mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-16 11:22:12 +00:00
df73c75456
- enable_if is usually regarded as fragile and unreadable - C++20 concepts are much easier to read and produce more expressive error messages - this is follow-up to PR #35347 but this time most of the remaining and more complex usages of enable_if in the codebase were replaced.
706 lines
23 KiB
C++
706 lines
23 KiB
C++
#pragma once
|
|
|
|
#include <base/defines.h>
|
|
#include <base/sort.h>
|
|
|
|
#include <vector>
|
|
#include <utility>
|
|
|
|
|
|
namespace DB
|
|
{
|
|
|
|
/** Structure that holds closed interval with left and right.
|
|
* Interval left must be less than interval right.
|
|
* Example: [1, 1] is valid interval, that contain point 1.
|
|
*/
|
|
template <typename TIntervalStorageType>
|
|
struct Interval
|
|
{
|
|
using IntervalStorageType = TIntervalStorageType;
|
|
IntervalStorageType left;
|
|
IntervalStorageType right;
|
|
|
|
Interval(IntervalStorageType left_, IntervalStorageType right_) : left(left_), right(right_) { }
|
|
|
|
inline bool contains(IntervalStorageType point) const { return left <= point && point <= right; }
|
|
};
|
|
|
|
template <typename IntervalStorageType>
|
|
bool operator<(const Interval<IntervalStorageType> & lhs, const Interval<IntervalStorageType> & rhs)
|
|
{
|
|
return std::tie(lhs.left, lhs.right) < std::tie(rhs.left, rhs.right);
|
|
}
|
|
|
|
template <typename IntervalStorageType>
|
|
bool operator<=(const Interval<IntervalStorageType> & lhs, const Interval<IntervalStorageType> & rhs)
|
|
{
|
|
return std::tie(lhs.left, lhs.right) <= std::tie(rhs.left, rhs.right);
|
|
}
|
|
|
|
template <typename IntervalStorageType>
|
|
bool operator==(const Interval<IntervalStorageType> & lhs, const Interval<IntervalStorageType> & rhs)
|
|
{
|
|
return std::tie(lhs.left, lhs.right) == std::tie(rhs.left, rhs.right);
|
|
}
|
|
|
|
template <typename IntervalStorageType>
|
|
bool operator!=(const Interval<IntervalStorageType> & lhs, const Interval<IntervalStorageType> & rhs)
|
|
{
|
|
return std::tie(lhs.left, lhs.right) != std::tie(rhs.left, rhs.right);
|
|
}
|
|
|
|
template <typename IntervalStorageType>
|
|
bool operator>(const Interval<IntervalStorageType> & lhs, const Interval<IntervalStorageType> & rhs)
|
|
{
|
|
return std::tie(lhs.left, lhs.right) > std::tie(rhs.left, rhs.right);
|
|
}
|
|
|
|
template <typename IntervalStorageType>
|
|
bool operator>=(const Interval<IntervalStorageType> & lhs, const Interval<IntervalStorageType> & rhs)
|
|
{
|
|
return std::tie(lhs.left, lhs.right) >= std::tie(rhs.left, rhs.right);
|
|
}
|
|
|
|
struct IntervalTreeVoidValue
|
|
{
|
|
};
|
|
|
|
/** Tree structure that allow to efficiently retrieve all intervals that intersect specific point.
|
|
* https://en.wikipedia.org/wiki/Interval_tree
|
|
*
|
|
* Search for all intervals intersecting point has complexity O(log(n) + k), k is count of intervals that intersect point.
|
|
* If we need to only check if there are some interval intersecting point such operation has complexity O(log(n)).
|
|
*
|
|
* There is invariant that interval left must be less than interval right, otherwise such interval could not contain any point.
|
|
* If that invariant is broken, inserting such interval in IntervalTree will return false.
|
|
*
|
|
* Explanation:
|
|
*
|
|
* IntervalTree structure is balanced tree. Each node contains:
|
|
* 1. Point
|
|
* 2. Intervals sorted by left ascending that intersect that point.
|
|
* 3. Intervals sorted by right descending that intersect that point.
|
|
*
|
|
* Build:
|
|
*
|
|
* To keep tree relatively balanced we can use median of all segment points.
|
|
* On each step build tree node with intervals. For root node input intervals are all intervals.
|
|
* First split intervals in 4 groups.
|
|
* 1. Intervals that lie that are less than median point. Interval right is less than median point.
|
|
* 2. Intervals that lie that are greater than median point. Interval right is less than median point.
|
|
* 3. Intervals that intersect node sorted by left ascending.
|
|
* 4. Intervals that intersect node sorted by right descending.
|
|
*
|
|
* If intervals in 1 group are not empty. Continue build left child recursively with intervals from 1 group.
|
|
* If intervals in 2 group are not empty. Continue build right child recursively with intervals from 2 group.
|
|
*
|
|
* Search:
|
|
*
|
|
* Search for intervals intersecting point is started from root node.
|
|
* If search point is less than point in node, then we check intervals sorted by left ascending
|
|
* until left is greater than search point.
|
|
* If there is left child, continue search recursively in left child.
|
|
*
|
|
* If search point is greater than point in node, then we check intervals sorted by right descending
|
|
* until right is less than search point.
|
|
* If there is right child, continue search recursively in right child.
|
|
*
|
|
* If search point is equal to point in node, then we can emit all intervals that intersect current tree node
|
|
* and stop searching.
|
|
*
|
|
* Additional details:
|
|
* 1. To improve cache locality tree is stored implicitly in array, after build method is called
|
|
* other intervals cannot be added to the tree.
|
|
* 2. Additionally to improve cache locality in tree node we store sorted intervals for all nodes in separate
|
|
* array. In node we store only start of its sorted intervals, and also size of intersecting intervals.
|
|
* If we need to retrieve intervals sorted by left ascending they will be stored in indexes
|
|
* [sorted_intervals_start_index, sorted_intervals_start_index + intersecting_intervals_size).
|
|
* If we need to retrieve intervals sorted by right descending they will be store in indexes
|
|
* [sorted_intervals_start_index + intersecting_intervals_size, sorted_intervals_start_index + intersecting_intervals_size * 2).
|
|
*/
|
|
template <typename Interval, typename Value>
|
|
class IntervalTree
|
|
{
|
|
public:
|
|
using IntervalStorageType = typename Interval::IntervalStorageType;
|
|
|
|
static constexpr bool is_empty_value = std::is_same_v<Value, IntervalTreeVoidValue>;
|
|
|
|
IntervalTree() { nodes.resize(1); }
|
|
|
|
template <typename TValue = Value>
|
|
requires std::is_same_v<Value, IntervalTreeVoidValue>
|
|
ALWAYS_INLINE bool emplace(Interval interval)
|
|
{
|
|
assert(!tree_is_built);
|
|
if (unlikely(interval.left > interval.right))
|
|
return false;
|
|
|
|
sorted_intervals.emplace_back(interval);
|
|
increaseIntervalsSize();
|
|
|
|
return true;
|
|
}
|
|
|
|
template <typename TValue = Value, std::enable_if_t<!std::is_same_v<TValue, IntervalTreeVoidValue>, bool> = true, typename... Args>
|
|
ALWAYS_INLINE bool emplace(Interval interval, Args &&... args)
|
|
{
|
|
assert(!tree_is_built);
|
|
if (unlikely(interval.left > interval.right))
|
|
return false;
|
|
|
|
sorted_intervals.emplace_back(
|
|
std::piecewise_construct, std::forward_as_tuple(interval), std::forward_as_tuple(std::forward<Args>(args)...));
|
|
increaseIntervalsSize();
|
|
|
|
return true;
|
|
}
|
|
|
|
template <typename TValue = Value>
|
|
requires std::is_same_v<TValue, IntervalTreeVoidValue>
|
|
bool insert(Interval interval)
|
|
{
|
|
return emplace(interval);
|
|
}
|
|
|
|
template <typename TValue = Value>
|
|
requires (!std::is_same_v<TValue, IntervalTreeVoidValue>)
|
|
bool insert(Interval interval, const Value & value)
|
|
{
|
|
return emplace(interval, value);
|
|
}
|
|
|
|
template <typename TValue = Value>
|
|
requires (!std::is_same_v<TValue, IntervalTreeVoidValue>)
|
|
bool insert(Interval interval, Value && value)
|
|
{
|
|
return emplace(interval, std::move(value));
|
|
}
|
|
|
|
/// Build tree, after that intervals cannot be inserted, and only search or iteration can be performed.
|
|
void build()
|
|
{
|
|
assert(!tree_is_built);
|
|
nodes.clear();
|
|
nodes.reserve(sorted_intervals.size());
|
|
buildTree();
|
|
tree_is_built = true;
|
|
}
|
|
|
|
/** Find all intervals intersecting point.
|
|
*
|
|
* Callback interface for IntervalSet:
|
|
*
|
|
* template <typename IntervalType>
|
|
* struct IntervalSetCallback
|
|
* {
|
|
* bool operator()(const IntervalType & interval)
|
|
* {
|
|
* bool should_continue_interval_iteration = false;
|
|
* return should_continue_interval_iteration;
|
|
* }
|
|
* };
|
|
*
|
|
* Callback interface for IntervalMap:
|
|
*
|
|
* template <typename IntervalType, typename Value>
|
|
* struct IntervalMapCallback
|
|
* {
|
|
* bool operator()(const IntervalType & interval, const Value & value)
|
|
* {
|
|
* bool should_continue_interval_iteration = false;
|
|
* return should_continue_interval_iteration;
|
|
* }
|
|
* };
|
|
*/
|
|
|
|
template <typename IntervalCallback>
|
|
void find(IntervalStorageType point, IntervalCallback && callback) const
|
|
{
|
|
if (unlikely(!tree_is_built))
|
|
{
|
|
findIntervalsNonConstructedImpl(point, callback);
|
|
return;
|
|
}
|
|
|
|
findIntervalsImpl(point, callback);
|
|
}
|
|
|
|
/// Check if there is an interval intersecting point
|
|
bool has(IntervalStorageType point) const
|
|
{
|
|
bool has_intervals = false;
|
|
|
|
if constexpr (is_empty_value)
|
|
{
|
|
find(point, [&](auto &)
|
|
{
|
|
has_intervals = true;
|
|
return false;
|
|
});
|
|
}
|
|
else
|
|
{
|
|
find(point, [&](auto &, auto &)
|
|
{
|
|
has_intervals = true;
|
|
return false;
|
|
});
|
|
}
|
|
|
|
return has_intervals;
|
|
}
|
|
|
|
class Iterator;
|
|
using iterator = Iterator;
|
|
using const_iterator = Iterator;
|
|
|
|
iterator begin()
|
|
{
|
|
size_t start_index = findFirstIteratorNodeIndex();
|
|
return Iterator(start_index, 0, this);
|
|
}
|
|
|
|
iterator end()
|
|
{
|
|
size_t end_index = findLastIteratorNodeIndex();
|
|
size_t last_interval_index = 0;
|
|
|
|
if (likely(end_index < nodes.size()))
|
|
last_interval_index = nodes[end_index].sorted_intervals_range_size;
|
|
|
|
return Iterator(end_index, last_interval_index, this);
|
|
}
|
|
|
|
const_iterator begin() const
|
|
{
|
|
size_t start_index = findFirstIteratorNodeIndex();
|
|
return Iterator(start_index, 0, this);
|
|
}
|
|
|
|
const_iterator end() const
|
|
{
|
|
size_t end_index = findLastIteratorNodeIndex();
|
|
size_t last_interval_index = 0;
|
|
|
|
if (likely(end_index < nodes.size()))
|
|
last_interval_index = nodes[end_index].sorted_intervals_range_size;
|
|
|
|
return Iterator(end_index, last_interval_index, this);
|
|
}
|
|
|
|
const_iterator cbegin() const { return begin(); }
|
|
|
|
const_iterator cend() const { return end(); }
|
|
|
|
size_t getIntervalsSize() const { return intervals_size; }
|
|
|
|
size_t getSizeInBytes() const
|
|
{
|
|
size_t nodes_size_in_bytes = nodes.size() * sizeof(Node);
|
|
size_t intervals_size_in_bytes = sorted_intervals.size() * sizeof(IntervalWithValue);
|
|
size_t result = nodes_size_in_bytes + intervals_size_in_bytes;
|
|
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
struct Node
|
|
{
|
|
size_t sorted_intervals_range_start_index;
|
|
size_t sorted_intervals_range_size;
|
|
|
|
IntervalStorageType middle_element;
|
|
|
|
inline bool hasValue() const { return sorted_intervals_range_size != 0; }
|
|
};
|
|
|
|
using IntervalWithEmptyValue = Interval;
|
|
using IntervalWithNonEmptyValue = std::pair<Interval, Value>;
|
|
|
|
using IntervalWithValue = std::conditional_t<is_empty_value, IntervalWithEmptyValue, IntervalWithNonEmptyValue>;
|
|
|
|
public:
|
|
class Iterator
|
|
{
|
|
public:
|
|
bool operator==(const Iterator & rhs) const
|
|
{
|
|
return node_index == rhs.node_index && current_interval_index == rhs.current_interval_index && tree == rhs.tree;
|
|
}
|
|
|
|
bool operator!=(const Iterator & rhs) const { return !(*this == rhs); }
|
|
|
|
const IntervalWithValue & operator*() { return getCurrentValue(); }
|
|
|
|
const IntervalWithValue & operator*() const { return getCurrentValue(); }
|
|
|
|
const IntervalWithValue * operator->() { return &getCurrentValue(); }
|
|
|
|
const IntervalWithValue * operator->() const { return &getCurrentValue(); }
|
|
|
|
Iterator & operator++()
|
|
{
|
|
iterateToNext();
|
|
return *this;
|
|
}
|
|
|
|
Iterator operator++(int) // NOLINT
|
|
{
|
|
Iterator copy(*this);
|
|
iterateToNext();
|
|
return copy;
|
|
}
|
|
|
|
Iterator & operator--()
|
|
{
|
|
iterateToPrevious();
|
|
return *this;
|
|
}
|
|
|
|
Iterator operator--(int) // NOLINT
|
|
{
|
|
Iterator copy(*this);
|
|
iterateToPrevious();
|
|
return copy;
|
|
}
|
|
|
|
private:
|
|
friend class IntervalTree;
|
|
|
|
Iterator(size_t node_index_, size_t current_interval_index_, const IntervalTree * tree_)
|
|
: node_index(node_index_), current_interval_index(current_interval_index_), tree(tree_)
|
|
{
|
|
}
|
|
|
|
size_t node_index;
|
|
size_t current_interval_index;
|
|
const IntervalTree * tree;
|
|
|
|
void iterateToNext()
|
|
{
|
|
size_t nodes_size = tree->nodes.size();
|
|
auto & current_node = tree->nodes[node_index];
|
|
|
|
++current_interval_index;
|
|
|
|
if (current_interval_index < current_node.sorted_intervals_range_size)
|
|
return;
|
|
|
|
size_t node_index_copy = node_index + 1;
|
|
for (; node_index_copy < nodes_size; ++node_index_copy)
|
|
{
|
|
auto & node = tree->nodes[node_index_copy];
|
|
|
|
if (node.hasValue())
|
|
{
|
|
node_index = node_index_copy;
|
|
current_interval_index = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void iterateToPrevious()
|
|
{
|
|
if (current_interval_index > 0)
|
|
{
|
|
--current_interval_index;
|
|
return;
|
|
}
|
|
|
|
while (node_index > 0)
|
|
{
|
|
auto & node = tree->nodes[node_index - 1];
|
|
if (node.hasValue())
|
|
{
|
|
current_interval_index = node.sorted_intervals_range_size - 1;
|
|
break;
|
|
}
|
|
|
|
--node_index;
|
|
}
|
|
}
|
|
|
|
const IntervalWithValue & getCurrentValue() const
|
|
{
|
|
auto & current_node = tree->nodes[node_index];
|
|
size_t interval_index = current_node.sorted_intervals_range_start_index + current_interval_index;
|
|
return tree->sorted_intervals[interval_index];
|
|
}
|
|
};
|
|
|
|
private:
|
|
void buildTree()
|
|
{
|
|
std::vector<IntervalStorageType> temporary_points_storage;
|
|
temporary_points_storage.reserve(sorted_intervals.size() * 2);
|
|
|
|
std::vector<IntervalWithValue> left_intervals;
|
|
std::vector<IntervalWithValue> right_intervals;
|
|
std::vector<IntervalWithValue> intervals_sorted_by_left_asc;
|
|
std::vector<IntervalWithValue> intervals_sorted_by_right_desc;
|
|
|
|
struct StackFrame
|
|
{
|
|
size_t index;
|
|
std::vector<IntervalWithValue> intervals;
|
|
};
|
|
|
|
std::vector<StackFrame> stack;
|
|
stack.emplace_back(StackFrame{0, std::move(sorted_intervals)});
|
|
sorted_intervals.clear();
|
|
|
|
while (!stack.empty())
|
|
{
|
|
auto frame = std::move(stack.back());
|
|
stack.pop_back();
|
|
|
|
size_t current_index = frame.index;
|
|
auto & current_intervals = frame.intervals;
|
|
|
|
if (current_intervals.empty())
|
|
continue;
|
|
|
|
if (current_index >= nodes.size())
|
|
nodes.resize(current_index + 1);
|
|
|
|
temporary_points_storage.clear();
|
|
intervalsToPoints(current_intervals, temporary_points_storage);
|
|
auto median = pointsMedian(temporary_points_storage);
|
|
|
|
left_intervals.clear();
|
|
right_intervals.clear();
|
|
intervals_sorted_by_left_asc.clear();
|
|
intervals_sorted_by_right_desc.clear();
|
|
|
|
for (const auto & interval_with_value : current_intervals)
|
|
{
|
|
auto & interval = getInterval(interval_with_value);
|
|
|
|
if (interval.right < median)
|
|
{
|
|
left_intervals.emplace_back(interval_with_value);
|
|
}
|
|
else if (interval.left > median)
|
|
{
|
|
right_intervals.emplace_back(interval_with_value);
|
|
}
|
|
else
|
|
{
|
|
intervals_sorted_by_left_asc.emplace_back(interval_with_value);
|
|
intervals_sorted_by_right_desc.emplace_back(interval_with_value);
|
|
}
|
|
}
|
|
|
|
::sort(intervals_sorted_by_left_asc.begin(), intervals_sorted_by_left_asc.end(), [](auto & lhs, auto & rhs)
|
|
{
|
|
auto & lhs_interval = getInterval(lhs);
|
|
auto & rhs_interval = getInterval(rhs);
|
|
return lhs_interval.left < rhs_interval.left;
|
|
});
|
|
|
|
::sort(intervals_sorted_by_right_desc.begin(), intervals_sorted_by_right_desc.end(), [](auto & lhs, auto & rhs)
|
|
{
|
|
auto & lhs_interval = getInterval(lhs);
|
|
auto & rhs_interval = getInterval(rhs);
|
|
return lhs_interval.right > rhs_interval.right;
|
|
});
|
|
|
|
size_t sorted_intervals_range_start_index = sorted_intervals.size();
|
|
|
|
for (auto && interval_sorted_by_left_asc : intervals_sorted_by_left_asc)
|
|
sorted_intervals.emplace_back(std::move(interval_sorted_by_left_asc));
|
|
|
|
for (auto && interval_sorted_by_right_desc : intervals_sorted_by_right_desc)
|
|
sorted_intervals.emplace_back(std::move(interval_sorted_by_right_desc));
|
|
|
|
auto & node = nodes[current_index];
|
|
node.middle_element = median;
|
|
node.sorted_intervals_range_start_index = sorted_intervals_range_start_index;
|
|
node.sorted_intervals_range_size = intervals_sorted_by_left_asc.size();
|
|
|
|
size_t left_child_index = current_index * 2 + 1;
|
|
stack.emplace_back(StackFrame{left_child_index, std::move(left_intervals)});
|
|
|
|
size_t right_child_index = current_index * 2 + 2;
|
|
stack.emplace_back(StackFrame{right_child_index, std::move(right_intervals)});
|
|
}
|
|
}
|
|
|
|
template <typename IntervalCallback>
|
|
void findIntervalsImpl(IntervalStorageType point, IntervalCallback && callback) const
|
|
{
|
|
size_t current_index = 0;
|
|
|
|
while (true)
|
|
{
|
|
if (current_index >= nodes.size())
|
|
break;
|
|
|
|
auto & node = nodes[current_index];
|
|
if (!node.hasValue())
|
|
break;
|
|
|
|
auto middle_element = node.middle_element;
|
|
|
|
if (point < middle_element)
|
|
{
|
|
size_t start = node.sorted_intervals_range_start_index;
|
|
size_t end = start + node.sorted_intervals_range_size;
|
|
|
|
for (; start != end; ++start)
|
|
{
|
|
auto & interval_with_value_left_sorted_asc = sorted_intervals[start];
|
|
auto & interval_left_sorted_asc = getInterval(interval_with_value_left_sorted_asc);
|
|
if (interval_left_sorted_asc.left > point)
|
|
break;
|
|
|
|
bool should_continue = callCallback(interval_with_value_left_sorted_asc, callback);
|
|
if (unlikely(!should_continue))
|
|
return;
|
|
}
|
|
|
|
size_t left_child_index = current_index * 2 + 1;
|
|
current_index = left_child_index;
|
|
}
|
|
else
|
|
{
|
|
size_t start = node.sorted_intervals_range_start_index + node.sorted_intervals_range_size;
|
|
size_t end = start + node.sorted_intervals_range_size;
|
|
|
|
for (; start != end; ++start)
|
|
{
|
|
auto & interval_with_value_right_sorted_desc = sorted_intervals[start];
|
|
auto & interval_right_sorted_desc = getInterval(interval_with_value_right_sorted_desc);
|
|
if (interval_right_sorted_desc.right < point)
|
|
break;
|
|
|
|
bool should_continue = callCallback(interval_with_value_right_sorted_desc, callback);
|
|
if (unlikely(!should_continue))
|
|
return;
|
|
}
|
|
|
|
if (likely(point > middle_element))
|
|
{
|
|
size_t right_child_index = current_index * 2 + 2;
|
|
current_index = right_child_index;
|
|
}
|
|
else
|
|
{
|
|
/// This is case when point == middle_element.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename IntervalCallback>
|
|
void findIntervalsNonConstructedImpl(IntervalStorageType point, IntervalCallback && callback) const
|
|
{
|
|
for (auto & interval_with_value : sorted_intervals)
|
|
{
|
|
auto & interval = getInterval(interval_with_value);
|
|
|
|
if (interval.contains(point))
|
|
callCallback(interval_with_value, callback);
|
|
}
|
|
}
|
|
|
|
inline size_t findFirstIteratorNodeIndex() const
|
|
{
|
|
size_t nodes_size = nodes.size();
|
|
size_t result_index = 0;
|
|
|
|
for (; result_index < nodes_size; ++result_index)
|
|
{
|
|
if (nodes[result_index].hasValue())
|
|
break;
|
|
}
|
|
|
|
if (unlikely(result_index == nodes_size))
|
|
result_index = 0;
|
|
|
|
return result_index;
|
|
}
|
|
|
|
inline size_t findLastIteratorNodeIndex() const
|
|
{
|
|
if (unlikely(nodes.empty()))
|
|
return 0;
|
|
|
|
size_t nodes_size = nodes.size();
|
|
size_t result_index = nodes_size - 1;
|
|
for (; result_index != 0; --result_index)
|
|
{
|
|
if (nodes[result_index].hasValue())
|
|
break;
|
|
}
|
|
|
|
return result_index;
|
|
}
|
|
|
|
inline void increaseIntervalsSize()
|
|
{
|
|
/// Before tree is build we store all intervals size in our first node to allow tree iteration.
|
|
++intervals_size;
|
|
nodes[0].sorted_intervals_range_size = intervals_size;
|
|
}
|
|
|
|
std::vector<Node> nodes;
|
|
std::vector<IntervalWithValue> sorted_intervals;
|
|
size_t intervals_size = 0;
|
|
bool tree_is_built = false;
|
|
|
|
static inline const Interval & getInterval(const IntervalWithValue & interval_with_value)
|
|
{
|
|
if constexpr (is_empty_value)
|
|
return interval_with_value;
|
|
else
|
|
return interval_with_value.first;
|
|
}
|
|
|
|
template <typename IntervalCallback>
|
|
static inline bool callCallback(const IntervalWithValue & interval, IntervalCallback && callback)
|
|
{
|
|
if constexpr (is_empty_value)
|
|
return callback(interval);
|
|
else
|
|
return callback(interval.first, interval.second);
|
|
}
|
|
|
|
static inline void
|
|
intervalsToPoints(const std::vector<IntervalWithValue> & intervals, std::vector<IntervalStorageType> & temporary_points_storage)
|
|
{
|
|
for (const auto & interval_with_value : intervals)
|
|
{
|
|
auto & interval = getInterval(interval_with_value);
|
|
temporary_points_storage.emplace_back(interval.left);
|
|
temporary_points_storage.emplace_back(interval.right);
|
|
}
|
|
}
|
|
|
|
static inline IntervalStorageType pointsMedian(std::vector<IntervalStorageType> & points)
|
|
{
|
|
size_t size = points.size();
|
|
size_t middle_element_index = size / 2;
|
|
|
|
::nth_element(points.begin(), points.begin() + middle_element_index, points.end());
|
|
|
|
/** We should not get median as average of middle_element_index and middle_element_index - 1
|
|
* because we want point in node to intersect some interval.
|
|
* Example: Intervals [1, 1], [3, 3]. If we choose 2 as average point, it does not intersect any interval.
|
|
*/
|
|
return points[middle_element_index];
|
|
}
|
|
};
|
|
|
|
template <typename IntervalType>
|
|
using IntervalSet = IntervalTree<IntervalType, IntervalTreeVoidValue>;
|
|
|
|
template <typename IntervalType, typename Value>
|
|
using IntervalMap = IntervalTree<IntervalType, Value>;
|
|
|
|
}
|