ClickHouse/dbms/src/Functions/FunctionsMath.h
2018-10-12 00:31:36 +03:00

493 lines
19 KiB
C++

#pragma once
#include <common/preciseExp10.h>
#include <Core/callOnTypeIndex.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypesDecimal.h>
#include <Columns/ColumnsNumber.h>
#include <Columns/ColumnDecimal.h>
#include <Columns/ColumnConst.h>
#include <Functions/IFunction.h>
#include <Functions/FunctionHelpers.h>
#include <Common/config.h>
/** More efficient implementations of mathematical functions are possible when using a separate library.
* Disabled due to licence compatibility limitations.
* To enable: download http://www.agner.org/optimize/vectorclass.zip and unpack to contrib/vectorclass
* Then rebuild with -DENABLE_VECTORCLASS=1
*/
#if USE_VECTORCLASS
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wshift-negative-value"
#endif
#include <vectorf128.h> // Y_IGNORE
#include <vectormath_exp.h> // Y_IGNORE
#include <vectormath_trig.h> // Y_IGNORE
#ifdef __clang__
#pragma clang diagnostic pop
#endif
#endif
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_COLUMN;
}
template <typename Impl>
class FunctionMathNullaryConstFloat64 : public IFunction
{
public:
static constexpr auto name = Impl::name;
static FunctionPtr create(const Context &) { return std::make_shared<FunctionMathNullaryConstFloat64>(); }
private:
String getName() const override { return name; }
size_t getNumberOfArguments() const override { return 0; }
DataTypePtr getReturnTypeImpl(const DataTypes & /*arguments*/) const override
{
return std::make_shared<DataTypeFloat64>();
}
void executeImpl(Block & block, const ColumnNumbers &, size_t result, size_t input_rows_count) override
{
block.getByPosition(result).column = block.getByPosition(result).type->createColumnConst(input_rows_count, Impl::value);
}
};
template <typename Impl>
class FunctionMathUnaryFloat64 : public IFunction
{
public:
static constexpr auto name = Impl::name;
static FunctionPtr create(const Context &) { return std::make_shared<FunctionMathUnaryFloat64>(); }
static_assert(Impl::rows_per_iteration > 0, "Impl must process at least one row per iteration");
private:
String getName() const override { return name; }
size_t getNumberOfArguments() const override { return 1; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
const auto & arg = arguments.front();
if (!isNumber(arg) && !isDecimal(arg))
throw Exception{"Illegal type " + arg->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
return std::make_shared<DataTypeFloat64>();
}
template <typename T>
static void executeInIterations(const T * src_data, Float64 * dst_data, size_t size)
{
const size_t rows_remaining = size % Impl::rows_per_iteration;
const size_t rows_size = size - rows_remaining;
for (size_t i = 0; i < rows_size; i += Impl::rows_per_iteration)
Impl::execute(&src_data[i], &dst_data[i]);
if (rows_remaining != 0)
{
T src_remaining[Impl::rows_per_iteration];
memcpy(src_remaining, &src_data[rows_size], rows_remaining * sizeof(T));
memset(src_remaining + rows_remaining, 0, (Impl::rows_per_iteration - rows_remaining) * sizeof(T));
Float64 dst_remaining[Impl::rows_per_iteration];
Impl::execute(src_remaining, dst_remaining);
memcpy(&dst_data[rows_size], dst_remaining, rows_remaining * sizeof(Float64));
}
}
template <typename T>
static bool execute(Block & block, const ColumnVector<T> * col, const size_t result)
{
const auto & src_data = col->getData();
const size_t size = src_data.size();
auto dst = ColumnVector<Float64>::create();
auto & dst_data = dst->getData();
dst_data.resize(size);
executeInIterations(src_data.data(), dst_data.data(), size);
block.getByPosition(result).column = std::move(dst);
return true;
}
template <typename T>
static bool execute(Block & block, const ColumnDecimal<T> * col, const size_t result)
{
const auto & src_data = col->getData();
const size_t size = src_data.size();
UInt32 scale = src_data.getScale();
auto dst = ColumnVector<Float64>::create();
auto & dst_data = dst->getData();
dst_data.resize(size);
for (size_t i = 0; i < size; ++i)
dst_data[i] = convertFromDecimal<DataTypeDecimal<T>, DataTypeNumber<Float64>>(src_data[i], scale);
executeInIterations(dst_data.data(), dst_data.data(), size);
block.getByPosition(result).column = std::move(dst);
return true;
}
bool useDefaultImplementationForConstants() const override { return true; }
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t /*input_rows_count*/) override
{
const ColumnWithTypeAndName & col = block.getByPosition(arguments[0]);
auto call = [&](const auto & types) -> bool
{
using Types = std::decay_t<decltype(types)>;
using Type = typename Types::RightType;
using ColVecType = std::conditional_t<IsDecimalNumber<Type>, ColumnDecimal<Type>, ColumnVector<Type>>;
const auto col_vec = checkAndGetColumn<ColVecType>(col.column.get());
return execute<Type>(block, col_vec, result);
};
if (!callOnBasicType<void, true, true, true, false>(col.type->getTypeId(), call))
throw Exception{"Illegal column " + col.column->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN};
}
};
template <typename Name, Float64(Function)(Float64)>
struct UnaryFunctionPlain
{
static constexpr auto name = Name::name;
static constexpr auto rows_per_iteration = 1;
template <typename T>
static void execute(const T * src, Float64 * dst)
{
dst[0] = static_cast<Float64>(Function(static_cast<Float64>(src[0])));
}
};
#if USE_VECTORCLASS
template <typename Name, Vec2d(Function)(const Vec2d &)>
struct UnaryFunctionVectorized
{
static constexpr auto name = Name::name;
static constexpr auto rows_per_iteration = 2;
template <typename T>
static void execute(const T * src, Float64 * dst)
{
const auto result = Function(Vec2d(src[0], src[1]));
result.store(dst);
}
};
#else
#define UnaryFunctionVectorized UnaryFunctionPlain
#endif
template <typename Impl>
class FunctionMathBinaryFloat64 : public IFunction
{
public:
static constexpr auto name = Impl::name;
static FunctionPtr create(const Context &) { return std::make_shared<FunctionMathBinaryFloat64>(); }
static_assert(Impl::rows_per_iteration > 0, "Impl must process at least one row per iteration");
bool useDefaultImplementationForConstants() const override { return true; }
private:
String getName() const override { return name; }
size_t getNumberOfArguments() const override { return 2; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
const auto check_argument_type = [this] (const IDataType * arg)
{
if (!isNumber(arg))
throw Exception{"Illegal type " + arg->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
};
check_argument_type(arguments.front().get());
check_argument_type(arguments.back().get());
return std::make_shared<DataTypeFloat64>();
}
template <typename LeftType, typename RightType>
bool executeTyped(Block & block, const size_t result, const ColumnConst * left_arg, const IColumn * right_arg)
{
if (const auto right_arg_typed = checkAndGetColumn<ColumnVector<RightType>>(right_arg))
{
auto dst = ColumnVector<Float64>::create();
LeftType left_src_data[Impl::rows_per_iteration];
std::fill(std::begin(left_src_data), std::end(left_src_data), left_arg->template getValue<LeftType>());
const auto & right_src_data = right_arg_typed->getData();
const auto src_size = right_src_data.size();
auto & dst_data = dst->getData();
dst_data.resize(src_size);
const auto rows_remaining = src_size % Impl::rows_per_iteration;
const auto rows_size = src_size - rows_remaining;
for (size_t i = 0; i < rows_size; i += Impl::rows_per_iteration)
Impl::execute(left_src_data, &right_src_data[i], &dst_data[i]);
if (rows_remaining != 0)
{
RightType right_src_remaining[Impl::rows_per_iteration];
memcpy(right_src_remaining, &right_src_data[rows_size], rows_remaining * sizeof(RightType));
memset(right_src_remaining + rows_remaining, 0, (Impl::rows_per_iteration - rows_remaining) * sizeof(RightType));
Float64 dst_remaining[Impl::rows_per_iteration];
Impl::execute(left_src_data, right_src_remaining, dst_remaining);
memcpy(&dst_data[rows_size], dst_remaining, rows_remaining * sizeof(Float64));
}
block.getByPosition(result).column = std::move(dst);
return true;
}
return false;
}
template <typename LeftType, typename RightType>
bool executeTyped(Block & block, const size_t result, const ColumnVector<LeftType> * left_arg, const IColumn * right_arg)
{
if (const auto right_arg_typed = checkAndGetColumn<ColumnVector<RightType>>(right_arg))
{
auto dst = ColumnVector<Float64>::create();
const auto & left_src_data = left_arg->getData();
const auto & right_src_data = right_arg_typed->getData();
const auto src_size = left_src_data.size();
auto & dst_data = dst->getData();
dst_data.resize(src_size);
const auto rows_remaining = src_size % Impl::rows_per_iteration;
const auto rows_size = src_size - rows_remaining;
for (size_t i = 0; i < rows_size; i += Impl::rows_per_iteration)
Impl::execute(&left_src_data[i], &right_src_data[i], &dst_data[i]);
if (rows_remaining != 0)
{
LeftType left_src_remaining[Impl::rows_per_iteration];
memcpy(left_src_remaining, &left_src_data[rows_size], rows_remaining * sizeof(LeftType));
memset(left_src_remaining + rows_remaining, 0, (Impl::rows_per_iteration - rows_remaining) * sizeof(LeftType));
RightType right_src_remaining[Impl::rows_per_iteration];
memcpy(right_src_remaining, &right_src_data[rows_size], rows_remaining * sizeof(RightType));
memset(right_src_remaining + rows_remaining, 0, (Impl::rows_per_iteration - rows_remaining) * sizeof(RightType));
Float64 dst_remaining[Impl::rows_per_iteration];
Impl::execute(left_src_remaining, right_src_remaining, dst_remaining);
memcpy(&dst_data[rows_size], dst_remaining, rows_remaining * sizeof(Float64));
}
block.getByPosition(result).column = std::move(dst);
return true;
}
else if (const auto right_arg_typed = checkAndGetColumnConst<ColumnVector<RightType>>(right_arg))
{
auto dst = ColumnVector<Float64>::create();
const auto & left_src_data = left_arg->getData();
RightType right_src_data[Impl::rows_per_iteration];
std::fill(std::begin(right_src_data), std::end(right_src_data), right_arg_typed->template getValue<RightType>());
const auto src_size = left_src_data.size();
auto & dst_data = dst->getData();
dst_data.resize(src_size);
const auto rows_remaining = src_size % Impl::rows_per_iteration;
const auto rows_size = src_size - rows_remaining;
for (size_t i = 0; i < rows_size; i += Impl::rows_per_iteration)
Impl::execute(&left_src_data[i], right_src_data, &dst_data[i]);
if (rows_remaining != 0)
{
LeftType left_src_remaining[Impl::rows_per_iteration];
memcpy(left_src_remaining, &left_src_data[rows_size], rows_remaining * sizeof(LeftType));
memset(left_src_remaining + rows_remaining, 0, (Impl::rows_per_iteration - rows_remaining) * sizeof(LeftType));
Float64 dst_remaining[Impl::rows_per_iteration];
Impl::execute(left_src_remaining, right_src_data, dst_remaining);
memcpy(&dst_data[rows_size], dst_remaining, rows_remaining * sizeof(Float64));
}
block.getByPosition(result).column = std::move(dst);
return true;
}
return false;
}
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t /*input_rows_count*/) override
{
const ColumnWithTypeAndName & col_left = block.getByPosition(arguments[0]);
const ColumnWithTypeAndName & col_right = block.getByPosition(arguments[1]);
auto call = [&](const auto & types) -> bool
{
using Types = std::decay_t<decltype(types)>;
using LeftType = typename Types::LeftType;
using RightType = typename Types::RightType;
using ColVecLeft = ColumnVector<LeftType>;
const IColumn * left_arg = col_left.column.get();
const IColumn * right_arg = col_right.column.get();
if (const auto left_arg_typed = checkAndGetColumn<ColVecLeft>(left_arg))
{
if (executeTyped<LeftType, RightType>(block, result, left_arg_typed, right_arg))
return true;
throw Exception{"Illegal column " + right_arg->getName() + " of second argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN};
}
else if (const auto left_arg_typed = checkAndGetColumnConst<ColVecLeft>(left_arg))
{
if (executeTyped<LeftType, RightType>(block, result, left_arg_typed, right_arg))
return true;
throw Exception{"Illegal column " + right_arg->getName() + " of second argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN};
}
return false;
};
TypeIndex left_index = col_left.type->getTypeId();
TypeIndex right_index = col_right.type->getTypeId();
if (!callOnBasicTypes<true, true, false, false>(left_index, right_index, call))
throw Exception{"Illegal column " + col_left.column->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN};
}
};
template <typename Name, Float64(Function)(Float64, Float64)>
struct BinaryFunctionPlain
{
static constexpr auto name = Name::name;
static constexpr auto rows_per_iteration = 1;
template <typename T1, typename T2>
static void execute(const T1 * src_left, const T2 * src_right, Float64 * dst)
{
dst[0] = static_cast<Float64>(Function(static_cast<Float64>(src_left[0]), static_cast<Float64>(src_right[0])));
}
};
#if USE_VECTORCLASS
template <typename Name, Vec2d(Function)(const Vec2d &, const Vec2d &)>
struct BinaryFunctionVectorized
{
static constexpr auto name = Name::name;
static constexpr auto rows_per_iteration = 2;
template <typename T1, typename T2>
static void execute(const T1 * src_left, const T2 * src_right, Float64 * dst)
{
const auto result = Function(Vec2d(src_left[0], src_left[1]), Vec2d(src_right[0], src_right[1]));
result.store(dst);
}
};
#else
#define BinaryFunctionVectorized BinaryFunctionPlain
#endif
struct EImpl
{
static constexpr auto name = "e";
static const double value; /// See .cpp
};
struct PiImpl
{
static constexpr auto name = "pi";
static const double value;
};
struct ExpName { static constexpr auto name = "exp"; };
struct LogName { static constexpr auto name = "log"; };
struct Exp2Name { static constexpr auto name = "exp2"; };
struct Log2Name { static constexpr auto name = "log2"; };
struct Exp10Name { static constexpr auto name = "exp10"; };
struct Log10Name { static constexpr auto name = "log10"; };
struct SqrtName { static constexpr auto name = "sqrt"; };
struct CbrtName { static constexpr auto name = "cbrt"; };
struct SinName { static constexpr auto name = "sin"; };
struct CosName { static constexpr auto name = "cos"; };
struct TanName { static constexpr auto name = "tan"; };
struct AsinName { static constexpr auto name = "asin"; };
struct AcosName { static constexpr auto name = "acos"; };
struct AtanName { static constexpr auto name = "atan"; };
struct ErfName { static constexpr auto name = "erf"; };
struct ErfcName { static constexpr auto name = "erfc"; };
struct LGammaName { static constexpr auto name = "lgamma"; };
struct TGammaName { static constexpr auto name = "tgamma"; };
struct PowName { static constexpr auto name = "pow"; };
using FunctionE = FunctionMathNullaryConstFloat64<EImpl>;
using FunctionPi = FunctionMathNullaryConstFloat64<PiImpl>;
using FunctionExp = FunctionMathUnaryFloat64<UnaryFunctionVectorized<ExpName, exp>>;
using FunctionLog = FunctionMathUnaryFloat64<UnaryFunctionVectorized<LogName, log>>;
using FunctionExp2 = FunctionMathUnaryFloat64<UnaryFunctionVectorized<Exp2Name, exp2>>;
using FunctionLog2 = FunctionMathUnaryFloat64<UnaryFunctionVectorized<Log2Name, log2>>;
using FunctionExp10 = FunctionMathUnaryFloat64<UnaryFunctionVectorized<Exp10Name,
#if USE_VECTORCLASS
exp10
#else
preciseExp10
#endif
>>;
using FunctionLog10 = FunctionMathUnaryFloat64<UnaryFunctionVectorized<Log10Name, log10>>;
using FunctionSqrt = FunctionMathUnaryFloat64<UnaryFunctionVectorized<SqrtName, sqrt>>;
using FunctionCbrt = FunctionMathUnaryFloat64<UnaryFunctionVectorized<CbrtName, cbrt>>;
using FunctionSin = FunctionMathUnaryFloat64<UnaryFunctionVectorized<SinName, sin>>;
using FunctionCos = FunctionMathUnaryFloat64<UnaryFunctionVectorized<CosName, cos>>;
using FunctionTan = FunctionMathUnaryFloat64<UnaryFunctionVectorized<TanName, tan>>;
using FunctionAsin = FunctionMathUnaryFloat64<UnaryFunctionVectorized<AsinName, asin>>;
using FunctionAcos = FunctionMathUnaryFloat64<UnaryFunctionVectorized<AcosName, acos>>;
using FunctionAtan = FunctionMathUnaryFloat64<UnaryFunctionVectorized<AtanName, atan>>;
using FunctionErf = FunctionMathUnaryFloat64<UnaryFunctionPlain<ErfName, std::erf>>;
using FunctionErfc = FunctionMathUnaryFloat64<UnaryFunctionPlain<ErfcName, std::erfc>>;
using FunctionLGamma = FunctionMathUnaryFloat64<UnaryFunctionPlain<LGammaName, std::lgamma>>;
using FunctionTGamma = FunctionMathUnaryFloat64<UnaryFunctionPlain<TGammaName, std::tgamma>>;
using FunctionPow = FunctionMathBinaryFloat64<BinaryFunctionVectorized<PowName, pow>>;
}