ClickHouse/dbms/src/Storages/MergeTree/KeyCondition.cpp
alexey-milovidov 39e69b421a
Merge pull request #2468 from yandex/fix-partition-key-parts-pruning
Fix pruning of parts by conditions on partition key columns
2018-06-05 15:52:47 +03:00

1197 lines
39 KiB
C++

#include <Storages/MergeTree/KeyCondition.h>
#include <Storages/MergeTree/BoolMask.h>
#include <DataTypes/DataTypesNumber.h>
#include <Interpreters/ExpressionAnalyzer.h>
#include <Interpreters/ExpressionActions.h>
#include <DataTypes/DataTypeEnum.h>
#include <DataTypes/DataTypeDate.h>
#include <DataTypes/DataTypeDateTime.h>
#include <DataTypes/DataTypeString.h>
#include <Functions/FunctionFactory.h>
#include <Functions/IFunction.h>
#include <Common/FieldVisitors.h>
#include <Common/typeid_cast.h>
#include <Interpreters/convertFieldToType.h>
#include <Interpreters/Set.h>
#include <Parsers/queryToString.h>
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
extern const int BAD_TYPE_OF_FIELD;
extern const int NUMBER_OF_COLUMNS_DOESNT_MATCH;
}
String Range::toString() const
{
std::stringstream str;
if (!left_bounded)
str << "(-inf, ";
else
str << (left_included ? '[' : '(') << applyVisitor(FieldVisitorToString(), left) << ", ";
if (!right_bounded)
str << "+inf)";
else
str << applyVisitor(FieldVisitorToString(), right) << (right_included ? ']' : ')');
return str.str();
}
/// Example: for `Hello\_World% ...` string it returns `Hello_World`, and for `%test%` returns an empty string.
static String extractFixedPrefixFromLikePattern(const String & like_pattern)
{
String fixed_prefix;
const char * pos = like_pattern.data();
const char * end = pos + like_pattern.size();
while (pos < end)
{
switch (*pos)
{
case '%':
[[fallthrough]];
case '_':
return fixed_prefix;
case '\\':
++pos;
if (pos == end)
break;
[[fallthrough]];
default:
fixed_prefix += *pos;
break;
}
++pos;
}
return fixed_prefix;
}
/** For a given string, get a minimum string that is strictly greater than all strings with this prefix,
* or return an empty string if there are no such strings.
*/
static String firstStringThatIsGreaterThanAllStringsWithPrefix(const String & prefix)
{
/** Increment the last byte of the prefix by one. But if it is 255, then remove it and increase the previous one.
* Example (for convenience, suppose that the maximum value of byte is `z`)
* abcx -> abcy
* abcz -> abd
* zzz -> empty string
* z -> empty string
*/
String res = prefix;
while (!res.empty() && static_cast<UInt8>(res.back()) == 255)
res.pop_back();
if (res.empty())
return res;
res.back() = static_cast<char>(1 + static_cast<UInt8>(res.back()));
return res;
}
/// A dictionary containing actions to the corresponding functions to turn them into `RPNElement`
const KeyCondition::AtomMap KeyCondition::atom_map
{
{
"notEquals",
[] (RPNElement & out, const Field & value, const ASTPtr &)
{
out.function = RPNElement::FUNCTION_NOT_IN_RANGE;
out.range = Range(value);
return true;
}
},
{
"equals",
[] (RPNElement & out, const Field & value, const ASTPtr &)
{
out.function = RPNElement::FUNCTION_IN_RANGE;
out.range = Range(value);
return true;
}
},
{
"less",
[] (RPNElement & out, const Field & value, const ASTPtr &)
{
out.function = RPNElement::FUNCTION_IN_RANGE;
out.range = Range::createRightBounded(value, false);
return true;
}
},
{
"greater",
[] (RPNElement & out, const Field & value, const ASTPtr &)
{
out.function = RPNElement::FUNCTION_IN_RANGE;
out.range = Range::createLeftBounded(value, false);
return true;
}
},
{
"lessOrEquals",
[] (RPNElement & out, const Field & value, const ASTPtr &)
{
out.function = RPNElement::FUNCTION_IN_RANGE;
out.range = Range::createRightBounded(value, true);
return true;
}
},
{
"greaterOrEquals",
[] (RPNElement & out, const Field & value, const ASTPtr &)
{
out.function = RPNElement::FUNCTION_IN_RANGE;
out.range = Range::createLeftBounded(value, true);
return true;
}
},
{
"in",
[] (RPNElement & out, const Field &, const ASTPtr & node)
{
out.function = RPNElement::FUNCTION_IN_SET;
out.in_function = node;
return true;
}
},
{
"notIn",
[] (RPNElement & out, const Field &, const ASTPtr & node)
{
out.function = RPNElement::FUNCTION_NOT_IN_SET;
out.in_function = node;
return true;
}
},
{
"like",
[] (RPNElement & out, const Field & value, const ASTPtr &)
{
if (value.getType() != Field::Types::String)
return false;
String prefix = extractFixedPrefixFromLikePattern(value.get<const String &>());
if (prefix.empty())
return false;
String right_bound = firstStringThatIsGreaterThanAllStringsWithPrefix(prefix);
out.function = RPNElement::FUNCTION_IN_RANGE;
out.range = !right_bound.empty()
? Range(prefix, true, right_bound, false)
: Range::createLeftBounded(prefix, true);
return true;
}
}
};
inline bool Range::equals(const Field & lhs, const Field & rhs) { return applyVisitor(FieldVisitorAccurateEquals(), lhs, rhs); }
inline bool Range::less(const Field & lhs, const Field & rhs) { return applyVisitor(FieldVisitorAccurateLess(), lhs, rhs); }
FieldWithInfinity::FieldWithInfinity(const Field & field_)
: field(field_),
type(Type::NORMAL)
{
}
FieldWithInfinity::FieldWithInfinity(Field && field_)
: field(std::move(field_)),
type(Type::NORMAL)
{
}
FieldWithInfinity::FieldWithInfinity(const Type type_)
: field(),
type(type_)
{
}
FieldWithInfinity FieldWithInfinity::getMinusInfinity()
{
return FieldWithInfinity(Type::MINUS_INFINITY);
}
FieldWithInfinity FieldWithInfinity::getPlusinfinity()
{
return FieldWithInfinity(Type::PLUS_INFINITY);
}
bool FieldWithInfinity::operator<(const FieldWithInfinity & other) const
{
return type < other.type || (type == other.type && type == Type::NORMAL && field < other.field);
}
bool FieldWithInfinity::operator==(const FieldWithInfinity & other) const
{
return type == other.type && (type != Type::NORMAL || field == other.field);
}
/** Calculate expressions, that depend only on constants.
* For index to work when something like "WHERE Date = toDate(now())" is written.
*/
Block KeyCondition::getBlockWithConstants(
const ASTPtr & query, const Context & context, const NamesAndTypesList & all_columns)
{
Block result
{
{ DataTypeUInt8().createColumnConstWithDefaultValue(1), std::make_shared<DataTypeUInt8>(), "_dummy" }
};
const auto expr_for_constant_folding = ExpressionAnalyzer{query, context, nullptr, all_columns}.getConstActions();
expr_for_constant_folding->execute(result);
return result;
}
KeyCondition::KeyCondition(
const SelectQueryInfo & query_info,
const Context & context,
const NamesAndTypesList & all_columns,
const SortDescription & sort_descr_,
const ExpressionActionsPtr & key_expr_)
: sort_descr(sort_descr_), key_expr(key_expr_), prepared_sets(query_info.sets)
{
for (size_t i = 0; i < sort_descr.size(); ++i)
{
std::string name = sort_descr[i].column_name;
if (!key_columns.count(name))
key_columns[name] = i;
}
/** Evaluation of expressions that depend only on constants.
* For the index to be used, if it is written, for example `WHERE Date = toDate(now())`.
*/
Block block_with_constants = getBlockWithConstants(query_info.query, context, all_columns);
/// Trasform WHERE section to Reverse Polish notation
const ASTSelectQuery & select = typeid_cast<const ASTSelectQuery &>(*query_info.query);
if (select.where_expression)
{
traverseAST(select.where_expression, context, block_with_constants);
if (select.prewhere_expression)
{
traverseAST(select.prewhere_expression, context, block_with_constants);
rpn.emplace_back(RPNElement::FUNCTION_AND);
}
}
else if (select.prewhere_expression)
{
traverseAST(select.prewhere_expression, context, block_with_constants);
}
else
{
rpn.emplace_back(RPNElement::FUNCTION_UNKNOWN);
}
}
bool KeyCondition::addCondition(const String & column, const Range & range)
{
if (!key_columns.count(column))
return false;
rpn.emplace_back(RPNElement::FUNCTION_IN_RANGE, key_columns[column], range);
rpn.emplace_back(RPNElement::FUNCTION_AND);
return true;
}
/** Computes value of constant expression and it data type.
* Returns false, if expression isn't constant.
*/
static bool getConstant(const ASTPtr & expr, Block & block_with_constants, Field & out_value, DataTypePtr & out_type)
{
String column_name = expr->getColumnName();
if (const ASTLiteral * lit = typeid_cast<const ASTLiteral *>(expr.get()))
{
/// By default block_with_constants has only one column named "_dummy".
/// If block contains only constants it's may not be preprocessed by
// ExpressionAnalyzer, so try to look up in the default column.
if (!block_with_constants.has(column_name))
column_name = "_dummy";
/// Simple literal
out_value = lit->value;
out_type = block_with_constants.getByName(column_name).type;
return true;
}
else if (block_with_constants.has(column_name) && block_with_constants.getByName(column_name).column->isColumnConst())
{
/// An expression which is dependent on constants only
const auto & expr_info = block_with_constants.getByName(column_name);
out_value = (*expr_info.column)[0];
out_type = expr_info.type;
return true;
}
else
return false;
}
static void applyFunction(
const FunctionBasePtr & func,
const DataTypePtr & arg_type, const Field & arg_value,
DataTypePtr & res_type, Field & res_value)
{
res_type = func->getReturnType();
Block block
{
{ arg_type->createColumnConst(1, arg_value), arg_type, "x" },
{ nullptr, res_type, "y" }
};
func->execute(block, {0}, 1, 1);
block.safeGetByPosition(1).column->get(0, res_value);
}
void KeyCondition::traverseAST(const ASTPtr & node, const Context & context, Block & block_with_constants)
{
RPNElement element;
if (ASTFunction * func = typeid_cast<ASTFunction *>(&*node))
{
if (operatorFromAST(func, element))
{
auto & args = typeid_cast<ASTExpressionList &>(*func->arguments).children;
for (size_t i = 0, size = args.size(); i < size; ++i)
{
traverseAST(args[i], context, block_with_constants);
/** The first part of the condition is for the correct support of `and` and `or` functions of arbitrary arity
* - in this case `n - 1` elements are added (where `n` is the number of arguments).
*/
if (i != 0 || element.function == RPNElement::FUNCTION_NOT)
rpn.emplace_back(std::move(element));
}
return;
}
}
if (!atomFromAST(node, context, block_with_constants, element))
{
element.function = RPNElement::FUNCTION_UNKNOWN;
}
rpn.emplace_back(std::move(element));
}
bool KeyCondition::canConstantBeWrappedByMonotonicFunctions(
const ASTPtr & node,
size_t & out_key_column_num,
DataTypePtr & out_key_column_type,
Field & out_value,
DataTypePtr & out_type)
{
String expr_name = node->getColumnName();
const auto & sample_block = key_expr->getSampleBlock();
if (!sample_block.has(expr_name))
return false;
bool found_transformation = false;
for (const ExpressionAction & a : key_expr->getActions())
{
/** The key functional expression constraint may be inferred from a plain column in the expression.
* For example, if the key contains `toStartOfHour(Timestamp)` and query contains `WHERE Timestamp >= now()`,
* it can be assumed that if `toStartOfHour()` is monotonic on [now(), inf), the `toStartOfHour(Timestamp) >= toStartOfHour(now())`
* condition also holds, so the index may be used to select only parts satisfying this condition.
*
* To check the assumption, we'd need to assert that the inverse function to this transformation is also monotonic, however the
* inversion isn't exported (or even viable for not strictly monotonic functions such as `toStartOfHour()`).
* Instead, we can qualify only functions that do not transform the range (for example rounding),
* which while not strictly monotonic, are monotonic everywhere on the input range.
*/
const auto & action = a.argument_names;
if (a.type == ExpressionAction::Type::APPLY_FUNCTION && action.size() == 1 && a.argument_names[0] == expr_name)
{
if (!a.function->hasInformationAboutMonotonicity())
return false;
// Range is irrelevant in this case
IFunction::Monotonicity monotonicity = a.function->getMonotonicityForRange(*out_type, Field(), Field());
if (!monotonicity.is_always_monotonic)
return false;
// Apply the next transformation step
DataTypePtr new_type;
applyFunction(a.function, out_type, out_value, new_type, out_value);
if (!new_type)
return false;
out_type.swap(new_type);
expr_name = a.result_name;
// Transformation results in a key expression, accept
auto it = key_columns.find(expr_name);
if (key_columns.end() != it)
{
out_key_column_num = it->second;
out_key_column_type = sample_block.getByName(it->first).type;
found_transformation = true;
break;
}
}
}
return found_transformation;
}
void KeyCondition::getKeyTuplePositionMapping(
const ASTPtr & node,
const Context & context,
std::vector<MergeTreeSetIndex::KeyTuplePositionMapping> & indexes_mapping,
const size_t tuple_index,
size_t & out_key_column_num)
{
MergeTreeSetIndex::KeyTuplePositionMapping index_mapping;
index_mapping.tuple_index = tuple_index;
DataTypePtr data_type;
if (isKeyPossiblyWrappedByMonotonicFunctions(
node, context, index_mapping.key_index,
data_type, index_mapping.functions))
{
indexes_mapping.push_back(index_mapping);
if (out_key_column_num < index_mapping.key_index)
{
out_key_column_num = index_mapping.key_index;
}
}
}
/// Try to prepare KeyTuplePositionMapping for tuples from IN expression.
bool KeyCondition::isTupleIndexable(
const ASTPtr & node,
const Context & context,
RPNElement & out,
const SetPtr & prepared_set,
size_t & out_key_column_num)
{
out_key_column_num = 0;
std::vector<MergeTreeSetIndex::KeyTuplePositionMapping> indexes_mapping;
size_t num_key_columns = prepared_set->getDataTypes().size();
const ASTFunction * node_tuple = typeid_cast<const ASTFunction *>(node.get());
if (node_tuple && node_tuple->name == "tuple")
{
if (num_key_columns != node_tuple->arguments->children.size())
{
std::stringstream message;
message << "Number of columns in section IN doesn't match. "
<< node_tuple->arguments->children.size() << " at left, " << num_key_columns << " at right.";
throw Exception(message.str(), ErrorCodes::NUMBER_OF_COLUMNS_DOESNT_MATCH);
}
size_t current_tuple_index = 0;
for (const auto & arg : node_tuple->arguments->children)
{
getKeyTuplePositionMapping(arg, context, indexes_mapping, current_tuple_index, out_key_column_num);
++current_tuple_index;
}
}
else
{
getKeyTuplePositionMapping(node, context, indexes_mapping, 0, out_key_column_num);
}
if (indexes_mapping.empty())
return false;
out.set_index = std::make_shared<MergeTreeSetIndex>(
prepared_set->getSetElements(), std::move(indexes_mapping));
return true;
}
bool KeyCondition::isKeyPossiblyWrappedByMonotonicFunctions(
const ASTPtr & node,
const Context & context,
size_t & out_key_column_num,
DataTypePtr & out_key_res_column_type,
MonotonicFunctionsChain & out_functions_chain)
{
std::vector<const ASTFunction *> chain_not_tested_for_monotonicity;
DataTypePtr key_column_type;
if (!isKeyPossiblyWrappedByMonotonicFunctionsImpl(node, out_key_column_num, key_column_type, chain_not_tested_for_monotonicity))
return false;
for (auto it = chain_not_tested_for_monotonicity.rbegin(); it != chain_not_tested_for_monotonicity.rend(); ++it)
{
auto func_builder = FunctionFactory::instance().tryGet((*it)->name, context);
ColumnsWithTypeAndName arguments{{ nullptr, key_column_type, "" }};
auto func = func_builder->build(arguments);
if (!func || !func->hasInformationAboutMonotonicity())
return false;
key_column_type = func->getReturnType();
out_functions_chain.push_back(func);
}
out_key_res_column_type = key_column_type;
return true;
}
bool KeyCondition::isKeyPossiblyWrappedByMonotonicFunctionsImpl(
const ASTPtr & node,
size_t & out_key_column_num,
DataTypePtr & out_key_column_type,
std::vector<const ASTFunction *> & out_functions_chain)
{
/** By itself, the key column can be a functional expression. for example, `intHash32(UserID)`.
* Therefore, use the full name of the expression for search.
*/
const auto & sample_block = key_expr->getSampleBlock();
String name = node->getColumnName();
auto it = key_columns.find(name);
if (key_columns.end() != it)
{
out_key_column_num = it->second;
out_key_column_type = sample_block.getByName(it->first).type;
return true;
}
if (const ASTFunction * func = typeid_cast<const ASTFunction *>(node.get()))
{
const auto & args = func->arguments->children;
if (args.size() != 1)
return false;
out_functions_chain.push_back(func);
if (!isKeyPossiblyWrappedByMonotonicFunctionsImpl(args[0], out_key_column_num, out_key_column_type, out_functions_chain))
return false;
return true;
}
return false;
}
static void castValueToType(const DataTypePtr & desired_type, Field & src_value, const DataTypePtr & src_type, const ASTPtr & node)
{
if (desired_type->equals(*src_type))
return;
try
{
/// NOTE: We don't need accurate info about src_type at this moment
src_value = convertFieldToType(src_value, *desired_type);
}
catch (...)
{
throw Exception("Key expression contains comparison between inconvertible types: " +
desired_type->getName() + " and " + src_type->getName() +
" inside " + queryToString(node),
ErrorCodes::BAD_TYPE_OF_FIELD);
}
}
bool KeyCondition::atomFromAST(const ASTPtr & node, const Context & context, Block & block_with_constants, RPNElement & out)
{
/** Functions < > = != <= >= in `notIn`, where one argument is a constant, and the other is one of columns of key,
* or itself, wrapped in a chain of possibly-monotonic functions,
* or constant expression - number.
*/
Field const_value;
DataTypePtr const_type;
if (const ASTFunction * func = typeid_cast<const ASTFunction *>(node.get()))
{
const ASTs & args = typeid_cast<const ASTExpressionList &>(*func->arguments).children;
if (args.size() != 2)
return false;
DataTypePtr key_expr_type; /// Type of expression containing key column
size_t key_arg_pos; /// Position of argument with key column (non-const argument)
size_t key_column_num; /// Number of a key column (inside sort_descr array)
MonotonicFunctionsChain chain;
bool is_set_const = false;
bool is_constant_transformed = false;
if (prepared_sets.count(args[1]->range)
&& isTupleIndexable(args[0], context, out, prepared_sets[args[1]->range], key_column_num))
{
key_arg_pos = 0;
is_set_const = true;
}
else if (getConstant(args[1], block_with_constants, const_value, const_type)
&& isKeyPossiblyWrappedByMonotonicFunctions(args[0], context, key_column_num, key_expr_type, chain))
{
key_arg_pos = 0;
}
else if (getConstant(args[1], block_with_constants, const_value, const_type)
&& canConstantBeWrappedByMonotonicFunctions(args[0], key_column_num, key_expr_type, const_value, const_type))
{
key_arg_pos = 0;
is_constant_transformed = true;
}
else if (getConstant(args[0], block_with_constants, const_value, const_type)
&& isKeyPossiblyWrappedByMonotonicFunctions(args[1], context, key_column_num, key_expr_type, chain))
{
key_arg_pos = 1;
}
else if (getConstant(args[0], block_with_constants, const_value, const_type)
&& canConstantBeWrappedByMonotonicFunctions(args[1], key_column_num, key_expr_type, const_value, const_type))
{
key_arg_pos = 1;
is_constant_transformed = true;
}
else
return false;
std::string func_name = func->name;
/// Transformed constant must weaken the condition, for example "x > 5" must weaken to "round(x) >= 5"
if (is_constant_transformed)
{
if (func_name == "less")
func_name = "lessOrEquals";
else if (func_name == "greater")
func_name = "greaterOrEquals";
}
/// Replace <const> <sign> <data> on to <data> <-sign> <const>
if (key_arg_pos == 1)
{
if (func_name == "less")
func_name = "greater";
else if (func_name == "greater")
func_name = "less";
else if (func_name == "greaterOrEquals")
func_name = "lessOrEquals";
else if (func_name == "lessOrEquals")
func_name = "greaterOrEquals";
else if (func_name == "in" || func_name == "notIn" || func_name == "like")
{
/// "const IN data_column" doesn't make sense (unlike "data_column IN const")
return false;
}
}
out.key_column = key_column_num;
out.monotonic_functions_chain = std::move(chain);
const auto atom_it = atom_map.find(func_name);
if (atom_it == std::end(atom_map))
return false;
bool cast_not_needed =
is_set_const /// Set args are already casted inside Set::createFromAST
|| (key_expr_type->isNumber() && const_type->isNumber()); /// Numbers are accurately compared without cast.
if (!cast_not_needed)
castValueToType(key_expr_type, const_value, const_type, node);
return atom_it->second(out, const_value, node);
}
else if (getConstant(node, block_with_constants, const_value, const_type)) /// For cases where it says, for example, `WHERE 0 AND something`
{
if (const_value.getType() == Field::Types::UInt64
|| const_value.getType() == Field::Types::Int64
|| const_value.getType() == Field::Types::Float64)
{
/// Zero in all types is represented in memory the same way as in UInt64.
out.function = const_value.get<UInt64>()
? RPNElement::ALWAYS_TRUE
: RPNElement::ALWAYS_FALSE;
return true;
}
}
return false;
}
bool KeyCondition::operatorFromAST(const ASTFunction * func, RPNElement & out)
{
/// Functions AND, OR, NOT.
/** Also a special function `indexHint` - works as if instead of calling a function there are just parentheses
* (or, the same thing - calling the function `and` from one argument).
*/
const ASTs & args = typeid_cast<const ASTExpressionList &>(*func->arguments).children;
if (func->name == "not")
{
if (args.size() != 1)
return false;
out.function = RPNElement::FUNCTION_NOT;
}
else
{
if (func->name == "and" || func->name == "indexHint")
out.function = RPNElement::FUNCTION_AND;
else if (func->name == "or")
out.function = RPNElement::FUNCTION_OR;
else
return false;
}
return true;
}
String KeyCondition::toString() const
{
String res;
for (size_t i = 0; i < rpn.size(); ++i)
{
if (i)
res += ", ";
res += rpn[i].toString();
}
return res;
}
/** Index is the value of key every `index_granularity` rows.
* This value is called a "mark". That is, the index consists of marks.
*
* The key is the tuple.
* The data is sorted by key in the sense of lexicographic order over tuples.
*
* A pair of marks specifies a segment with respect to the order over the tuples.
* Denote it like this: [ x1 y1 z1 .. x2 y2 z2 ],
* where x1 y1 z1 - tuple - value of key in left border of segment;
* x2 y2 z2 - tuple - value of key in right boundary of segment.
* In this section there are data between these marks.
*
* Or, the last mark specifies the range open on the right: [ a b c .. + inf )
*
* The set of all possible tuples can be considered as an n-dimensional space, where n is the size of the tuple.
* A range of tuples specifies some subset of this space.
*
* Parallelograms (you can also find the term "rail")
* will be the subrange of an n-dimensional space that is a direct product of one-dimensional ranges.
* In this case, the one-dimensional range can be: a period, a segment, an interval, a half-interval, unlimited on the left, unlimited on the right ...
*
* The range of tuples can always be represented as a combination of parallelograms.
* For example, the range [ x1 y1 .. x2 y2 ] given x1 != x2 is equal to the union of the following three parallelograms:
* [x1] x [y1 .. +inf)
* (x1 .. x2) x (-inf .. +inf)
* [x2] x (-inf .. y2]
*
* Or, for example, the range [ x1 y1 .. +inf ] is equal to the union of the following two parallelograms:
* [x1] x [y1 .. +inf)
* (x1 .. +inf) x (-inf .. +inf)
* It's easy to see that this is a special case of the variant above.
*
* This is important because it is easy for us to check the feasibility of the condition over the parallelogram,
* and therefore, feasibility of condition on the range of tuples will be checked by feasibility of condition
* over at least one parallelogram from which this range consists.
*/
template <typename F>
static bool forAnyParallelogram(
size_t key_size,
const Field * key_left,
const Field * key_right,
bool left_bounded,
bool right_bounded,
std::vector<Range> & parallelogram,
size_t prefix_size,
F && callback)
{
if (!left_bounded && !right_bounded)
return callback(parallelogram);
if (left_bounded && right_bounded)
{
/// Let's go through the matching elements of the key.
while (prefix_size < key_size)
{
if (key_left[prefix_size] == key_right[prefix_size])
{
/// Point ranges.
parallelogram[prefix_size] = Range(key_left[prefix_size]);
++prefix_size;
}
else
break;
}
}
if (prefix_size == key_size)
return callback(parallelogram);
if (prefix_size + 1 == key_size)
{
if (left_bounded && right_bounded)
parallelogram[prefix_size] = Range(key_left[prefix_size], true, key_right[prefix_size], true);
else if (left_bounded)
parallelogram[prefix_size] = Range::createLeftBounded(key_left[prefix_size], true);
else if (right_bounded)
parallelogram[prefix_size] = Range::createRightBounded(key_right[prefix_size], true);
return callback(parallelogram);
}
/// (x1 .. x2) x (-inf .. +inf)
if (left_bounded && right_bounded)
parallelogram[prefix_size] = Range(key_left[prefix_size], false, key_right[prefix_size], false);
else if (left_bounded)
parallelogram[prefix_size] = Range::createLeftBounded(key_left[prefix_size], false);
else if (right_bounded)
parallelogram[prefix_size] = Range::createRightBounded(key_right[prefix_size], false);
for (size_t i = prefix_size + 1; i < key_size; ++i)
parallelogram[i] = Range();
if (callback(parallelogram))
return true;
/// [x1] x [y1 .. +inf)
if (left_bounded)
{
parallelogram[prefix_size] = Range(key_left[prefix_size]);
if (forAnyParallelogram(key_size, key_left, key_right, true, false, parallelogram, prefix_size + 1, callback))
return true;
}
/// [x2] x (-inf .. y2]
if (right_bounded)
{
parallelogram[prefix_size] = Range(key_right[prefix_size]);
if (forAnyParallelogram(key_size, key_left, key_right, false, true, parallelogram, prefix_size + 1, callback))
return true;
}
return false;
}
bool KeyCondition::mayBeTrueInRange(
size_t used_key_size,
const Field * left_key,
const Field * right_key,
const DataTypes & data_types,
bool right_bounded) const
{
std::vector<Range> key_ranges(used_key_size, Range());
/* std::cerr << "Checking for: [";
for (size_t i = 0; i != used_key_size; ++i)
std::cerr << (i != 0 ? ", " : "") << applyVisitor(FieldVisitorToString(), left_key[i]);
std::cerr << " ... ";
if (right_bounded)
{
for (size_t i = 0; i != used_key_size; ++i)
std::cerr << (i != 0 ? ", " : "") << applyVisitor(FieldVisitorToString(), right_key[i]);
std::cerr << "]\n";
}
else
std::cerr << "+inf)\n";*/
return forAnyParallelogram(used_key_size, left_key, right_key, true, right_bounded, key_ranges, 0,
[&] (const std::vector<Range> & key_ranges)
{
auto res = mayBeTrueInParallelogram(key_ranges, data_types);
/* std::cerr << "Parallelogram: ";
for (size_t i = 0, size = key_ranges.size(); i != size; ++i)
std::cerr << (i != 0 ? " x " : "") << key_ranges[i].toString();
std::cerr << ": " << res << "\n";*/
return res;
});
}
std::optional<Range> KeyCondition::applyMonotonicFunctionsChainToRange(
Range key_range,
MonotonicFunctionsChain & functions,
DataTypePtr current_type
)
{
for (auto & func : functions)
{
/// We check the monotonicity of each function on a specific range.
IFunction::Monotonicity monotonicity = func->getMonotonicityForRange(
*current_type.get(), key_range.left, key_range.right);
if (!monotonicity.is_monotonic)
{
return {};
}
/// Apply the function.
DataTypePtr new_type;
if (!key_range.left.isNull())
applyFunction(func, current_type, key_range.left, new_type, key_range.left);
if (!key_range.right.isNull())
applyFunction(func, current_type, key_range.right, new_type, key_range.right);
if (!new_type)
{
return {};
}
current_type.swap(new_type);
if (!monotonicity.is_positive)
key_range.swapLeftAndRight();
}
return key_range;
}
bool KeyCondition::mayBeTrueInParallelogram(const std::vector<Range> & parallelogram, const DataTypes & data_types) const
{
std::vector<BoolMask> rpn_stack;
for (size_t i = 0; i < rpn.size(); ++i)
{
const auto & element = rpn[i];
if (element.function == RPNElement::FUNCTION_UNKNOWN)
{
rpn_stack.emplace_back(true, true);
}
else if (element.function == RPNElement::FUNCTION_IN_RANGE
|| element.function == RPNElement::FUNCTION_NOT_IN_RANGE)
{
const Range * key_range = &parallelogram[element.key_column];
/// The case when the column is wrapped in a chain of possibly monotonic functions.
Range transformed_range;
if (!element.monotonic_functions_chain.empty())
{
std::optional<Range> new_range = applyMonotonicFunctionsChainToRange(
*key_range,
element.monotonic_functions_chain,
data_types[element.key_column]
);
if (!new_range)
{
rpn_stack.emplace_back(true, true);
continue;
}
transformed_range = *new_range;
key_range = &transformed_range;
}
bool intersects = element.range.intersectsRange(*key_range);
bool contains = element.range.containsRange(*key_range);
rpn_stack.emplace_back(intersects, !contains);
if (element.function == RPNElement::FUNCTION_NOT_IN_RANGE)
rpn_stack.back() = !rpn_stack.back();
}
else if (
element.function == RPNElement::FUNCTION_IN_SET
|| element.function == RPNElement::FUNCTION_NOT_IN_SET)
{
auto in_func = typeid_cast<const ASTFunction *>(element.in_function.get());
const ASTs & args = typeid_cast<const ASTExpressionList &>(*in_func->arguments).children;
PreparedSets::const_iterator it = prepared_sets.find(args[1]->range);
if (in_func && it != prepared_sets.end())
{
rpn_stack.emplace_back(element.set_index->mayBeTrueInRange(parallelogram, data_types));
if (element.function == RPNElement::FUNCTION_NOT_IN_SET)
rpn_stack.back() = !rpn_stack.back();
}
else
throw Exception("Set for IN is not created yet", ErrorCodes::LOGICAL_ERROR);
}
else if (element.function == RPNElement::FUNCTION_NOT)
{
rpn_stack.back() = !rpn_stack.back();
}
else if (element.function == RPNElement::FUNCTION_AND)
{
auto arg1 = rpn_stack.back();
rpn_stack.pop_back();
auto arg2 = rpn_stack.back();
rpn_stack.back() = arg1 & arg2;
}
else if (element.function == RPNElement::FUNCTION_OR)
{
auto arg1 = rpn_stack.back();
rpn_stack.pop_back();
auto arg2 = rpn_stack.back();
rpn_stack.back() = arg1 | arg2;
}
else if (element.function == RPNElement::ALWAYS_FALSE)
{
rpn_stack.emplace_back(false, true);
}
else if (element.function == RPNElement::ALWAYS_TRUE)
{
rpn_stack.emplace_back(true, false);
}
else
throw Exception("Unexpected function type in KeyCondition::RPNElement", ErrorCodes::LOGICAL_ERROR);
}
if (rpn_stack.size() != 1)
throw Exception("Unexpected stack size in KeyCondition::mayBeTrueInRange", ErrorCodes::LOGICAL_ERROR);
return rpn_stack[0].can_be_true;
}
bool KeyCondition::mayBeTrueInRange(
size_t used_key_size, const Field * left_key, const Field * right_key, const DataTypes & data_types) const
{
return mayBeTrueInRange(used_key_size, left_key, right_key, data_types, true);
}
bool KeyCondition::mayBeTrueAfter(
size_t used_key_size, const Field * left_key, const DataTypes & data_types) const
{
return mayBeTrueInRange(used_key_size, left_key, nullptr, data_types, false);
}
String KeyCondition::RPNElement::toString() const
{
auto print_wrapped_column = [this](std::ostringstream & ss)
{
for (auto it = monotonic_functions_chain.rbegin(); it != monotonic_functions_chain.rend(); ++it)
ss << (*it)->getName() << "(";
ss << "column " << key_column;
for (auto it = monotonic_functions_chain.rbegin(); it != monotonic_functions_chain.rend(); ++it)
ss << ")";
};
std::ostringstream ss;
switch (function)
{
case FUNCTION_AND:
return "and";
case FUNCTION_OR:
return "or";
case FUNCTION_NOT:
return "not";
case FUNCTION_UNKNOWN:
return "unknown";
case FUNCTION_NOT_IN_SET:
case FUNCTION_IN_SET:
{
ss << "(";
print_wrapped_column(ss);
ss << (function == FUNCTION_IN_SET ? " in " : " notIn ");
if (!set_index)
ss << "unknown size set";
else
ss << set_index->size() << "-element set";
ss << ")";
return ss.str();
}
case FUNCTION_IN_RANGE:
case FUNCTION_NOT_IN_RANGE:
{
ss << "(";
print_wrapped_column(ss);
ss << (function == FUNCTION_NOT_IN_RANGE ? " not" : "") << " in " << range.toString();
ss << ")";
return ss.str();
}
case ALWAYS_FALSE:
return "false";
case ALWAYS_TRUE:
return "true";
default:
throw Exception("Unknown function in RPNElement", ErrorCodes::LOGICAL_ERROR);
}
}
bool KeyCondition::alwaysUnknownOrTrue() const
{
std::vector<UInt8> rpn_stack;
for (const auto & element : rpn)
{
if (element.function == RPNElement::FUNCTION_UNKNOWN
|| element.function == RPNElement::ALWAYS_TRUE)
{
rpn_stack.push_back(true);
}
else if (element.function == RPNElement::FUNCTION_NOT_IN_RANGE
|| element.function == RPNElement::FUNCTION_IN_RANGE
|| element.function == RPNElement::FUNCTION_IN_SET
|| element.function == RPNElement::FUNCTION_NOT_IN_SET
|| element.function == RPNElement::ALWAYS_FALSE)
{
rpn_stack.push_back(false);
}
else if (element.function == RPNElement::FUNCTION_NOT)
{
}
else if (element.function == RPNElement::FUNCTION_AND)
{
auto arg1 = rpn_stack.back();
rpn_stack.pop_back();
auto arg2 = rpn_stack.back();
rpn_stack.back() = arg1 & arg2;
}
else if (element.function == RPNElement::FUNCTION_OR)
{
auto arg1 = rpn_stack.back();
rpn_stack.pop_back();
auto arg2 = rpn_stack.back();
rpn_stack.back() = arg1 | arg2;
}
else
throw Exception("Unexpected function type in KeyCondition::RPNElement", ErrorCodes::LOGICAL_ERROR);
}
return rpn_stack[0];
}
size_t KeyCondition::getMaxKeyColumn() const
{
size_t res = 0;
for (const auto & element : rpn)
{
if (element.function == RPNElement::FUNCTION_NOT_IN_RANGE
|| element.function == RPNElement::FUNCTION_IN_RANGE
|| element.function == RPNElement::FUNCTION_IN_SET
|| element.function == RPNElement::FUNCTION_NOT_IN_SET)
{
if (element.key_column > res)
res = element.key_column;
}
}
return res;
}
}