ClickHouse/src/Client/HedgedConnectionsFactory.h
2023-03-15 12:18:08 +00:00

159 lines
5.9 KiB
C++

#pragma once
#if defined(OS_LINUX)
#include <Common/TimerDescriptor.h>
#include <Common/Epoll.h>
#include <Common/FiberStack.h>
#include <Common/Fiber.h>
#include <Client/ConnectionEstablisher.h>
#include <Client/ConnectionPoolWithFailover.h>
#include <Core/Settings.h>
#include <unordered_map>
#include <memory>
namespace DB
{
/** Class for establishing hedged connections with replicas.
* The process of establishing connection is divided on stages, on each stage if
* replica doesn't respond for a long time, we start establishing connection with
* the next replica, without cancelling working with previous one.
* It works with multiple replicas simultaneously without blocking by using epoll.
*/
class HedgedConnectionsFactory
{
public:
using ShuffledPool = ConnectionPoolWithFailover::Base::ShuffledPool;
using TryResult = PoolWithFailoverBase<IConnectionPool>::TryResult;
enum class State
{
READY,
NOT_READY,
CANNOT_CHOOSE,
};
struct ReplicaStatus
{
explicit ReplicaStatus(std::unique_ptr<ConnectionEstablisherAsync> connection_stablisher_) : connection_establisher(std::move(connection_stablisher_))
{
}
std::unique_ptr<ConnectionEstablisherAsync> connection_establisher;
TimerDescriptor change_replica_timeout;
bool is_ready = false;
};
HedgedConnectionsFactory(const ConnectionPoolWithFailoverPtr & pool_,
const Settings * settings_,
const ConnectionTimeouts & timeouts_,
std::shared_ptr<QualifiedTableName> table_to_check_ = nullptr);
/// Create and return active connections according to pool_mode.
std::vector<Connection *> getManyConnections(PoolMode pool_mode, AsyncCallback async_callback = {});
/// Try to get connection to the new replica without blocking. Process all current events in epoll (connections, timeouts),
/// Returned state might be READY (connection established successfully),
/// NOT_READY (there are no ready events now) and CANNOT_CHOOSE (cannot produce new connection anymore).
/// If state is READY, replica connection will be written in connection_out.
State waitForReadyConnections(Connection *& connection_out);
State startNewConnection(Connection *& connection_out);
/// Stop working with all replicas that are not READY.
void stopChoosingReplicas();
bool hasEventsInProcess() const { return !epoll.empty(); }
int getFileDescriptor() const { return epoll.getFileDescriptor(); }
const ConnectionTimeouts & getConnectionTimeouts() const { return timeouts; }
size_t numberOfProcessingReplicas() const;
/// Tell Factory to not return connections with two level aggregation incompatibility.
void skipReplicasWithTwoLevelAggregationIncompatibility() { skip_replicas_with_two_level_aggregation_incompatibility = true; }
~HedgedConnectionsFactory();
private:
State waitForReadyConnectionsImpl(bool blocking, Connection *& connection_out, AsyncCallback & async_callback);
/// Try to start establishing connection to the new replica. Return
/// the index of the new replica or -1 if cannot start new connection.
State startNewConnectionImpl(Connection *& connection_out);
/// Find an index of the next free replica to start connection.
/// Return -1 if there is no free replica.
int getNextIndex();
int getReadyFileDescriptor(bool blocking, AsyncCallback & async_callback);
void processFailedConnection(int index, const std::string & fail_message);
State resumeConnectionEstablisher(int index, Connection *& connection_out);
State processFinishedConnection(int index, TryResult result, Connection *& connection_out);
void removeReplicaFromEpoll(int index, int fd);
void addNewReplicaToEpoll(int index, int fd);
/// Return NOT_READY state if there is no ready events, READY if replica is ready
/// and CANNOT_CHOOSE if there is no more events in epoll.
State processEpollEvents(bool blocking, Connection *& connection_out, AsyncCallback & async_callback);
State setBestUsableReplica(Connection *& connection_out);
bool isTwoLevelAggregationIncompatible(Connection * connection);
const ConnectionPoolWithFailoverPtr pool;
const Settings * settings;
const ConnectionTimeouts timeouts;
std::vector<ShuffledPool> shuffled_pools;
std::vector<ReplicaStatus> replicas;
/// Map socket file descriptor to replica index.
std::unordered_map<int, int> fd_to_replica_index;
/// Map timeout for changing replica to replica index.
std::unordered_map<int, int> timeout_fd_to_replica_index;
/// If this flag is true, don't return connections with
/// two level aggregation incompatibility
bool skip_replicas_with_two_level_aggregation_incompatibility = false;
std::shared_ptr<QualifiedTableName> table_to_check;
int last_used_index = -1;
bool fallback_to_stale_replicas;
Epoll epoll;
Poco::Logger * log;
std::string fail_messages;
/// The maximum number of attempts to connect to replicas.
size_t max_tries;
/// Total number of established connections.
size_t entries_count = 0;
/// The number of established connections that are usable.
size_t usable_count = 0;
/// The number of established connections that are up to date.
size_t up_to_date_count = 0;
/// The number of failed connections (replica is considered failed after max_tries attempts to connect).
size_t failed_pools_count= 0;
/// The number of replicas that are in process of connection.
size_t replicas_in_process_count = 0;
/// The number of ready replicas (replica is considered ready when it's
/// connection returns outside).
size_t ready_replicas_count = 0;
/// The number of requested in startNewConnection replicas (it's needed for
/// checking the number of requested replicas that are still in process).
size_t requested_connections_count = 0;
};
}
#endif