ClickHouse/contrib/qpl-cmake/benchmark_sample/client_scripts/client_stressing_test.py
2023-03-21 16:31:47 -04:00

279 lines
8.6 KiB
Python

from operator import eq
import os
import random
import time
import sys
from clickhouse_driver import Client
import numpy as np
import subprocess
import multiprocessing
from multiprocessing import Manager
warmup_runs = 10
calculated_runs = 10
seconds = 30
max_instances_number = 8
retest_number = 3
retest_tolerance = 10
def checkInt(str):
try:
int(str)
return True
except ValueError:
return False
def setup_client(index):
if index < 4:
port_idx = index
else:
port_idx = index + 4
client = Client(
host="localhost",
database="default",
user="default",
password="",
port="900%d" % port_idx,
)
union_mode_query = "SET union_default_mode='DISTINCT'"
client.execute(union_mode_query)
return client
def warm_client(clientN, clientL, query, loop):
for c_idx in range(clientN):
for _ in range(loop):
clientL[c_idx].execute(query)
def read_queries(queries_list):
queries = list()
queries_id = list()
with open(queries_list, "r") as f:
for line in f:
line = line.rstrip()
line = line.split("$")
queries_id.append(line[0])
queries.append(line[1])
return queries_id, queries
def run_task(client, cname, query, loop, query_latency):
start_time = time.time()
for i in range(loop):
client.execute(query)
query_latency.append(client.last_query.elapsed)
end_time = time.time()
p95 = np.percentile(query_latency, 95)
print(
"CLIENT: {0} end. -> P95: %f, qps: %f".format(cname)
% (p95, loop / (end_time - start_time))
)
def run_multi_clients(clientN, clientList, query, loop):
client_pids = {}
start_time = time.time()
manager = multiprocessing.Manager()
query_latency_list0 = manager.list()
query_latency_list1 = manager.list()
query_latency_list2 = manager.list()
query_latency_list3 = manager.list()
query_latency_list4 = manager.list()
query_latency_list5 = manager.list()
query_latency_list6 = manager.list()
query_latency_list7 = manager.list()
for c_idx in range(clientN):
client_name = "Role_%d" % c_idx
if c_idx == 0:
client_pids[c_idx] = multiprocessing.Process(
target=run_task,
args=(clientList[c_idx], client_name, query, loop, query_latency_list0),
)
elif c_idx == 1:
client_pids[c_idx] = multiprocessing.Process(
target=run_task,
args=(clientList[c_idx], client_name, query, loop, query_latency_list1),
)
elif c_idx == 2:
client_pids[c_idx] = multiprocessing.Process(
target=run_task,
args=(clientList[c_idx], client_name, query, loop, query_latency_list2),
)
elif c_idx == 3:
client_pids[c_idx] = multiprocessing.Process(
target=run_task,
args=(clientList[c_idx], client_name, query, loop, query_latency_list3),
)
elif c_idx == 4:
client_pids[c_idx] = multiprocessing.Process(
target=run_task,
args=(clientList[c_idx], client_name, query, loop, query_latency_list4),
)
elif c_idx == 5:
client_pids[c_idx] = multiprocessing.Process(
target=run_task,
args=(clientList[c_idx], client_name, query, loop, query_latency_list5),
)
elif c_idx == 6:
client_pids[c_idx] = multiprocessing.Process(
target=run_task,
args=(clientList[c_idx], client_name, query, loop, query_latency_list6),
)
elif c_idx == 7:
client_pids[c_idx] = multiprocessing.Process(
target=run_task,
args=(clientList[c_idx], client_name, query, loop, query_latency_list7),
)
else:
print("ERROR: CLIENT number dismatch!!")
exit()
print("CLIENT: %s start" % client_name)
client_pids[c_idx].start()
for c_idx in range(clientN):
client_pids[c_idx].join()
end_time = time.time()
totalT = end_time - start_time
query_latencyTotal = list()
for item in query_latency_list0:
query_latencyTotal.append(item)
for item in query_latency_list1:
query_latencyTotal.append(item)
for item in query_latency_list2:
query_latencyTotal.append(item)
for item in query_latency_list3:
query_latencyTotal.append(item)
for item in query_latency_list4:
query_latencyTotal.append(item)
for item in query_latency_list5:
query_latencyTotal.append(item)
for item in query_latency_list6:
query_latencyTotal.append(item)
for item in query_latency_list7:
query_latencyTotal.append(item)
totalP95 = np.percentile(query_latencyTotal, 95) * 1000
return totalT, totalP95
def run_task_caculated(client, cname, query, loop):
query_latency = list()
start_time = time.time()
for i in range(loop):
client.execute(query)
query_latency.append(client.last_query.elapsed)
end_time = time.time()
p95 = np.percentile(query_latency, 95)
def run_multi_clients_caculated(clientN, clientList, query, loop):
client_pids = {}
start_time = time.time()
for c_idx in range(clientN):
client_name = "Role_%d" % c_idx
client_pids[c_idx] = multiprocessing.Process(
target=run_task_caculated,
args=(clientList[c_idx], client_name, query, loop),
)
client_pids[c_idx].start()
for c_idx in range(clientN):
client_pids[c_idx].join()
end_time = time.time()
totalT = end_time - start_time
return totalT
if __name__ == "__main__":
client_number = 1
queries = list()
queries_id = list()
if len(sys.argv) != 3:
print(
"usage: python3 client_stressing_test.py [queries_file_path] [client_number]"
)
sys.exit()
else:
queries_list = sys.argv[1]
client_number = int(sys.argv[2])
print(
"queries_file_path: %s, client_number: %d" % (queries_list, client_number)
)
if not os.path.isfile(queries_list) or not os.access(queries_list, os.R_OK):
print("please check the right path for queries file")
sys.exit()
if (
not checkInt(sys.argv[2])
or int(sys.argv[2]) > max_instances_number
or int(sys.argv[2]) < 1
):
print("client_number should be in [1~%d]" % max_instances_number)
sys.exit()
client_list = {}
queries_id, queries = read_queries(queries_list)
for c_idx in range(client_number):
client_list[c_idx] = setup_client(c_idx)
# clear cache
os.system("sync; echo 3 > /proc/sys/vm/drop_caches")
print("###Polit Run Begin")
for i in queries:
warm_client(client_number, client_list, i, 1)
print("###Polit Run End -> Start stressing....")
query_index = 0
for q in queries:
print(
"\n###START -> Index: %d, ID: %s, Query: %s"
% (query_index, queries_id[query_index], q)
)
warm_client(client_number, client_list, q, warmup_runs)
print("###Warm Done!")
for j in range(0, retest_number):
totalT = run_multi_clients_caculated(
client_number, client_list, q, calculated_runs
)
curr_loop = int(seconds * calculated_runs / totalT) + 1
print(
"###Calculation Done! -> loopN: %d, expected seconds:%d"
% (curr_loop, seconds)
)
print("###Stress Running! -> %d iterations......" % curr_loop)
totalT, totalP95 = run_multi_clients(
client_number, client_list, q, curr_loop
)
if totalT > (seconds - retest_tolerance) and totalT < (
seconds + retest_tolerance
):
break
else:
print(
"###totalT:%d is far way from expected seconds:%d. Run again ->j:%d!"
% (totalT, seconds, j)
)
print(
"###Completed! -> ID: %s, clientN: %d, totalT: %.2f s, latencyAVG: %.2f ms, P95: %.2f ms, QPS_Final: %.2f"
% (
queries_id[query_index],
client_number,
totalT,
totalT * 1000 / (curr_loop * client_number),
totalP95,
((curr_loop * client_number) / totalT),
)
)
query_index += 1
print("###Finished!")