;
}
#endif
auto it = res->getData().begin(); // NOLINT
for (size_t i = 0; i < size; ++i)
{
const auto span_end = res->getData().begin() + offsets[i]; // NOLINT
for (; it != span_end; ++it)
*it = data[i];
}
return res;
}
template <typename T>
void ColumnVector<T>::getExtremes(Field & min, Field & max) const
{
size_t size = data.size();
if (size == 0)
{
min = T(0);
max = T(0);
return;
}
bool has_value = false;
/** Skip all NaNs in extremes calculation.
* If all values are NaNs, then return NaN.
* NOTE: There exist many different NaNs.
* Different NaN could be returned: not bit-exact value as one of NaNs from column.
*/
T cur_min = NaNOrZero<T>();
T cur_max = NaNOrZero<T>();
for (const T & x : data)
{
if (isNaN(x))
continue;
if (!has_value)
{
cur_min = x;
cur_max = x;
has_value = true;
continue;
}
if (x < cur_min)
cur_min = x;
else if (x > cur_max)
cur_max = x;
}
min = NearestFieldType<T>(cur_min);
max = NearestFieldType<T>(cur_max);
}
template <typename T>
ColumnPtr ColumnVector<T>::compress() const
{
const size_t data_size = data.size();
const size_t source_size = data_size * sizeof(T);
/// Don't compress small blocks.
if (source_size < 4096) /// A wild guess.
return ColumnCompressed::wrap(this->getPtr());
auto compressed = ColumnCompressed::compressBuffer(data.data(), source_size, false);
if (!compressed)
return ColumnCompressed::wrap(this->getPtr());
const size_t compressed_size = compressed->size();
return ColumnCompressed::create(data_size, compressed_size,
[my_compressed = std::move(compressed), column_size = data_size]
{
auto res = ColumnVector<T>::create(column_size);
ColumnCompressed::decompressBuffer(
my_compressed->data(), res->getData().data(), my_compressed->size(), column_size * sizeof(T));
return res;
});
}
template <typename T>
ColumnPtr ColumnVector<T>::createWithOffsets(const IColumn::Offsets & offsets, const ColumnConst & column_with_default_value, size_t total_rows, size_t shift) const
{
if (offsets.size() + shift != size())
throw Exception(ErrorCodes::LOGICAL_ERROR,
"Incompatible sizes of offsets ({}), shift ({}) and size of column {}", offsets.size(), shift, size());
auto res = this->create();
auto & res_data = res->getData();
T default_value = assert_cast<const ColumnVector<T> &>(column_with_default_value.getDataColumn()).getElement(0);
res_data.resize_fill(total_rows, default_value);
for (size_t i = 0; i < offsets.size(); ++i)
res_data[offsets[i]] = data[i + shift];
return res;
}
/// Explicit template instantiations - to avoid code bloat in headers.
template class ColumnVector<UInt8>;
template class ColumnVector<UInt16>;
template class ColumnVector<UInt32>;
template class ColumnVector<UInt64>;
template class ColumnVector<UInt128>;
template class ColumnVector<UInt256>;
template class ColumnVector<Int8>;
template class ColumnVector<Int16>;
template class ColumnVector<Int32>;
template class ColumnVector<Int64>;
template class ColumnVector<Int128>;
template class ColumnVector<Int256>;
template class ColumnVector<Float32>;
template class ColumnVector<Float64>;
template class ColumnVector<UUID>;
template class ColumnVector<IPv4>;
template class ColumnVector<IPv6>;
}