ClickHouse/src/AggregateFunctions/ReservoirSampler.h
Robert Schulze de2a0be025
Don't access static members through instance
- clang-tidy rightfully complains (-readability-static-accessed-through-instance)
- not going to enable the warning for now to avoid breaking the build
2024-04-03 18:50:33 +00:00

284 lines
8.4 KiB
C++

#pragma once
#include <limits>
#include <algorithm>
#include <climits>
#include <base/types.h>
#include <base/sort.h>
#include <IO/ReadBuffer.h>
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
#include <IO/ReadBufferFromString.h>
#include <IO/WriteBufferFromString.h>
#include <IO/Operators.h>
#include <Common/PODArray.h>
#include <Common/NaNUtils.h>
#include <Poco/Exception.h>
#include <pcg_random.hpp>
namespace DB
{
struct Settings;
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
extern const int TOO_LARGE_ARRAY_SIZE;
}
}
/// Implementing the Reservoir Sampling algorithm. Incrementally selects from the added objects a random subset of the sample_count size.
/// Can approximately get quantiles.
/// Call `quantile` takes O(sample_count log sample_count), if after the previous call `quantile` there was at least one call `insert`. Otherwise O(1).
/// That is, it makes sense to first add, then get quantiles without adding.
const size_t DEFAULT_SAMPLE_COUNT = 8192;
/// What if there is not a single value - throw an exception, or return 0 or NaN in the case of double?
namespace ReservoirSamplerOnEmpty
{
enum Enum
{
THROW,
RETURN_NAN_OR_ZERO,
};
}
template <typename ResultType, bool is_float>
struct NanLikeValueConstructor
{
static ResultType getValue()
{
return std::numeric_limits<ResultType>::quiet_NaN();
}
};
template <typename ResultType>
struct NanLikeValueConstructor<ResultType, false>
{
static ResultType getValue()
{
return ResultType();
}
};
template <typename T, ReservoirSamplerOnEmpty::Enum OnEmpty = ReservoirSamplerOnEmpty::THROW, typename Comparer = std::less<T>>
class ReservoirSampler
{
public:
explicit ReservoirSampler(size_t sample_count_ = DEFAULT_SAMPLE_COUNT)
: sample_count(sample_count_)
{
rng.seed(123456);
}
void clear()
{
samples.clear();
sorted = false;
total_values = 0;
rng.seed(123456);
}
void insert(const T & v)
{
if (isNaN(v))
return;
sorted = false;
++total_values;
if (samples.size() < sample_count)
{
samples.push_back(v);
}
else
{
UInt64 rnd = genRandom(total_values);
if (rnd < sample_count)
samples[rnd] = v;
}
}
size_t size() const
{
return total_values;
}
bool empty() const
{
return samples.empty();
}
T quantileNearest(double level)
{
if (samples.empty())
return onEmpty<T>();
sortIfNeeded();
double index = level * (samples.size() - 1);
size_t int_index = static_cast<size_t>(index + 0.5); /// NOLINT
int_index = std::max(0LU, std::min(samples.size() - 1, int_index));
return samples[int_index];
}
/** If T is not a numeric type, using this method causes a compilation error,
* but use of error class does not. SFINAE.
*/
double quantileInterpolated(double level)
{
if (samples.empty())
{
if (DB::is_decimal<T>)
return 0;
return onEmpty<double>();
}
sortIfNeeded();
double index = std::max(0., std::min(samples.size() - 1., level * (samples.size() - 1)));
/// To get the value of a fractional index, we linearly interpolate between neighboring values.
size_t left_index = static_cast<size_t>(index);
size_t right_index = left_index + 1;
if (right_index == samples.size())
{
if constexpr (DB::is_decimal<T>)
return static_cast<double>(samples[left_index].value);
else
return static_cast<double>(samples[left_index]);
}
double left_coef = right_index - index;
double right_coef = index - left_index;
if constexpr (DB::is_decimal<T>)
return static_cast<double>(samples[left_index].value) * left_coef + static_cast<double>(samples[right_index].value) * right_coef;
else
return static_cast<double>(samples[left_index]) * left_coef + static_cast<double>(samples[right_index]) * right_coef;
}
void merge(const ReservoirSampler<T, OnEmpty> & b)
{
if (sample_count != b.sample_count)
throw Poco::Exception("Cannot merge ReservoirSampler's with different sample_count");
sorted = false;
if (b.total_values <= sample_count)
{
for (size_t i = 0; i < b.samples.size(); ++i)
insert(b.samples[i]);
}
else if (total_values <= sample_count)
{
Array from = std::move(samples);
samples.assign(b.samples.begin(), b.samples.end());
total_values = b.total_values;
for (size_t i = 0; i < from.size(); ++i)
insert(from[i]);
}
else
{
/// Replace every element in our reservoir to the b's reservoir
/// with the probability of b.total_values / (a.total_values + b.total_values)
/// Do it more roughly than true random sampling to save performance.
total_values += b.total_values;
/// Will replace every frequency'th element in a to element from b.
double frequency = static_cast<double>(total_values) / b.total_values;
/// When frequency is too low, replace just one random element with the corresponding probability.
if (frequency * 2 >= sample_count)
{
UInt64 rnd = genRandom(static_cast<UInt64>(frequency));
if (rnd < sample_count)
samples[rnd] = b.samples[rnd];
}
else
{
for (double i = 0; i < sample_count; i += frequency) /// NOLINT
{
size_t idx = static_cast<size_t>(i);
samples[idx] = b.samples[idx];
}
}
}
}
void read(DB::ReadBuffer & buf)
{
DB::readBinaryLittleEndian(sample_count, buf);
DB::readBinaryLittleEndian(total_values, buf);
size_t size = std::min(total_values, sample_count);
static constexpr size_t MAX_RESERVOIR_SIZE = 1_GiB;
if (unlikely(size > MAX_RESERVOIR_SIZE))
throw DB::Exception(DB::ErrorCodes::TOO_LARGE_ARRAY_SIZE,
"Too large array size (maximum: {})", MAX_RESERVOIR_SIZE);
samples.resize(size);
std::string rng_string;
DB::readStringBinary(rng_string, buf);
DB::ReadBufferFromString rng_buf(rng_string);
rng_buf >> rng;
for (size_t i = 0; i < samples.size(); ++i)
DB::readBinaryLittleEndian(samples[i], buf);
sorted = false;
}
void write(DB::WriteBuffer & buf) const
{
DB::writeBinaryLittleEndian(sample_count, buf);
DB::writeBinaryLittleEndian(total_values, buf);
DB::WriteBufferFromOwnString rng_buf;
rng_buf << rng;
DB::writeStringBinary(rng_buf.str(), buf);
for (size_t i = 0; i < std::min(sample_count, total_values); ++i)
DB::writeBinaryLittleEndian(samples[i], buf);
}
private:
/// We allocate a little memory on the stack - to avoid allocations when there are many objects with a small number of elements.
using Array = DB::PODArrayWithStackMemory<T, 64>;
size_t sample_count;
size_t total_values = 0;
Array samples;
pcg32_fast rng;
bool sorted = false;
UInt64 genRandom(UInt64 limit)
{
chassert(limit > 0);
/// With a large number of values, we will generate random numbers several times slower.
if (limit <= static_cast<UInt64>(pcg32_fast::max()))
return rng() % limit;
else
return (static_cast<UInt64>(rng()) * (static_cast<UInt64>(pcg32_fast::max()) + 1ULL) + static_cast<UInt64>(rng())) % limit;
}
void sortIfNeeded()
{
if (sorted)
return;
sorted = true;
::sort(samples.begin(), samples.end(), Comparer());
}
template <typename ResultType>
ResultType onEmpty() const
{
if (OnEmpty == ReservoirSamplerOnEmpty::THROW)
throw DB::Exception(DB::ErrorCodes::LOGICAL_ERROR, "Quantile of empty ReservoirSampler");
else
return NanLikeValueConstructor<ResultType, std::is_floating_point_v<ResultType>>::getValue();
}
};