ClickHouse/dbms/src/Dictionaries/CacheDictionary.h
Nikita Mikhaylov 56d3cd535d
Merge pull request #9413 from nikitamikhaylov/cache_dict_update_queue_size
CacheDictionaryUpdateQueueSize metric added
2020-02-28 20:29:11 +03:00

501 lines
18 KiB
C++

#pragma once
#include <atomic>
#include <chrono>
#include <cmath>
#include <map>
#include <mutex>
#include <shared_mutex>
#include <utility>
#include <variant>
#include <vector>
#include <common/logger_useful.h>
#include <Columns/ColumnDecimal.h>
#include <Columns/ColumnString.h>
#include <Common/ThreadPool.h>
#include <Common/ConcurrentBoundedQueue.h>
#include <pcg_random.hpp>
#include <Common/ArenaWithFreeLists.h>
#include <Common/CurrentMetrics.h>
#include <ext/bit_cast.h>
#include "DictionaryStructure.h"
#include "IDictionary.h"
#include "IDictionarySource.h"
namespace CurrentMetrics
{
extern const Metric CacheDictionaryUpdateQueueBatches;
extern const Metric CacheDictionaryUpdateQueueKeys;
}
namespace DB
{
namespace ErrorCodes
{
}
/*
*
* This dictionary is stored in a cache that has a fixed number of cells.
* These cells contain frequently used elements.
* When searching for a dictionary, the cache is searched first and special heuristic is used:
* while looking for the key, we take a look only at max_collision_length elements.
* So, our cache is not perfect. It has errors like "the key is in cache, but the cache says that it does not".
* And in this case we simply ask external source for the key which is faster.
* You have to keep this logic in mind.
* */
class CacheDictionary final : public IDictionary
{
public:
CacheDictionary(
const std::string & database_,
const std::string & name_,
const DictionaryStructure & dict_struct_,
DictionarySourcePtr source_ptr_,
DictionaryLifetime dict_lifetime_,
size_t size_,
bool allow_read_expired_keys_,
size_t max_update_queue_size_,
size_t update_queue_push_timeout_milliseconds_,
size_t max_threads_for_updates);
~CacheDictionary() override;
const std::string & getDatabase() const override { return database; }
const std::string & getName() const override { return name; }
const std::string & getFullName() const override { return full_name; }
std::string getTypeName() const override { return "Cache"; }
size_t getBytesAllocated() const override { return bytes_allocated + (string_arena ? string_arena->size() : 0); }
size_t getQueryCount() const override { return query_count.load(std::memory_order_relaxed); }
double getHitRate() const override
{
return static_cast<double>(hit_count.load(std::memory_order_acquire)) / query_count.load(std::memory_order_relaxed);
}
size_t getElementCount() const override { return element_count.load(std::memory_order_relaxed); }
double getLoadFactor() const override { return static_cast<double>(element_count.load(std::memory_order_relaxed)) / size; }
bool supportUpdates() const override { return false; }
std::shared_ptr<const IExternalLoadable> clone() const override
{
return std::make_shared<CacheDictionary>(
database, name, dict_struct, source_ptr->clone(), dict_lifetime, size,
allow_read_expired_keys, max_update_queue_size,
update_queue_push_timeout_milliseconds, max_threads_for_updates);
}
const IDictionarySource * getSource() const override { return source_ptr.get(); }
const DictionaryLifetime & getLifetime() const override { return dict_lifetime; }
const DictionaryStructure & getStructure() const override { return dict_struct; }
bool isInjective(const std::string & attribute_name) const override
{
return dict_struct.attributes[&getAttribute(attribute_name) - attributes.data()].injective;
}
bool hasHierarchy() const override { return hierarchical_attribute; }
void toParent(const PaddedPODArray<Key> & ids, PaddedPODArray<Key> & out) const override;
void isInVectorVector(
const PaddedPODArray<Key> & child_ids, const PaddedPODArray<Key> & ancestor_ids, PaddedPODArray<UInt8> & out) const override;
void isInVectorConstant(const PaddedPODArray<Key> & child_ids, const Key ancestor_id, PaddedPODArray<UInt8> & out) const override;
void isInConstantVector(const Key child_id, const PaddedPODArray<Key> & ancestor_ids, PaddedPODArray<UInt8> & out) const override;
std::exception_ptr getLastException() const override;
template <typename T>
using ResultArrayType = std::conditional_t<IsDecimalNumber<T>, DecimalPaddedPODArray<T>, PaddedPODArray<T>>;
#define DECLARE(TYPE) \
void get##TYPE(const std::string & attribute_name, const PaddedPODArray<Key> & ids, ResultArrayType<TYPE> & out) const;
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(UInt128)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
DECLARE(Decimal32)
DECLARE(Decimal64)
DECLARE(Decimal128)
#undef DECLARE
void getString(const std::string & attribute_name, const PaddedPODArray<Key> & ids, ColumnString * out) const;
#define DECLARE(TYPE) \
void get##TYPE( \
const std::string & attribute_name, \
const PaddedPODArray<Key> & ids, \
const PaddedPODArray<TYPE> & def, \
ResultArrayType<TYPE> & out) const;
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(UInt128)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
DECLARE(Decimal32)
DECLARE(Decimal64)
DECLARE(Decimal128)
#undef DECLARE
void
getString(const std::string & attribute_name, const PaddedPODArray<Key> & ids, const ColumnString * const def, ColumnString * const out)
const;
#define DECLARE(TYPE) \
void get##TYPE(const std::string & attribute_name, const PaddedPODArray<Key> & ids, const TYPE def, ResultArrayType<TYPE> & out) const;
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(UInt128)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
DECLARE(Decimal32)
DECLARE(Decimal64)
DECLARE(Decimal128)
#undef DECLARE
void getString(const std::string & attribute_name, const PaddedPODArray<Key> & ids, const String & def, ColumnString * const out) const;
void has(const PaddedPODArray<Key> & ids, PaddedPODArray<UInt8> & out) const override;
BlockInputStreamPtr getBlockInputStream(const Names & column_names, size_t max_block_size) const override;
private:
template <typename Value>
using ContainerType = Value[];
template <typename Value>
using ContainerPtrType = std::unique_ptr<ContainerType<Value>>;
struct CellMetadata final
{
using time_point_t = std::chrono::system_clock::time_point;
using time_point_rep_t = time_point_t::rep;
using time_point_urep_t = std::make_unsigned_t<time_point_rep_t>;
static constexpr UInt64 EXPIRES_AT_MASK = std::numeric_limits<time_point_rep_t>::max();
static constexpr UInt64 IS_DEFAULT_MASK = ~EXPIRES_AT_MASK;
UInt64 id;
/// Stores both expiration time and `is_default` flag in the most significant bit
time_point_urep_t data;
/// Sets expiration time, resets `is_default` flag to false
time_point_t expiresAt() const { return ext::safe_bit_cast<time_point_t>(data & EXPIRES_AT_MASK); }
void setExpiresAt(const time_point_t & t) { data = ext::safe_bit_cast<time_point_urep_t>(t); }
bool isDefault() const { return (data & IS_DEFAULT_MASK) == IS_DEFAULT_MASK; }
void setDefault() { data |= IS_DEFAULT_MASK; }
};
struct Attribute final
{
AttributeUnderlyingType type;
std::variant<
UInt8,
UInt16,
UInt32,
UInt64,
UInt128,
Int8,
Int16,
Int32,
Int64,
Decimal32,
Decimal64,
Decimal128,
Float32,
Float64,
String>
null_values;
std::variant<
ContainerPtrType<UInt8>,
ContainerPtrType<UInt16>,
ContainerPtrType<UInt32>,
ContainerPtrType<UInt64>,
ContainerPtrType<UInt128>,
ContainerPtrType<Int8>,
ContainerPtrType<Int16>,
ContainerPtrType<Int32>,
ContainerPtrType<Int64>,
ContainerPtrType<Decimal32>,
ContainerPtrType<Decimal64>,
ContainerPtrType<Decimal128>,
ContainerPtrType<Float32>,
ContainerPtrType<Float64>,
ContainerPtrType<StringRef>>
arrays;
};
void createAttributes();
Attribute createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value);
template <typename AttributeType, typename OutputType, typename DefaultGetter>
void getItemsNumberImpl(
Attribute & attribute, const PaddedPODArray<Key> & ids, ResultArrayType<OutputType> & out, DefaultGetter && get_default) const;
template <typename DefaultGetter>
void getItemsString(Attribute & attribute, const PaddedPODArray<Key> & ids, ColumnString * out, DefaultGetter && get_default) const;
PaddedPODArray<Key> getCachedIds() const;
bool isEmptyCell(const UInt64 idx) const;
size_t getCellIdx(const Key id) const;
void setDefaultAttributeValue(Attribute & attribute, const Key idx) const;
void setAttributeValue(Attribute & attribute, const Key idx, const Field & value) const;
Attribute & getAttribute(const std::string & attribute_name) const;
struct FindResult
{
const size_t cell_idx;
const bool valid;
const bool outdated;
};
FindResult findCellIdx(const Key & id, const CellMetadata::time_point_t now) const;
template <typename AncestorType>
void isInImpl(const PaddedPODArray<Key> & child_ids, const AncestorType & ancestor_ids, PaddedPODArray<UInt8> & out) const;
const std::string database;
const std::string name;
const std::string full_name;
const DictionaryStructure dict_struct;
mutable DictionarySourcePtr source_ptr;
const DictionaryLifetime dict_lifetime;
const bool allow_read_expired_keys;
const size_t max_update_queue_size;
const size_t update_queue_push_timeout_milliseconds;
const size_t max_threads_for_updates;
Logger * const log;
mutable std::shared_mutex rw_lock;
/// Actual size will be increased to match power of 2
const size_t size;
/// all bits to 1 mask (size - 1) (0b1000 - 1 = 0b111)
const size_t size_overlap_mask;
/// Max tries to find cell, overlaped with mask: if size = 16 and start_cell=10: will try cells: 10,11,12,13,14,15,0,1,2,3
static constexpr size_t max_collision_length = 10;
const size_t zero_cell_idx{getCellIdx(0)};
std::map<std::string, size_t> attribute_index_by_name;
mutable std::vector<Attribute> attributes;
mutable std::vector<CellMetadata> cells;
Attribute * hierarchical_attribute = nullptr;
std::unique_ptr<ArenaWithFreeLists> string_arena;
mutable std::exception_ptr last_exception;
mutable std::atomic<size_t> error_count = 0;
mutable std::atomic<std::chrono::system_clock::time_point> backoff_end_time{std::chrono::system_clock::time_point{}};
mutable pcg64 rnd_engine;
mutable size_t bytes_allocated = 0;
mutable std::atomic<size_t> element_count{0};
mutable std::atomic<size_t> hit_count{0};
mutable std::atomic<size_t> query_count{0};
/// Field and methods correlated with update expired and not found keys
using PresentIdHandler = std::function<void(Key, size_t)>;
using AbsentIdHandler = std::function<void(Key, size_t)>;
/*
* Disclaimer: this comment is written not for fun.
*
* How the update goes: we basically have a method like get(keys)->values. Values are cached, so sometimes we
* can return them from the cache. For values not in cache, we query them from the dictionary, and add to the
* cache. The cache is lossy, so we can't expect it to store all the keys, and we store them separately. Normally,
* they would be passed as a return value of get(), but for Unknown Reasons the dictionaries use a baroque
* interface where get() accepts two callback, one that it calls for found values, and one for not found.
*
* Now we make it even uglier by doing this from multiple threads. The missing values are retreived from the
* dictionary in a background thread, and this thread calls the provided callback. So if you provide the callbacks,
* you MUST wait until the background update finishes, or god knows what happens. Unfortunately, we have no
* way to check that you did this right, so good luck.
*/
struct UpdateUnit
{
UpdateUnit(std::vector<Key> requested_ids_,
PresentIdHandler present_id_handler_,
AbsentIdHandler absent_id_handler_) :
requested_ids(std::move(requested_ids_)),
present_id_handler(present_id_handler_),
absent_id_handler(absent_id_handler_),
alive_keys(CurrentMetrics::CacheDictionaryUpdateQueueKeys, requested_ids.size()){}
explicit UpdateUnit(std::vector<Key> requested_ids_) :
requested_ids(std::move(requested_ids_)),
present_id_handler([](Key, size_t){}),
absent_id_handler([](Key, size_t){}),
alive_keys(CurrentMetrics::CacheDictionaryUpdateQueueKeys, requested_ids.size()){}
std::vector<Key> requested_ids;
PresentIdHandler present_id_handler;
AbsentIdHandler absent_id_handler;
std::atomic<bool> is_done{false};
std::exception_ptr current_exception{nullptr};
/// While UpdateUnit is alive, it is accounted in update_queue size.
CurrentMetrics::Increment alive_batch{CurrentMetrics::CacheDictionaryUpdateQueueBatches};
CurrentMetrics::Increment alive_keys;
};
using UpdateUnitPtr = std::shared_ptr<UpdateUnit>;
using UpdateQueue = ConcurrentBoundedQueue<UpdateUnitPtr>;
/*
* This class is used to concatenate requested_keys.
*
* Imagine that we have several UpdateUnit with different vectors of keys and callbacks for that keys.
* We concatenate them into a long vector of keys that looks like:
*
* a1...ak_a b1...bk_2 c1...ck_3,
*
* where a1...ak_a are requested_keys from the first UpdateUnit.
* In addition we have the same number (three in this case) of callbacks.
* This class helps us to find a callback (or many callbacks) for a special key.
* */
class BunchUpdateUnit
{
public:
explicit BunchUpdateUnit(std::vector<UpdateUnitPtr> & update_request)
{
/// Here we prepare total count of all requested ids
/// not to do useless allocations later.
size_t total_requested_keys_count = 0;
for (auto & unit_ptr: update_request)
{
total_requested_keys_count += unit_ptr->requested_ids.size();
if (helper.empty())
helper.push_back(unit_ptr->requested_ids.size());
else
helper.push_back(unit_ptr->requested_ids.size() + helper.back());
present_id_handlers.emplace_back(unit_ptr->present_id_handler);
absent_id_handlers.emplace_back(unit_ptr->absent_id_handler);
}
concatenated_requested_ids.reserve(total_requested_keys_count);
for (auto & unit_ptr: update_request)
std::for_each(std::begin(unit_ptr->requested_ids), std::end(unit_ptr->requested_ids),
[&] (const Key & key) {concatenated_requested_ids.push_back(key);});
}
const std::vector<Key> & getRequestedIds()
{
return concatenated_requested_ids;
}
void informCallersAboutPresentId(Key id, size_t cell_idx)
{
for (size_t i = 0; i < concatenated_requested_ids.size(); ++i)
{
auto & curr = concatenated_requested_ids[i];
if (curr == id)
getPresentIdHandlerForPosition(i)(id, cell_idx);
}
}
void informCallersAboutAbsentId(Key id, size_t cell_idx)
{
for (size_t i = 0; i < concatenated_requested_ids.size(); ++i)
if (concatenated_requested_ids[i] == id)
getAbsentIdHandlerForPosition(i)(id, cell_idx);
}
private:
PresentIdHandler & getPresentIdHandlerForPosition(size_t position)
{
return present_id_handlers[getUpdateUnitNumberForRequestedIdPosition(position)];
}
AbsentIdHandler & getAbsentIdHandlerForPosition(size_t position)
{
return absent_id_handlers[getUpdateUnitNumberForRequestedIdPosition((position))];
}
size_t getUpdateUnitNumberForRequestedIdPosition(size_t position)
{
return std::lower_bound(helper.begin(), helper.end(), position) - helper.begin();
}
std::vector<Key> concatenated_requested_ids;
std::vector<PresentIdHandler> present_id_handlers;
std::vector<AbsentIdHandler> absent_id_handlers;
std::vector<size_t> helper;
};
mutable UpdateQueue update_queue;
ThreadPool update_pool;
/*
* Actually, we can divide all requested keys into two 'buckets'. There are only four possible states and they
* are described in the table.
*
* cache_not_found_ids |0|0|1|1|
* cache_expired_ids |0|1|0|1|
*
* 0 - if set is empty, 1 - otherwise
*
* Only if there are no cache_not_found_ids and some cache_expired_ids
* (with allow_read_expired_keys_from_cache_dictionary setting) we can perform async update.
* Otherwise we have no concatenate ids and update them sync.
*
*/
void updateThreadFunction();
void update(BunchUpdateUnit & bunch_update_unit) const;
void tryPushToUpdateQueueOrThrow(UpdateUnitPtr & update_unit_ptr) const;
void waitForCurrentUpdateFinish(UpdateUnitPtr & update_unit_ptr) const;
mutable std::mutex update_mutex;
mutable std::condition_variable is_update_finished;
std::atomic<bool> finished{false};
};
}