mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-17 03:42:48 +00:00
4e76629aaf
- lots of static_cast - add safe_cast - types adjustments - config - IStorage::read/watch - ... - some TODO's (to convert types in future) P.S. That was quite a journey... v2: fixes after rebase v3: fix conflicts after #42308 merged Signed-off-by: Azat Khuzhin <a.khuzhin@semrush.com>
268 lines
7.9 KiB
C++
268 lines
7.9 KiB
C++
#pragma once
|
|
|
|
#include <limits>
|
|
#include <algorithm>
|
|
#include <climits>
|
|
#include <AggregateFunctions/ReservoirSampler.h>
|
|
#include <base/types.h>
|
|
#include <base/sort.h>
|
|
#include <Common/HashTable/Hash.h>
|
|
#include <IO/ReadBuffer.h>
|
|
#include <IO/ReadHelpers.h>
|
|
#include <IO/WriteHelpers.h>
|
|
#include <Common/PODArray.h>
|
|
#include <Common/NaNUtils.h>
|
|
#include <Poco/Exception.h>
|
|
|
|
|
|
namespace DB
|
|
{
|
|
struct Settings;
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int LOGICAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/// Implementation of Reservoir Sampling algorithm. Incrementally selects from the added objects a random subset of the `sample_count` size.
|
|
/// Can approximately get quantiles.
|
|
/// The `quantile` call takes O(sample_count log sample_count), if after the previous call `quantile` there was at least one call to insert. Otherwise, O(1).
|
|
/// That is, it makes sense to first add, then get quantiles without adding.
|
|
|
|
|
|
namespace DB
|
|
{
|
|
struct Settings;
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int MEMORY_LIMIT_EXCEEDED;
|
|
}
|
|
}
|
|
|
|
|
|
namespace detail
|
|
{
|
|
const size_t DEFAULT_MAX_SAMPLE_SIZE = 8192;
|
|
const auto MAX_SKIP_DEGREE = sizeof(UInt32) * 8;
|
|
}
|
|
|
|
/// What if there is not a single value - throw an exception, or return 0 or NaN in the case of double?
|
|
enum class ReservoirSamplerDeterministicOnEmpty
|
|
{
|
|
THROW,
|
|
RETURN_NAN_OR_ZERO,
|
|
};
|
|
|
|
|
|
template <typename T,
|
|
ReservoirSamplerDeterministicOnEmpty OnEmpty = ReservoirSamplerDeterministicOnEmpty::THROW>
|
|
class ReservoirSamplerDeterministic
|
|
{
|
|
private:
|
|
bool good(UInt32 hash) const
|
|
{
|
|
return (hash & skip_mask) == 0;
|
|
}
|
|
|
|
public:
|
|
explicit ReservoirSamplerDeterministic(const size_t max_sample_size_ = detail::DEFAULT_MAX_SAMPLE_SIZE)
|
|
: max_sample_size{max_sample_size_}
|
|
{
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
samples.clear();
|
|
sorted = false;
|
|
total_values = 0;
|
|
}
|
|
|
|
void insert(const T & v, UInt64 determinator)
|
|
{
|
|
if (isNaN(v))
|
|
return;
|
|
|
|
UInt32 hash = static_cast<UInt32>(intHash64(determinator));
|
|
insertImpl(v, hash);
|
|
sorted = false;
|
|
++total_values;
|
|
}
|
|
|
|
size_t size() const
|
|
{
|
|
return total_values;
|
|
}
|
|
|
|
T quantileNearest(double level)
|
|
{
|
|
if (samples.empty())
|
|
return onEmpty<T>();
|
|
|
|
sortIfNeeded();
|
|
|
|
double index = level * (samples.size() - 1);
|
|
size_t int_index = static_cast<size_t>(index + 0.5); /// NOLINT
|
|
int_index = std::max(0LU, std::min(samples.size() - 1, int_index));
|
|
return samples[int_index].first;
|
|
}
|
|
|
|
/** If T is not a numeric type, using this method causes a compilation error,
|
|
* but use of error class does not cause. SFINAE.
|
|
* Not SFINAE. Functions members of type templates are simply not checked until they are used.
|
|
*/
|
|
double quantileInterpolated(double level)
|
|
{
|
|
if (samples.empty())
|
|
return onEmpty<double>();
|
|
|
|
sortIfNeeded();
|
|
|
|
const double index = std::max(0., std::min(samples.size() - 1., level * (samples.size() - 1)));
|
|
|
|
/// To get a value from a fractional index, we linearly interpolate between adjacent values.
|
|
size_t left_index = static_cast<size_t>(index);
|
|
size_t right_index = left_index + 1;
|
|
if (right_index == samples.size())
|
|
return static_cast<double>(samples[left_index].first);
|
|
|
|
const double left_coef = right_index - index;
|
|
const double right_coef = index - left_index;
|
|
|
|
return static_cast<double>(samples[left_index].first) * left_coef + static_cast<double>(samples[right_index].first) * right_coef;
|
|
}
|
|
|
|
void merge(const ReservoirSamplerDeterministic & b)
|
|
{
|
|
if (max_sample_size != b.max_sample_size)
|
|
throw Poco::Exception("Cannot merge ReservoirSamplerDeterministic's with different max sample size");
|
|
sorted = false;
|
|
|
|
if (skip_degree < b.skip_degree)
|
|
setSkipDegree(b.skip_degree);
|
|
|
|
for (const auto & sample : b.samples)
|
|
insertImpl(sample.first, sample.second);
|
|
|
|
total_values += b.total_values;
|
|
}
|
|
|
|
void read(DB::ReadBuffer & buf)
|
|
{
|
|
size_t size = 0;
|
|
DB::readIntBinary<size_t>(size, buf);
|
|
DB::readIntBinary<size_t>(total_values, buf);
|
|
|
|
/// Compatibility with old versions.
|
|
if (size > total_values)
|
|
size = total_values;
|
|
|
|
samples.resize(size);
|
|
for (size_t i = 0; i < size; ++i)
|
|
DB::readPODBinary(samples[i], buf);
|
|
|
|
sorted = false;
|
|
}
|
|
|
|
void write(DB::WriteBuffer & buf) const
|
|
{
|
|
size_t size = samples.size();
|
|
DB::writeIntBinary<size_t>(size, buf);
|
|
DB::writeIntBinary<size_t>(total_values, buf);
|
|
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
/// There was a mistake in this function.
|
|
/// Instead of correctly serializing the elements,
|
|
/// it was writing them with uninitialized padding.
|
|
/// Here we ensure that padding is zero without changing the protocol.
|
|
/// TODO: After implementation of "versioning aggregate function state",
|
|
/// change the serialization format.
|
|
|
|
Element elem;
|
|
memset(&elem, 0, sizeof(elem));
|
|
elem = samples[i];
|
|
|
|
DB::writePODBinary(elem, buf);
|
|
}
|
|
}
|
|
|
|
private:
|
|
/// We allocate some memory on the stack to avoid allocations when there are many objects with a small number of elements.
|
|
using Element = std::pair<T, UInt32>;
|
|
using Array = DB::PODArray<Element, 64>;
|
|
|
|
const size_t max_sample_size; /// Maximum amount of stored values.
|
|
size_t total_values = 0; /// How many values were inserted (regardless if they remain in sample or not).
|
|
bool sorted = false;
|
|
Array samples;
|
|
|
|
/// The number N determining that we store only one per 2^N elements in average.
|
|
UInt8 skip_degree = 0;
|
|
|
|
/// skip_mask is calculated as (2 ^ skip_degree - 1). We store an element only if (hash & skip_mask) == 0.
|
|
/// For example, if skip_degree==0 then skip_mask==0 means we store each element;
|
|
/// if skip_degree==1 then skip_mask==0b0001 means we store one per 2 elements in average;
|
|
/// if skip_degree==4 then skip_mask==0b1111 means we store one per 16 elements in average.
|
|
UInt32 skip_mask = 0;
|
|
|
|
void insertImpl(const T & v, const UInt32 hash)
|
|
{
|
|
if (!good(hash))
|
|
return;
|
|
|
|
/// Make a room for plus one element.
|
|
while (samples.size() >= max_sample_size)
|
|
{
|
|
setSkipDegree(skip_degree + 1);
|
|
|
|
/// Still good?
|
|
if (!good(hash))
|
|
return;
|
|
}
|
|
|
|
samples.emplace_back(v, hash);
|
|
}
|
|
|
|
void setSkipDegree(UInt8 skip_degree_)
|
|
{
|
|
if (skip_degree_ == skip_degree)
|
|
return;
|
|
if (skip_degree_ > detail::MAX_SKIP_DEGREE)
|
|
throw DB::Exception{"skip_degree exceeds maximum value", DB::ErrorCodes::MEMORY_LIMIT_EXCEEDED};
|
|
skip_degree = skip_degree_;
|
|
if (skip_degree == detail::MAX_SKIP_DEGREE)
|
|
skip_mask = static_cast<UInt32>(-1);
|
|
else
|
|
skip_mask = (1 << skip_degree) - 1;
|
|
thinOut();
|
|
}
|
|
|
|
void thinOut()
|
|
{
|
|
samples.resize(std::distance(samples.begin(),
|
|
std::remove_if(samples.begin(), samples.end(), [this](const auto & elem){ return !good(elem.second); })));
|
|
sorted = false;
|
|
}
|
|
|
|
void sortIfNeeded()
|
|
{
|
|
if (sorted)
|
|
return;
|
|
|
|
/// In order to provide deterministic result we must sort by value and hash
|
|
::sort(samples.begin(), samples.end(), [](const auto & lhs, const auto & rhs) { return lhs < rhs; });
|
|
sorted = true;
|
|
}
|
|
|
|
template <typename ResultType>
|
|
ResultType onEmpty() const
|
|
{
|
|
if (OnEmpty == ReservoirSamplerDeterministicOnEmpty::THROW)
|
|
throw DB::Exception(DB::ErrorCodes::LOGICAL_ERROR, "Quantile of empty ReservoirSamplerDeterministic");
|
|
else
|
|
return NanLikeValueConstructor<ResultType, std::is_floating_point_v<ResultType>>::getValue();
|
|
}
|
|
};
|