ClickHouse/dbms/src/Columns/ColumnAggregateFunction.cpp
2018-09-02 08:23:20 +03:00

440 lines
14 KiB
C++

#include <Columns/ColumnAggregateFunction.h>
#include <AggregateFunctions/AggregateFunctionState.h>
#include <DataStreams/ColumnGathererStream.h>
#include <IO/WriteBufferFromArena.h>
#include <Common/SipHash.h>
#include <Common/AlignedBuffer.h>
#include <Common/typeid_cast.h>
#include <Common/Arena.h>
#include <Columns/ColumnsCommon.h>
namespace DB
{
namespace ErrorCodes
{
extern const int PARAMETER_OUT_OF_BOUND;
extern const int SIZES_OF_COLUMNS_DOESNT_MATCH;
}
ColumnAggregateFunction::~ColumnAggregateFunction()
{
if (!func->hasTrivialDestructor() && !src)
for (auto val : data)
func->destroy(val);
}
void ColumnAggregateFunction::addArena(ArenaPtr arena_)
{
arenas.push_back(arena_);
}
MutableColumnPtr ColumnAggregateFunction::convertToValues() const
{
const IAggregateFunction * function = func.get();
/** If the aggregate function returns an unfinalized/unfinished state,
* then you just need to copy pointers to it and also shared ownership of data.
*
* Also replace the aggregate function with the nested function.
* That is, if this column is the states of the aggregate function `aggState`,
* then we return the same column, but with the states of the aggregate function `agg`.
* These are the same states, changing only the function to which they correspond.
*
* Further is quite difficult to understand.
* Example when this happens:
*
* SELECT k, finalizeAggregation(quantileTimingState(0.5)(x)) FROM ... GROUP BY k WITH TOTALS
*
* This calculates the aggregate function `quantileTimingState`.
* Its return type AggregateFunction(quantileTiming(0.5), UInt64)`.
* Due to the presence of WITH TOTALS, during aggregation the states of this aggregate function will be stored
* in the ColumnAggregateFunction column of type
* AggregateFunction(quantileTimingState(0.5), UInt64).
* Then, in `TotalsHavingBlockInputStream`, it will be called `convertToValues` method,
* to get the "ready" values.
* But it just converts a column of type
* `AggregateFunction(quantileTimingState(0.5), UInt64)`
* into `AggregateFunction(quantileTiming(0.5), UInt64)`
* - in the same states.
*
* Then `finalizeAggregation` function will be calculated, which will call `convertToValues` already on the result.
* And this converts a column of type
* AggregateFunction(quantileTiming(0.5), UInt64)
* into UInt16 - already finished result of `quantileTiming`.
*/
if (const AggregateFunctionState * function_state = typeid_cast<const AggregateFunctionState *>(function))
{
auto res = createView();
res->set(function_state->getNestedFunction());
res->getData().assign(getData().begin(), getData().end());
return res;
}
MutableColumnPtr res = function->getReturnType()->createColumn();
res->reserve(getData().size());
for (auto val : getData())
function->insertResultInto(val, *res);
return res;
}
void ColumnAggregateFunction::insertRangeFrom(const IColumn & from, size_t start, size_t length)
{
const ColumnAggregateFunction & from_concrete = static_cast<const ColumnAggregateFunction &>(from);
if (start + length > from_concrete.getData().size())
throw Exception("Parameters start = " + toString(start) + ", length = " + toString(length)
+ " are out of bound in ColumnAggregateFunction::insertRangeFrom method"
" (data.size() = "
+ toString(from_concrete.getData().size())
+ ").",
ErrorCodes::PARAMETER_OUT_OF_BOUND);
if (!empty() && src.get() != &from_concrete)
{
/// Must create new states of aggregate function and take ownership of it,
/// because ownership of states of aggregate function cannot be shared for individual rows,
/// (only as a whole).
size_t end = start + length;
for (size_t i = start; i < end; ++i)
insertFrom(from, i);
}
else
{
/// Keep shared ownership of aggregation states.
src = from_concrete.getPtr();
size_t old_size = data.size();
data.resize(old_size + length);
memcpy(&data[old_size], &from_concrete.getData()[start], length * sizeof(data[0]));
}
}
ColumnPtr ColumnAggregateFunction::filter(const Filter & filter, ssize_t result_size_hint) const
{
size_t size = getData().size();
if (size != filter.size())
throw Exception("Size of filter doesn't match size of column.", ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH);
if (size == 0)
return cloneEmpty();
auto res = createView();
auto & res_data = res->getData();
if (result_size_hint)
res_data.reserve(result_size_hint > 0 ? result_size_hint : size);
for (size_t i = 0; i < size; ++i)
if (filter[i])
res_data.push_back(getData()[i]);
/// To save RAM in case of too strong filtering.
if (res_data.size() * 2 < res_data.capacity())
res_data = Container(res_data.cbegin(), res_data.cend());
return res;
}
ColumnPtr ColumnAggregateFunction::permute(const Permutation & perm, size_t limit) const
{
size_t size = getData().size();
if (limit == 0)
limit = size;
else
limit = std::min(size, limit);
if (perm.size() < limit)
throw Exception("Size of permutation is less than required.", ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH);
auto res = createView();
res->getData().resize(limit);
for (size_t i = 0; i < limit; ++i)
res->getData()[i] = getData()[perm[i]];
return res;
}
ColumnPtr ColumnAggregateFunction::index(const IColumn & indexes, size_t limit) const
{
return selectIndexImpl(*this, indexes, limit);
}
template <typename Type>
ColumnPtr ColumnAggregateFunction::indexImpl(const PaddedPODArray<Type> & indexes, size_t limit) const
{
auto res = createView();
res->getData().resize(limit);
for (size_t i = 0; i < limit; ++i)
res->getData()[i] = getData()[indexes[i]];
return res;
}
INSTANTIATE_INDEX_IMPL(ColumnAggregateFunction)
/// Is required to support operations with Set
void ColumnAggregateFunction::updateHashWithValue(size_t n, SipHash & hash) const
{
WriteBufferFromOwnString wbuf;
func->serialize(getData()[n], wbuf);
hash.update(wbuf.str().c_str(), wbuf.str().size());
}
/// NOTE: Highly overestimates size of a column if it was produced in AggregatingBlockInputStream (it contains size of other columns)
size_t ColumnAggregateFunction::byteSize() const
{
size_t res = getData().size() * sizeof(getData()[0]);
for (const auto & arena : arenas)
res += arena->size();
return res;
}
/// Like byteSize(), highly overestimates size
size_t ColumnAggregateFunction::allocatedBytes() const
{
size_t res = getData().allocated_bytes();
for (const auto & arena : arenas)
res += arena->size();
return res;
}
MutableColumnPtr ColumnAggregateFunction::cloneEmpty() const
{
return create(func, Arenas(1, std::make_shared<Arena>()));
}
Field ColumnAggregateFunction::operator[](size_t n) const
{
Field field = String();
{
WriteBufferFromString buffer(field.get<String &>());
func->serialize(getData()[n], buffer);
}
return field;
}
void ColumnAggregateFunction::get(size_t n, Field & res) const
{
res = String();
{
WriteBufferFromString buffer(res.get<String &>());
func->serialize(getData()[n], buffer);
}
}
StringRef ColumnAggregateFunction::getDataAt(size_t n) const
{
return StringRef(reinterpret_cast<const char *>(&getData()[n]), sizeof(getData()[n]));
}
void ColumnAggregateFunction::insertData(const char * pos, size_t /*length*/)
{
getData().push_back(*reinterpret_cast<const AggregateDataPtr *>(pos));
}
void ColumnAggregateFunction::insertFrom(const IColumn & from, size_t n)
{
/// Must create new state of aggregate function and take ownership of it,
/// because ownership of states of aggregate function cannot be shared for individual rows,
/// (only as a whole, see comment above).
insertDefault();
insertMergeFrom(from, n);
}
void ColumnAggregateFunction::insertFrom(ConstAggregateDataPtr place)
{
insertDefault();
insertMergeFrom(place);
}
void ColumnAggregateFunction::insertMergeFrom(ConstAggregateDataPtr place)
{
func->merge(getData().back(), place, &createOrGetArena());
}
void ColumnAggregateFunction::insertMergeFrom(const IColumn & from, size_t n)
{
insertMergeFrom(static_cast<const ColumnAggregateFunction &>(from).getData()[n]);
}
Arena & ColumnAggregateFunction::createOrGetArena()
{
if (unlikely(arenas.empty()))
arenas.emplace_back(std::make_shared<Arena>());
return *arenas.back().get();
}
void ColumnAggregateFunction::insert(const Field & x)
{
IAggregateFunction * function = func.get();
Arena & arena = createOrGetArena();
getData().push_back(arena.alignedAlloc(function->sizeOfData(), function->alignOfData()));
function->create(getData().back());
ReadBufferFromString read_buffer(x.get<const String &>());
function->deserialize(getData().back(), read_buffer, &arena);
}
void ColumnAggregateFunction::insertDefault()
{
IAggregateFunction * function = func.get();
Arena & arena = createOrGetArena();
getData().push_back(arena.alignedAlloc(function->sizeOfData(), function->alignOfData()));
function->create(getData().back());
}
StringRef ColumnAggregateFunction::serializeValueIntoArena(size_t n, Arena & dst, const char *& begin) const
{
IAggregateFunction * function = func.get();
WriteBufferFromArena out(dst, begin);
function->serialize(getData()[n], out);
return out.finish();
}
const char * ColumnAggregateFunction::deserializeAndInsertFromArena(const char * src_arena)
{
IAggregateFunction * function = func.get();
/** Parameter "src_arena" points to Arena, from which we will deserialize the state.
* And "dst_arena" is another Arena, that aggregate function state will use to store its data.
*/
Arena & dst_arena = createOrGetArena();
getData().push_back(dst_arena.alignedAlloc(function->sizeOfData(), function->alignOfData()));
function->create(getData().back());
/** We will read from src_arena.
* There is no limit for reading - it is assumed, that we can read all that we need after src_arena pointer.
* Buf ReadBufferFromMemory requires some bound. We will use arbitary big enough number, that will not overflow pointer.
* NOTE Technically, this is not compatible with C++ standard,
* as we cannot legally compare pointers after last element + 1 of some valid memory region.
* Probably this will not work under UBSan.
*/
ReadBufferFromMemory read_buffer(src_arena, std::numeric_limits<char *>::max() - src_arena);
function->deserialize(getData().back(), read_buffer, &dst_arena);
return read_buffer.position();
}
void ColumnAggregateFunction::popBack(size_t n)
{
size_t size = data.size();
size_t new_size = size - n;
if (!src)
for (size_t i = new_size; i < size; ++i)
func->destroy(data[i]);
data.resize_assume_reserved(new_size);
}
ColumnPtr ColumnAggregateFunction::replicate(const IColumn::Offsets & offsets) const
{
size_t size = data.size();
if (size != offsets.size())
throw Exception("Size of offsets doesn't match size of column.", ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH);
if (size == 0)
return cloneEmpty();
auto res = createView();
auto & res_data = res->getData();
res_data.reserve(offsets.back());
IColumn::Offset prev_offset = 0;
for (size_t i = 0; i < size; ++i)
{
size_t size_to_replicate = offsets[i] - prev_offset;
prev_offset = offsets[i];
for (size_t j = 0; j < size_to_replicate; ++j)
res_data.push_back(data[i]);
}
return res;
}
MutableColumns ColumnAggregateFunction::scatter(IColumn::ColumnIndex num_columns, const IColumn::Selector & selector) const
{
/// Columns with scattered values will point to this column as the owner of values.
MutableColumns columns(num_columns);
for (auto & column : columns)
column = createView();
size_t num_rows = size();
{
size_t reserve_size = num_rows / num_columns * 1.1; /// 1.1 is just a guess. Better to use n-sigma rule.
if (reserve_size > 1)
for (auto & column : columns)
column->reserve(reserve_size);
}
for (size_t i = 0; i < num_rows; ++i)
static_cast<ColumnAggregateFunction &>(*columns[selector[i]]).data.push_back(data[i]);
return columns;
}
void ColumnAggregateFunction::getPermutation(bool /*reverse*/, size_t /*limit*/, int /*nan_direction_hint*/, IColumn::Permutation & res) const
{
size_t s = getData().size();
res.resize(s);
for (size_t i = 0; i < s; ++i)
res[i] = i;
}
void ColumnAggregateFunction::gather(ColumnGathererStream & gatherer)
{
gatherer.gather(*this);
}
void ColumnAggregateFunction::getExtremes(Field & min, Field & max) const
{
/// Place serialized default values into min/max.
AlignedBuffer place_buffer(func->sizeOfData(), func->alignOfData());
AggregateDataPtr place = place_buffer.data();
String serialized;
func->create(place);
try
{
WriteBufferFromString buffer(serialized);
func->serialize(place, buffer);
}
catch (...)
{
func->destroy(place);
throw;
}
func->destroy(place);
min = serialized;
max = serialized;
}
}