ClickHouse/src/Functions/timeSlots.cpp
Robert Schulze 72b9d75a84
Add compat setting for non-const timezones
SQL function toTimezone() converts a Date or DateTime into another
timezone. The problem is that the timezone is part of the Date /
DateTime type but not part of the internal representation (value). This
led to the fact that toTimeZone() wqith non-const timezones produced
wrong and misleading results until #48471 (shipped with v23.4) enforced
a const timezone.

Unfortunately, this PR also broke existing table definitions with
non-const timezones, e.g. in ALIAS expressions. So while #48471
addressed the issue appropriately, it is really backwards-incompatible.

This PR adds a setting to toggle the behavior and makes it also part of
the compatibility profile.
2023-06-10 16:56:42 +00:00

396 lines
18 KiB
C++

#include <DataTypes/DataTypeArray.h>
#include <DataTypes/DataTypeDateTime.h>
#include <DataTypes/DataTypeDateTime64.h>
#include <DataTypes/DataTypesDecimal.h>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnsDateTime.h>
#include <Columns/ColumnsNumber.h>
#include <Functions/IFunction.h>
#include <Functions/FunctionFactory.h>
#include <Functions/FunctionHelpers.h>
#include <Functions/extractTimeZoneFromFunctionArguments.h>
#include <IO/WriteHelpers.h>
namespace DB
{
namespace ErrorCodes
{
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int ILLEGAL_COLUMN;
extern const int BAD_ARGUMENTS;
}
namespace
{
/** timeSlots(StartTime, Duration[, Size=1800])
* - for the time interval beginning at `StartTime` and continuing `Duration` seconds,
* returns an array of time points, consisting of rounding down to Size (1800 seconds by default) of points from this interval.
* For example, timeSlots(toDateTime('2012-01-01 12:20:00'), 600) = [toDateTime('2012-01-01 12:00:00'), toDateTime('2012-01-01 12:30:00')].
* This is necessary to search for hits that are part of the corresponding visit.
*
* This is obsolete function. It was developed for Metrica web analytics system, but the art of its usage has been forgotten.
* But this function was adopted by wider audience.
*/
struct TimeSlotsImpl
{
/// The following three methods process DateTime type
static void vectorVector(
const PaddedPODArray<UInt32> & starts, const PaddedPODArray<UInt32> & durations, UInt32 time_slot_size,
PaddedPODArray<UInt32> & result_values, ColumnArray::Offsets & result_offsets)
{
if (time_slot_size == 0)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Time slot size cannot be zero");
size_t size = starts.size();
result_offsets.resize(size);
result_values.reserve(size);
ColumnArray::Offset current_offset = 0;
for (size_t i = 0; i < size; ++i)
{
for (UInt32 value = starts[i] / time_slot_size, end = (starts[i] + durations[i]) / time_slot_size; value <= end; ++value)
{
result_values.push_back(value * time_slot_size);
++current_offset;
}
result_offsets[i] = current_offset;
}
}
static void vectorConstant(
const PaddedPODArray<UInt32> & starts, UInt32 duration, UInt32 time_slot_size,
PaddedPODArray<UInt32> & result_values, ColumnArray::Offsets & result_offsets)
{
if (time_slot_size == 0)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Time slot size cannot be zero");
size_t size = starts.size();
result_offsets.resize(size);
result_values.reserve(size);
ColumnArray::Offset current_offset = 0;
for (size_t i = 0; i < size; ++i)
{
for (UInt32 value = starts[i] / time_slot_size, end = (starts[i] + duration) / time_slot_size; value <= end; ++value)
{
result_values.push_back(value * time_slot_size);
++current_offset;
}
result_offsets[i] = current_offset;
}
}
static void constantVector(
UInt32 start, const PaddedPODArray<UInt32> & durations, UInt32 time_slot_size,
PaddedPODArray<UInt32> & result_values, ColumnArray::Offsets & result_offsets)
{
if (time_slot_size == 0)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Time slot size cannot be zero");
size_t size = durations.size();
result_offsets.resize(size);
result_values.reserve(size);
ColumnArray::Offset current_offset = 0;
for (size_t i = 0; i < size; ++i)
{
for (UInt32 value = start / time_slot_size, end = (start + durations[i]) / time_slot_size; value <= end; ++value)
{
result_values.push_back(value * time_slot_size);
++current_offset;
}
result_offsets[i] = current_offset;
}
}
/*
The following three methods process DateTime64 type
NO_SANITIZE_UNDEFINED is put here because user shall be careful when working with Decimal
Adjusting different scales can cause overflow -- it is OK for us. Don't use scales that differ a lot :)
*/
static NO_SANITIZE_UNDEFINED void vectorVector(
const PaddedPODArray<DateTime64> & starts, const PaddedPODArray<Decimal64> & durations, Decimal64 time_slot_size,
PaddedPODArray<DateTime64> & result_values, ColumnArray::Offsets & result_offsets, UInt16 dt_scale, UInt16 duration_scale, UInt16 time_slot_scale)
{
size_t size = starts.size();
result_offsets.resize(size);
result_values.reserve(size);
/// Modify all units to have same scale
UInt16 max_scale = std::max({dt_scale, duration_scale, time_slot_scale});
Int64 dt_multiplier = DecimalUtils::scaleMultiplier<DateTime64>(max_scale - dt_scale);
Int64 dur_multiplier = DecimalUtils::scaleMultiplier<DateTime64>(max_scale - duration_scale);
Int64 ts_multiplier = DecimalUtils::scaleMultiplier<DateTime64>(max_scale - time_slot_scale);
ColumnArray::Offset current_offset = 0;
time_slot_size = time_slot_size.value * ts_multiplier;
if (time_slot_size == 0)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Time slot size cannot be zero");
for (size_t i = 0; i < size; ++i)
{
for (DateTime64 value = (starts[i] * dt_multiplier) / time_slot_size, end = (starts[i] * dt_multiplier + durations[i] * dur_multiplier) / time_slot_size; value <= end; value += 1)
{
result_values.push_back(value * time_slot_size);
++current_offset;
}
result_offsets[i] = current_offset;
}
}
static NO_SANITIZE_UNDEFINED void vectorConstant(
const PaddedPODArray<DateTime64> & starts, Decimal64 duration, Decimal64 time_slot_size,
PaddedPODArray<DateTime64> & result_values, ColumnArray::Offsets & result_offsets, UInt16 dt_scale, UInt16 duration_scale, UInt16 time_slot_scale)
{
size_t size = starts.size();
result_offsets.resize(size);
result_values.reserve(size);
/// Modify all units to have same scale
UInt16 max_scale = std::max({dt_scale, duration_scale, time_slot_scale});
Int64 dt_multiplier = DecimalUtils::scaleMultiplier<DateTime64>(max_scale - dt_scale);
Int64 dur_multiplier = DecimalUtils::scaleMultiplier<DateTime64>(max_scale - duration_scale);
Int64 ts_multiplier = DecimalUtils::scaleMultiplier<DateTime64>(max_scale - time_slot_scale);
ColumnArray::Offset current_offset = 0;
duration = duration * dur_multiplier;
time_slot_size = time_slot_size.value * ts_multiplier;
if (time_slot_size == 0)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Time slot size cannot be zero");
for (size_t i = 0; i < size; ++i)
{
for (DateTime64 value = (starts[i] * dt_multiplier) / time_slot_size, end = (starts[i] * dt_multiplier + duration) / time_slot_size; value <= end; value += 1)
{
result_values.push_back(value * time_slot_size);
++current_offset;
}
result_offsets[i] = current_offset;
}
}
static NO_SANITIZE_UNDEFINED void constantVector(
DateTime64 start, const PaddedPODArray<Decimal64> & durations, Decimal64 time_slot_size,
PaddedPODArray<DateTime64> & result_values, ColumnArray::Offsets & result_offsets, UInt16 dt_scale, UInt16 duration_scale, UInt16 time_slot_scale)
{
size_t size = durations.size();
result_offsets.resize(size);
result_values.reserve(size);
/// Modify all units to have same scale
UInt16 max_scale = std::max({dt_scale, duration_scale, time_slot_scale});
Int64 dt_multiplier = DecimalUtils::scaleMultiplier<DateTime64>(max_scale - dt_scale);
Int64 dur_multiplier = DecimalUtils::scaleMultiplier<DateTime64>(max_scale - duration_scale);
Int64 ts_multiplier = DecimalUtils::scaleMultiplier<DateTime64>(max_scale - time_slot_scale);
ColumnArray::Offset current_offset = 0;
start = dt_multiplier * start;
time_slot_size = time_slot_size.value * ts_multiplier;
if (time_slot_size == 0)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Time slot size cannot be zero");
for (size_t i = 0; i < size; ++i)
{
for (DateTime64 value = start / time_slot_size, end = (start + durations[i] * dur_multiplier) / time_slot_size; value <= end; value += 1)
{
result_values.push_back(value * time_slot_size);
++current_offset;
}
result_offsets[i] = current_offset;
}
}
};
class FunctionTimeSlots : public IFunction
{
public:
static constexpr auto name = "timeSlots";
static FunctionPtr create(ContextPtr) { return std::make_shared<FunctionTimeSlots>(); }
String getName() const override
{
return name;
}
bool isVariadic() const override { return true; }
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return true; }
size_t getNumberOfArguments() const override { return 0; }
bool useDefaultImplementationForConstants() const override { return true; }
ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return {2}; }
DataTypePtr getReturnTypeImpl(const ColumnsWithTypeAndName & arguments) const override
{
if (arguments.size() != 2 && arguments.size() != 3)
throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH,
"Number of arguments for function {} doesn't match: passed {}, should be 2 or 3",
getName(), arguments.size());
if (WhichDataType(arguments[0].type).isDateTime())
{
if (!WhichDataType(arguments[1].type).isUInt32())
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of second argument of function {}. "
"Must be UInt32 when first argument is DateTime.", arguments[1].type->getName(), getName());
if (arguments.size() == 3 && !WhichDataType(arguments[2].type).isNativeUInt())
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of third argument of function {}. "
"Must be UInt32 when first argument is DateTime.", arguments[2].type->getName(), getName());
}
else if (WhichDataType(arguments[0].type).isDateTime64())
{
if (!WhichDataType(arguments[1].type).isDecimal64())
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of second argument of function {}. "
"Must be Decimal64 when first argument is DateTime64.", arguments[1].type->getName(), getName());
if (arguments.size() == 3 && !WhichDataType(arguments[2].type).isDecimal64())
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of third argument of function {}. "
"Must be Decimal64 when first argument is DateTime64.", arguments[2].type->getName(), getName());
}
else
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of first argument of function {}. "
"Must be DateTime or DateTime64.", arguments[0].type->getName(), getName());
/// If time zone is specified for source data type, attach it to the resulting type.
/// Note that there is no explicit time zone argument for this function (we specify 2 as an argument number with explicit time zone).
if (WhichDataType(arguments[0].type).isDateTime())
{
return std::make_shared<DataTypeArray>(std::make_shared<DataTypeDateTime>(extractTimeZoneNameFromFunctionArguments(arguments, 3, 0, false)));
}
else
{
auto start_time_scale = assert_cast<const DataTypeDateTime64 &>(*arguments[0].type).getScale();
auto duration_scale = assert_cast<const DataTypeDecimal64 &>(*arguments[1].type).getScale();
return std::make_shared<DataTypeArray>(
std::make_shared<DataTypeDateTime64>(std::max(start_time_scale, duration_scale), extractTimeZoneNameFromFunctionArguments(arguments, 3, 0, false)));
}
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t) const override
{
if (WhichDataType(arguments[0].type).isDateTime())
{
UInt32 time_slot_size = 1800;
if (arguments.size() == 3)
{
const auto * time_slot_column = checkAndGetColumn<ColumnConst>(arguments[2].column.get());
if (!time_slot_column)
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Third argument for function {} must be constant UInt32", getName());
if (time_slot_size = time_slot_column->getValue<UInt32>(); time_slot_size <= 0)
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Third argument for function {} must be greater than zero", getName());
}
const auto * dt_starts = checkAndGetColumn<ColumnDateTime>(arguments[0].column.get());
const auto * dt_const_starts = checkAndGetColumnConst<ColumnDateTime>(arguments[0].column.get());
const auto * durations = checkAndGetColumn<ColumnDateTime>(arguments[1].column.get());
const auto * const_durations = checkAndGetColumnConst<ColumnDateTime>(arguments[1].column.get());
auto res = ColumnArray::create(ColumnUInt32::create());
ColumnUInt32::Container & res_values = typeid_cast<ColumnUInt32 &>(res->getData()).getData();
if (dt_starts && durations)
{
TimeSlotsImpl::vectorVector(dt_starts->getData(), durations->getData(), time_slot_size, res_values, res->getOffsets());
return res;
}
else if (dt_starts && const_durations)
{
TimeSlotsImpl::vectorConstant(dt_starts->getData(), const_durations->getValue<UInt32>(), time_slot_size, res_values, res->getOffsets());
return res;
}
else if (dt_const_starts && durations)
{
TimeSlotsImpl::constantVector(dt_const_starts->getValue<UInt32>(), durations->getData(), time_slot_size, res_values, res->getOffsets());
return res;
}
}
else
{
assert(WhichDataType(arguments[0].type).isDateTime64());
Decimal64 time_slot_size = Decimal64(1800);
UInt16 time_slot_scale = 0;
if (arguments.size() == 3)
{
const auto * time_slot_column = checkAndGetColumn<ColumnConst>(arguments[2].column.get());
if (!time_slot_column)
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Third argument for function {} must be constant Decimal64", getName());
if (time_slot_size = time_slot_column->getValue<Decimal64>(); time_slot_size <= 0)
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Third argument for function {} must be greater than zero", getName());
time_slot_scale = assert_cast<const DataTypeDecimal64 *>(arguments[2].type.get())->getScale();
}
const auto * starts = checkAndGetColumn<ColumnDateTime64>(arguments[0].column.get());
const auto * const_starts = checkAndGetColumnConst<ColumnDateTime64>(arguments[0].column.get());
const auto * durations = checkAndGetColumn<ColumnDecimal<Decimal64>>(arguments[1].column.get());
const auto * const_durations = checkAndGetColumnConst<ColumnDecimal<Decimal64>>(arguments[1].column.get());
const auto start_time_scale = assert_cast<const DataTypeDateTime64 *>(arguments[0].type.get())->getScale();
const auto duration_scale = assert_cast<const DataTypeDecimal64 *>(arguments[1].type.get())->getScale();
auto res = ColumnArray::create(DataTypeDateTime64(start_time_scale).createColumn());
DataTypeDateTime64::ColumnType::Container & res_values = typeid_cast<DataTypeDateTime64::ColumnType &>(res->getData()).getData();
if (starts && durations)
{
TimeSlotsImpl::vectorVector(starts->getData(), durations->getData(), time_slot_size, res_values, res->getOffsets(),
start_time_scale, duration_scale, time_slot_scale);
return res;
}
else if (starts && const_durations)
{
TimeSlotsImpl::vectorConstant(
starts->getData(), const_durations->getValue<Decimal64>(), time_slot_size, res_values, res->getOffsets(),
start_time_scale, duration_scale, time_slot_scale);
return res;
}
else if (const_starts && durations)
{
TimeSlotsImpl::constantVector(
const_starts->getValue<DateTime64>(), durations->getData(), time_slot_size, res_values, res->getOffsets(),
start_time_scale, duration_scale, time_slot_scale);
return res;
}
}
if (arguments.size() == 3)
{
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal columns {}, {}, {} of arguments of function {}",
arguments[0].column->getName(), arguments[1].column->getName(), arguments[2].column->getName(), getName());
}
else
{
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal columns {}, {} of arguments of function {}",
arguments[0].column->getName(), arguments[1].column->getName(), getName());
}
}
};
}
REGISTER_FUNCTION(TimeSlots)
{
factory.registerFunction<FunctionTimeSlots>();
}
}