mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-18 20:32:43 +00:00
736 lines
22 KiB
C++
736 lines
22 KiB
C++
#include <Common/AsyncLoader.h>
|
|
|
|
#include <base/defines.h>
|
|
#include <Common/ErrorCodes.h>
|
|
#include <Common/Exception.h>
|
|
#include <Common/noexcept_scope.h>
|
|
#include <Common/setThreadName.h>
|
|
#include <Common/logger_useful.h>
|
|
#include <Common/ThreadPool.h>
|
|
|
|
namespace DB
|
|
{
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int ASYNC_LOAD_CYCLE;
|
|
extern const int ASYNC_LOAD_FAILED;
|
|
extern const int ASYNC_LOAD_CANCELED;
|
|
}
|
|
|
|
static constexpr size_t PRINT_MESSAGE_EACH_N_OBJECTS = 256;
|
|
static constexpr size_t PRINT_MESSAGE_EACH_N_SECONDS = 5;
|
|
|
|
void logAboutProgress(Poco::Logger * log, size_t processed, size_t total, AtomicStopwatch & watch)
|
|
{
|
|
if (processed % PRINT_MESSAGE_EACH_N_OBJECTS == 0 || watch.compareAndRestart(PRINT_MESSAGE_EACH_N_SECONDS))
|
|
{
|
|
LOG_INFO(log, "Processed: {}%", processed * 100.0 / total);
|
|
watch.restart();
|
|
}
|
|
}
|
|
|
|
LoadStatus LoadJob::status() const
|
|
{
|
|
std::unique_lock lock{mutex};
|
|
return load_status;
|
|
}
|
|
|
|
std::exception_ptr LoadJob::exception() const
|
|
{
|
|
std::unique_lock lock{mutex};
|
|
return load_exception;
|
|
}
|
|
|
|
size_t LoadJob::executionPool() const
|
|
{
|
|
return execution_pool_id;
|
|
}
|
|
|
|
size_t LoadJob::pool() const
|
|
{
|
|
return pool_id;
|
|
}
|
|
|
|
void LoadJob::wait() const
|
|
{
|
|
std::unique_lock lock{mutex};
|
|
waiters++;
|
|
finished.wait(lock, [this] { return load_status != LoadStatus::PENDING; });
|
|
waiters--;
|
|
if (load_exception)
|
|
std::rethrow_exception(load_exception);
|
|
}
|
|
|
|
void LoadJob::waitNoThrow() const noexcept
|
|
{
|
|
std::unique_lock lock{mutex};
|
|
waiters++;
|
|
finished.wait(lock, [this] { return load_status != LoadStatus::PENDING; });
|
|
waiters--;
|
|
}
|
|
|
|
size_t LoadJob::waitersCount() const
|
|
{
|
|
std::unique_lock lock{mutex};
|
|
return waiters;
|
|
}
|
|
|
|
void LoadJob::ok()
|
|
{
|
|
std::unique_lock lock{mutex};
|
|
load_status = LoadStatus::OK;
|
|
finish();
|
|
}
|
|
|
|
void LoadJob::failed(const std::exception_ptr & ptr)
|
|
{
|
|
std::unique_lock lock{mutex};
|
|
load_status = LoadStatus::FAILED;
|
|
load_exception = ptr;
|
|
finish();
|
|
}
|
|
|
|
void LoadJob::canceled(const std::exception_ptr & ptr)
|
|
{
|
|
std::unique_lock lock{mutex};
|
|
load_status = LoadStatus::CANCELED;
|
|
load_exception = ptr;
|
|
finish();
|
|
}
|
|
|
|
void LoadJob::finish()
|
|
{
|
|
func = {}; // To ensure job function is destructed before `AsyncLoader::wait()` and `LoadJob::wait()` return
|
|
finish_time = std::chrono::system_clock::now();
|
|
if (waiters > 0)
|
|
finished.notify_all();
|
|
}
|
|
|
|
void LoadJob::scheduled()
|
|
{
|
|
schedule_time = std::chrono::system_clock::now();
|
|
}
|
|
|
|
void LoadJob::enqueued()
|
|
{
|
|
if (enqueue_time.load() == TimePoint{}) // Do not rewrite in case of requeue
|
|
enqueue_time = std::chrono::system_clock::now();
|
|
}
|
|
|
|
void LoadJob::execute(size_t pool, const LoadJobPtr & self)
|
|
{
|
|
execution_pool_id = pool;
|
|
start_time = std::chrono::system_clock::now();
|
|
func(self);
|
|
}
|
|
|
|
|
|
LoadTask::LoadTask(AsyncLoader & loader_, LoadJobSet && jobs_, LoadJobSet && goal_jobs_)
|
|
: loader(loader_)
|
|
, jobs(std::move(jobs_))
|
|
, goal_jobs(std::move(goal_jobs_))
|
|
{}
|
|
|
|
LoadTask::~LoadTask()
|
|
{
|
|
remove();
|
|
}
|
|
|
|
void LoadTask::merge(const LoadTaskPtr & task)
|
|
{
|
|
chassert(&loader == &task->loader);
|
|
jobs.merge(task->jobs);
|
|
goal_jobs.merge(task->goal_jobs);
|
|
}
|
|
|
|
void LoadTask::schedule()
|
|
{
|
|
loader.schedule(*this);
|
|
}
|
|
|
|
void LoadTask::remove()
|
|
{
|
|
if (!jobs.empty())
|
|
{
|
|
loader.remove(jobs);
|
|
jobs.clear();
|
|
goal_jobs.clear();
|
|
}
|
|
}
|
|
|
|
void LoadTask::detach()
|
|
{
|
|
jobs.clear();
|
|
goal_jobs.clear();
|
|
}
|
|
|
|
|
|
AsyncLoader::AsyncLoader(std::vector<PoolInitializer> pool_initializers, bool log_failures_, bool log_progress_)
|
|
: log_failures(log_failures_)
|
|
, log_progress(log_progress_)
|
|
, log(&Poco::Logger::get("AsyncLoader"))
|
|
{
|
|
pools.reserve(pool_initializers.size());
|
|
for (auto && init : pool_initializers)
|
|
pools.push_back({
|
|
.name = init.name,
|
|
.priority = init.priority,
|
|
.thread_pool = std::make_unique<ThreadPool>(
|
|
init.metric_threads,
|
|
init.metric_active_threads,
|
|
init.max_threads,
|
|
/* max_free_threads = */ 0,
|
|
init.max_threads),
|
|
.ready_queue = {},
|
|
.max_threads = init.max_threads
|
|
});
|
|
}
|
|
|
|
AsyncLoader::~AsyncLoader()
|
|
{
|
|
stop();
|
|
}
|
|
|
|
void AsyncLoader::start()
|
|
{
|
|
std::unique_lock lock{mutex};
|
|
is_running = true;
|
|
updateCurrentPriorityAndSpawn(lock);
|
|
}
|
|
|
|
void AsyncLoader::wait()
|
|
{
|
|
// Because job can create new jobs in other pools we have to recheck in cycle.
|
|
// Also wait for all workers to finish to avoid races on `pool.workers`,
|
|
// which can decrease even after all jobs are already finished.
|
|
std::unique_lock lock{mutex};
|
|
while (!scheduled_jobs.empty() || hasWorker(lock))
|
|
{
|
|
lock.unlock();
|
|
for (auto & p : pools)
|
|
p.thread_pool->wait();
|
|
lock.lock();
|
|
}
|
|
}
|
|
|
|
void AsyncLoader::stop()
|
|
{
|
|
{
|
|
std::unique_lock lock{mutex};
|
|
is_running = false;
|
|
// NOTE: there is no need to notify because workers never wait
|
|
}
|
|
wait();
|
|
}
|
|
|
|
void AsyncLoader::schedule(LoadTask & task)
|
|
{
|
|
chassert(this == &task.loader);
|
|
scheduleImpl(task.jobs);
|
|
}
|
|
|
|
void AsyncLoader::schedule(const LoadTaskPtr & task)
|
|
{
|
|
chassert(this == &task->loader);
|
|
scheduleImpl(task->jobs);
|
|
}
|
|
|
|
void AsyncLoader::schedule(const std::vector<LoadTaskPtr> & tasks)
|
|
{
|
|
LoadJobSet all_jobs;
|
|
for (const auto & task : tasks)
|
|
{
|
|
chassert(this == &task->loader);
|
|
all_jobs.insert(task->jobs.begin(), task->jobs.end());
|
|
}
|
|
scheduleImpl(all_jobs);
|
|
}
|
|
|
|
void AsyncLoader::scheduleImpl(const LoadJobSet & input_jobs)
|
|
{
|
|
std::unique_lock lock{mutex};
|
|
|
|
// Restart watches after idle period
|
|
if (scheduled_jobs.empty())
|
|
{
|
|
busy_period_start_time = std::chrono::system_clock::now();
|
|
stopwatch.restart();
|
|
old_jobs = finished_jobs.size();
|
|
}
|
|
|
|
// Pass 1. Make set of jobs to schedule:
|
|
// 1) exclude already scheduled or finished jobs
|
|
// 2) include assigned job dependencies (that are not yet scheduled)
|
|
LoadJobSet jobs;
|
|
for (const auto & job : input_jobs)
|
|
gatherNotScheduled(job, jobs, lock);
|
|
|
|
// Ensure scheduled_jobs graph will have no cycles. The only way to get a cycle is to add a cycle, assuming old jobs cannot reference new ones.
|
|
checkCycle(jobs, lock);
|
|
|
|
// We do not want any exception to be throws after this point, because the following code is not exception-safe
|
|
DENY_ALLOCATIONS_IN_SCOPE;
|
|
|
|
// Pass 2. Schedule all incoming jobs
|
|
for (const auto & job : jobs)
|
|
{
|
|
chassert(job->pool() < pools.size());
|
|
NOEXCEPT_SCOPE({
|
|
ALLOW_ALLOCATIONS_IN_SCOPE;
|
|
scheduled_jobs.try_emplace(job);
|
|
job->scheduled();
|
|
});
|
|
}
|
|
|
|
// Pass 3. Process dependencies on scheduled jobs, priority inheritance
|
|
for (const auto & job : jobs)
|
|
{
|
|
Info & info = scheduled_jobs.find(job)->second;
|
|
for (const auto & dep : job->dependencies)
|
|
{
|
|
// Register every dependency on scheduled job with back-link to dependent job
|
|
if (auto dep_info = scheduled_jobs.find(dep); dep_info != scheduled_jobs.end())
|
|
{
|
|
NOEXCEPT_SCOPE({
|
|
ALLOW_ALLOCATIONS_IN_SCOPE;
|
|
dep_info->second.dependent_jobs.insert(job);
|
|
});
|
|
info.dependencies_left++;
|
|
|
|
// Priority inheritance: prioritize deps to have at least given `pool.priority` to avoid priority inversion
|
|
prioritize(dep, job->pool_id, lock);
|
|
}
|
|
}
|
|
|
|
// Enqueue non-blocked jobs (w/o dependencies) to ready queue
|
|
if (!info.isBlocked())
|
|
enqueue(info, job, lock);
|
|
}
|
|
|
|
// Pass 4: Process dependencies on other jobs.
|
|
// It is done in a separate pass to facilitate cancelling due to already failed dependencies.
|
|
for (const auto & job : jobs)
|
|
{
|
|
if (auto info = scheduled_jobs.find(job); info != scheduled_jobs.end())
|
|
{
|
|
for (const auto & dep : job->dependencies)
|
|
{
|
|
if (scheduled_jobs.contains(dep))
|
|
continue; // Skip dependencies on scheduled jobs (already processed in pass 3)
|
|
LoadStatus dep_status = dep->status();
|
|
if (dep_status == LoadStatus::OK)
|
|
continue; // Dependency on already successfully finished job -- it's okay.
|
|
|
|
// Dependency on assigned job -- it's bad.
|
|
// Probably, there is an error in `jobs` set, `gatherNotScheduled()` should have fixed it.
|
|
chassert(dep_status != LoadStatus::PENDING);
|
|
|
|
if (dep_status == LoadStatus::FAILED || dep_status == LoadStatus::CANCELED)
|
|
{
|
|
// Dependency on already failed or canceled job -- it's okay. Cancel all dependent jobs.
|
|
std::exception_ptr e;
|
|
NOEXCEPT_SCOPE({
|
|
ALLOW_ALLOCATIONS_IN_SCOPE;
|
|
e = std::make_exception_ptr(Exception(ErrorCodes::ASYNC_LOAD_CANCELED,
|
|
"Load job '{}' -> {}",
|
|
job->name,
|
|
getExceptionMessage(dep->exception(), /* with_stacktrace = */ false)));
|
|
});
|
|
finish(job, LoadStatus::CANCELED, e, lock);
|
|
break; // This job is now finished, stop its dependencies processing
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Job was already canceled on previous iteration of this cycle -- skip
|
|
}
|
|
}
|
|
}
|
|
|
|
void AsyncLoader::gatherNotScheduled(const LoadJobPtr & job, LoadJobSet & jobs, std::unique_lock<std::mutex> & lock)
|
|
{
|
|
if (job->status() == LoadStatus::PENDING && !scheduled_jobs.contains(job) && !jobs.contains(job))
|
|
{
|
|
jobs.insert(job);
|
|
for (const auto & dep : job->dependencies)
|
|
gatherNotScheduled(dep, jobs, lock);
|
|
}
|
|
}
|
|
|
|
void AsyncLoader::prioritize(const LoadJobPtr & job, size_t new_pool)
|
|
{
|
|
if (!job)
|
|
return;
|
|
chassert(new_pool < pools.size());
|
|
DENY_ALLOCATIONS_IN_SCOPE;
|
|
std::unique_lock lock{mutex};
|
|
prioritize(job, new_pool, lock);
|
|
}
|
|
|
|
void AsyncLoader::remove(const LoadJobSet & jobs)
|
|
{
|
|
DENY_ALLOCATIONS_IN_SCOPE;
|
|
std::unique_lock lock{mutex};
|
|
// On the first pass:
|
|
// - cancel all not executing jobs to avoid races
|
|
// - do not wait executing jobs (otherwise, on unlock a worker could start executing a dependent job, that should be canceled)
|
|
for (const auto & job : jobs)
|
|
{
|
|
if (auto info = scheduled_jobs.find(job); info != scheduled_jobs.end())
|
|
{
|
|
if (info->second.isExecuting())
|
|
continue; // Skip executing jobs on the first pass
|
|
std::exception_ptr e;
|
|
NOEXCEPT_SCOPE({
|
|
ALLOW_ALLOCATIONS_IN_SCOPE;
|
|
e = std::make_exception_ptr(Exception(ErrorCodes::ASYNC_LOAD_CANCELED, "Load job '{}' canceled", job->name));
|
|
});
|
|
finish(job, LoadStatus::CANCELED, e, lock);
|
|
}
|
|
}
|
|
// On the second pass wait for executing jobs to finish
|
|
for (const auto & job : jobs)
|
|
{
|
|
if (auto info = scheduled_jobs.find(job); info != scheduled_jobs.end())
|
|
{
|
|
// Job is currently executing
|
|
chassert(info->second.isExecuting());
|
|
lock.unlock();
|
|
job->waitNoThrow(); // Wait for job to finish
|
|
lock.lock();
|
|
}
|
|
}
|
|
// On the third pass all jobs are finished - remove them all
|
|
// It is better to do it under one lock to avoid exposing intermediate states
|
|
for (const auto & job : jobs)
|
|
{
|
|
size_t erased = finished_jobs.erase(job);
|
|
if (old_jobs >= erased && job->finishTime() != LoadJob::TimePoint{} && job->finishTime() < busy_period_start_time)
|
|
old_jobs -= erased;
|
|
}
|
|
}
|
|
|
|
void AsyncLoader::setMaxThreads(size_t pool, size_t value)
|
|
{
|
|
std::unique_lock lock{mutex};
|
|
auto & p = pools[pool];
|
|
p.thread_pool->setMaxThreads(value);
|
|
p.thread_pool->setQueueSize(value); // Keep queue size equal max threads count to avoid blocking during spawning
|
|
p.max_threads = value;
|
|
if (!is_running)
|
|
return;
|
|
for (size_t i = 0; canSpawnWorker(p, lock) && i < p.ready_queue.size(); i++)
|
|
spawn(p, lock);
|
|
}
|
|
|
|
size_t AsyncLoader::getMaxThreads(size_t pool) const
|
|
{
|
|
std::unique_lock lock{mutex};
|
|
return pools[pool].max_threads;
|
|
}
|
|
|
|
const String & AsyncLoader::getPoolName(size_t pool) const
|
|
{
|
|
return pools[pool].name; // NOTE: lock is not needed because `name` is const and `pools` are immutable
|
|
}
|
|
|
|
Priority AsyncLoader::getPoolPriority(size_t pool) const
|
|
{
|
|
return pools[pool].priority; // NOTE: lock is not needed because `priority` is const and `pools` are immutable
|
|
}
|
|
|
|
|
|
size_t AsyncLoader::getScheduledJobCount() const
|
|
{
|
|
std::unique_lock lock{mutex};
|
|
return scheduled_jobs.size();
|
|
}
|
|
|
|
std::vector<AsyncLoader::JobState> AsyncLoader::getJobStates() const
|
|
{
|
|
std::unique_lock lock{mutex};
|
|
std::multimap<String, JobState> states;
|
|
for (const auto & [job, info] : scheduled_jobs)
|
|
states.emplace(job->name, JobState{
|
|
.job = job,
|
|
.dependencies_left = info.dependencies_left,
|
|
.ready_seqno = info.ready_seqno,
|
|
.is_blocked = info.isBlocked(),
|
|
.is_ready = info.isReady(),
|
|
.is_executing = info.isExecuting()
|
|
});
|
|
for (const auto & job : finished_jobs)
|
|
states.emplace(job->name, JobState{.job = job});
|
|
lock.unlock();
|
|
std::vector<JobState> result;
|
|
for (auto && [_, state] : states)
|
|
result.emplace_back(std::move(state));
|
|
return result;
|
|
}
|
|
|
|
void AsyncLoader::checkCycle(const LoadJobSet & jobs, std::unique_lock<std::mutex> & lock)
|
|
{
|
|
LoadJobSet left = jobs;
|
|
LoadJobSet visited;
|
|
visited.reserve(left.size());
|
|
while (!left.empty())
|
|
{
|
|
LoadJobPtr job = *left.begin();
|
|
checkCycleImpl(job, left, visited, lock);
|
|
}
|
|
}
|
|
|
|
String AsyncLoader::checkCycleImpl(const LoadJobPtr & job, LoadJobSet & left, LoadJobSet & visited, std::unique_lock<std::mutex> & lock)
|
|
{
|
|
if (!left.contains(job))
|
|
return {}; // Do not consider external dependencies and already processed jobs
|
|
if (auto [_, inserted] = visited.insert(job); !inserted)
|
|
{
|
|
visited.erase(job); // Mark where cycle ends
|
|
return job->name;
|
|
}
|
|
for (const auto & dep : job->dependencies)
|
|
{
|
|
if (auto chain = checkCycleImpl(dep, left, visited, lock); !chain.empty())
|
|
{
|
|
if (!visited.contains(job)) // Check for cycle end
|
|
throw Exception(ErrorCodes::ASYNC_LOAD_CYCLE, "Load job dependency cycle detected: {} -> {}", job->name, chain);
|
|
else
|
|
return fmt::format("{} -> {}", job->name, chain); // chain is not a cycle yet -- continue building
|
|
}
|
|
}
|
|
left.erase(job);
|
|
return {};
|
|
}
|
|
|
|
void AsyncLoader::finish(const LoadJobPtr & job, LoadStatus status, std::exception_ptr exception_from_job, std::unique_lock<std::mutex> & lock)
|
|
{
|
|
chassert(scheduled_jobs.contains(job)); // Job was pending
|
|
if (status == LoadStatus::OK)
|
|
{
|
|
// Notify waiters
|
|
job->ok();
|
|
|
|
// Update dependent jobs and enqueue if ready
|
|
for (const auto & dep : scheduled_jobs[job].dependent_jobs)
|
|
{
|
|
chassert(scheduled_jobs.contains(dep)); // All depended jobs must be pending
|
|
Info & dep_info = scheduled_jobs[dep];
|
|
dep_info.dependencies_left--;
|
|
if (!dep_info.isBlocked())
|
|
enqueue(dep_info, dep, lock);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Notify waiters
|
|
if (status == LoadStatus::FAILED)
|
|
job->failed(exception_from_job);
|
|
else if (status == LoadStatus::CANCELED)
|
|
job->canceled(exception_from_job);
|
|
|
|
Info & info = scheduled_jobs[job];
|
|
if (info.isReady())
|
|
{
|
|
pools[job->pool_id].ready_queue.erase(info.ready_seqno);
|
|
info.ready_seqno = 0;
|
|
}
|
|
|
|
// Recurse into all dependent jobs
|
|
LoadJobSet dependent;
|
|
dependent.swap(info.dependent_jobs); // To avoid container modification during recursion
|
|
for (const auto & dep : dependent)
|
|
{
|
|
if (!scheduled_jobs.contains(dep))
|
|
continue; // Job has already been canceled
|
|
std::exception_ptr e;
|
|
NOEXCEPT_SCOPE({
|
|
ALLOW_ALLOCATIONS_IN_SCOPE;
|
|
e = std::make_exception_ptr(
|
|
Exception(ErrorCodes::ASYNC_LOAD_CANCELED,
|
|
"Load job '{}' -> {}",
|
|
dep->name,
|
|
getExceptionMessage(exception_from_job, /* with_stacktrace = */ false)));
|
|
});
|
|
finish(dep, LoadStatus::CANCELED, e, lock);
|
|
}
|
|
|
|
// Clean dependency graph edges pointing to canceled jobs
|
|
for (const auto & dep : job->dependencies)
|
|
if (auto dep_info = scheduled_jobs.find(dep); dep_info != scheduled_jobs.end())
|
|
dep_info->second.dependent_jobs.erase(job);
|
|
}
|
|
|
|
// Job became finished
|
|
scheduled_jobs.erase(job);
|
|
NOEXCEPT_SCOPE({
|
|
ALLOW_ALLOCATIONS_IN_SCOPE;
|
|
finished_jobs.insert(job);
|
|
if (log_progress)
|
|
logAboutProgress(log, finished_jobs.size() - old_jobs, finished_jobs.size() + scheduled_jobs.size() - old_jobs, stopwatch);
|
|
});
|
|
}
|
|
|
|
void AsyncLoader::prioritize(const LoadJobPtr & job, size_t new_pool_id, std::unique_lock<std::mutex> & lock)
|
|
{
|
|
if (auto info = scheduled_jobs.find(job); info != scheduled_jobs.end())
|
|
{
|
|
Pool & old_pool = pools[job->pool_id];
|
|
Pool & new_pool = pools[new_pool_id];
|
|
if (old_pool.priority <= new_pool.priority)
|
|
return; // Never lower priority or change pool leaving the same priority
|
|
|
|
// Update priority and push job forward through ready queue if needed
|
|
UInt64 ready_seqno = info->second.ready_seqno;
|
|
|
|
// Requeue job into the new pool queue without allocations
|
|
if (ready_seqno)
|
|
{
|
|
new_pool.ready_queue.insert(old_pool.ready_queue.extract(ready_seqno));
|
|
if (canSpawnWorker(new_pool, lock))
|
|
spawn(new_pool, lock);
|
|
}
|
|
|
|
// Set user-facing pool (may affect executing jobs)
|
|
job->pool_id.store(new_pool_id);
|
|
|
|
// Recurse into dependencies
|
|
for (const auto & dep : job->dependencies)
|
|
prioritize(dep, new_pool_id, lock);
|
|
}
|
|
}
|
|
|
|
void AsyncLoader::enqueue(Info & info, const LoadJobPtr & job, std::unique_lock<std::mutex> & lock)
|
|
{
|
|
chassert(!info.isBlocked());
|
|
chassert(info.ready_seqno == 0);
|
|
info.ready_seqno = ++last_ready_seqno;
|
|
Pool & pool = pools[job->pool_id];
|
|
NOEXCEPT_SCOPE({
|
|
ALLOW_ALLOCATIONS_IN_SCOPE;
|
|
pool.ready_queue.emplace(info.ready_seqno, job);
|
|
});
|
|
|
|
job->enqueued();
|
|
|
|
if (canSpawnWorker(pool, lock))
|
|
spawn(pool, lock);
|
|
}
|
|
|
|
bool AsyncLoader::canSpawnWorker(Pool & pool, std::unique_lock<std::mutex> &)
|
|
{
|
|
return is_running
|
|
&& !pool.ready_queue.empty()
|
|
&& pool.workers < pool.max_threads
|
|
&& (!current_priority || *current_priority >= pool.priority);
|
|
}
|
|
|
|
bool AsyncLoader::canWorkerLive(Pool & pool, std::unique_lock<std::mutex> &)
|
|
{
|
|
return is_running
|
|
&& !pool.ready_queue.empty()
|
|
&& pool.workers <= pool.max_threads
|
|
&& (!current_priority || *current_priority >= pool.priority);
|
|
}
|
|
|
|
void AsyncLoader::updateCurrentPriorityAndSpawn(std::unique_lock<std::mutex> & lock)
|
|
{
|
|
// Find current priority.
|
|
// NOTE: We assume low number of pools, so O(N) scans are fine.
|
|
std::optional<Priority> priority;
|
|
for (Pool & pool : pools)
|
|
{
|
|
if (pool.isActive() && (!priority || *priority > pool.priority))
|
|
priority = pool.priority;
|
|
}
|
|
current_priority = priority;
|
|
|
|
// Spawn workers in all pools with current priority
|
|
for (Pool & pool : pools)
|
|
{
|
|
for (size_t i = 0; canSpawnWorker(pool, lock) && i < pool.ready_queue.size(); i++)
|
|
spawn(pool, lock);
|
|
}
|
|
}
|
|
|
|
void AsyncLoader::spawn(Pool & pool, std::unique_lock<std::mutex> &)
|
|
{
|
|
pool.workers++;
|
|
current_priority = pool.priority; // canSpawnWorker() ensures this would not decrease current_priority
|
|
NOEXCEPT_SCOPE({
|
|
ALLOW_ALLOCATIONS_IN_SCOPE;
|
|
pool.thread_pool->scheduleOrThrowOnError([this, &pool] { worker(pool); });
|
|
});
|
|
}
|
|
|
|
void AsyncLoader::worker(Pool & pool)
|
|
{
|
|
DENY_ALLOCATIONS_IN_SCOPE;
|
|
|
|
size_t pool_id = &pool - &*pools.begin();
|
|
LoadJobPtr job;
|
|
std::exception_ptr exception_from_job;
|
|
while (true)
|
|
{
|
|
// This is inside the loop to also reset previous thread names set inside the jobs
|
|
setThreadName(pool.name.c_str());
|
|
|
|
{
|
|
std::unique_lock lock{mutex};
|
|
|
|
// Handle just executed job
|
|
if (exception_from_job)
|
|
finish(job, LoadStatus::FAILED, exception_from_job, lock);
|
|
else if (job)
|
|
finish(job, LoadStatus::OK, {}, lock);
|
|
|
|
if (!canWorkerLive(pool, lock))
|
|
{
|
|
if (--pool.workers == 0)
|
|
updateCurrentPriorityAndSpawn(lock); // It will spawn lower priority workers if needed
|
|
return;
|
|
}
|
|
|
|
// Take next job to be executed from the ready queue
|
|
auto it = pool.ready_queue.begin();
|
|
job = it->second;
|
|
pool.ready_queue.erase(it);
|
|
scheduled_jobs.find(job)->second.ready_seqno = 0; // This job is no longer in the ready queue
|
|
}
|
|
|
|
ALLOW_ALLOCATIONS_IN_SCOPE;
|
|
|
|
try
|
|
{
|
|
job->execute(pool_id, job);
|
|
exception_from_job = {};
|
|
}
|
|
catch (...)
|
|
{
|
|
NOEXCEPT_SCOPE({
|
|
if (log_failures)
|
|
tryLogCurrentException(__PRETTY_FUNCTION__);
|
|
exception_from_job = std::make_exception_ptr(
|
|
Exception(ErrorCodes::ASYNC_LOAD_FAILED,
|
|
"Load job '{}' failed: {}",
|
|
job->name,
|
|
getCurrentExceptionMessage(/* with_stacktrace = */ true)));
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
bool AsyncLoader::hasWorker(std::unique_lock<std::mutex> &) const
|
|
{
|
|
for (const Pool & pool : pools)
|
|
{
|
|
if (pool.workers > 0)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
}
|