ClickHouse/src/Storages/MergeTree/MergeTreeDataPartWriterCompact.cpp

372 lines
14 KiB
C++

#include <Storages/MergeTree/MergeTreeDataPartWriterCompact.h>
#include <Storages/MergeTree/MergeTreeDataPartCompact.h>
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
}
MergeTreeDataPartWriterCompact::MergeTreeDataPartWriterCompact(
const MergeTreeData::DataPartPtr & data_part_,
const NamesAndTypesList & columns_list_,
const StorageMetadataPtr & metadata_snapshot_,
const std::vector<MergeTreeIndexPtr> & indices_to_recalc_,
const String & marks_file_extension_,
const CompressionCodecPtr & default_codec_,
const MergeTreeWriterSettings & settings_,
const MergeTreeIndexGranularity & index_granularity_)
: MergeTreeDataPartWriterOnDisk(data_part_, columns_list_, metadata_snapshot_,
indices_to_recalc_, marks_file_extension_,
default_codec_, settings_, index_granularity_)
, plain_file(data_part->volume->getDisk()->writeFile(
part_path + MergeTreeDataPartCompact::DATA_FILE_NAME_WITH_EXTENSION,
settings.max_compress_block_size,
WriteMode::Rewrite))
, plain_hashing(*plain_file)
, marks_file(data_part->volume->getDisk()->writeFile(
part_path + MergeTreeDataPartCompact::DATA_FILE_NAME + marks_file_extension_,
4096,
WriteMode::Rewrite))
, marks(*marks_file)
{
const auto & storage_columns = metadata_snapshot->getColumns();
for (const auto & column : columns_list)
addStreams(column, storage_columns.getCodecDescOrDefault(column.name, default_codec));
}
void MergeTreeDataPartWriterCompact::addStreams(const NameAndTypePair & column, const ASTPtr & effective_codec_desc)
{
ISerialization::StreamCallback callback = [&](const auto & substream_path)
{
assert(!substream_path.empty());
String stream_name = ISerialization::getFileNameForStream(column, substream_path);
/// Shared offsets for Nested type.
if (compressed_streams.count(stream_name))
return;
const auto & subtype = substream_path.back().data.type;
CompressionCodecPtr compression_codec;
/// If we can use special codec than just get it
if (ISerialization::isSpecialCompressionAllowed(substream_path))
compression_codec = CompressionCodecFactory::instance().get(effective_codec_desc, subtype.get(), default_codec);
else /// otherwise return only generic codecs and don't use info about data_type
compression_codec = CompressionCodecFactory::instance().get(effective_codec_desc, nullptr, default_codec, true);
UInt64 codec_id = compression_codec->getHash();
auto & stream = streams_by_codec[codec_id];
if (!stream)
stream = std::make_shared<CompressedStream>(plain_hashing, compression_codec);
compressed_streams.emplace(stream_name, stream);
};
ISerialization::SubstreamPath path;
serializations[column.name]->enumerateStreams(path, callback, column.type, nullptr);
}
namespace
{
/// Get granules for block using index_granularity
Granules getGranulesToWrite(const MergeTreeIndexGranularity & index_granularity, size_t block_rows, size_t current_mark, bool last_block)
{
if (current_mark >= index_granularity.getMarksCount())
throw Exception(ErrorCodes::LOGICAL_ERROR, "Request to get granules from mark {} but index granularity size is {}", current_mark, index_granularity.getMarksCount());
Granules result;
size_t current_row = 0;
while (current_row < block_rows)
{
size_t expected_rows_in_mark = index_granularity.getMarkRows(current_mark);
size_t rows_left_in_block = block_rows - current_row;
if (rows_left_in_block < expected_rows_in_mark && !last_block)
{
/// Invariant: we always have equal amount of rows for block in compact parts because we accumulate them in buffer.
/// The only exclusion is the last block, when we cannot accumulate more rows.
throw Exception(ErrorCodes::LOGICAL_ERROR, "Required to write {} rows, but only {} rows was written for the non last granule", expected_rows_in_mark, rows_left_in_block);
}
result.emplace_back(Granule{
.start_row = current_row,
.rows_to_write = std::min(rows_left_in_block, expected_rows_in_mark),
.mark_number = current_mark,
.mark_on_start = true,
.is_complete = (rows_left_in_block >= expected_rows_in_mark)
});
current_row += result.back().rows_to_write;
current_mark++;
}
return result;
}
/// Write single granule of one column (rows between 2 marks)
void writeColumnSingleGranule(
const ColumnWithTypeAndName & column,
const SerializationPtr & serialization,
ISerialization::OutputStreamGetter stream_getter,
size_t from_row,
size_t number_of_rows)
{
ISerialization::SerializeBinaryBulkStatePtr state;
ISerialization::SerializeBinaryBulkSettings serialize_settings;
serialize_settings.getter = stream_getter;
serialize_settings.position_independent_encoding = true; //-V1048
serialize_settings.low_cardinality_max_dictionary_size = 0; //-V1048
serialization->serializeBinaryBulkStatePrefix(serialize_settings, state);
serialization->serializeBinaryBulkWithMultipleStreams(*column.column, from_row, number_of_rows, serialize_settings, state);
serialization->serializeBinaryBulkStateSuffix(serialize_settings, state);
}
}
void MergeTreeDataPartWriterCompact::write(const Block & block, const IColumn::Permutation * permutation)
{
/// Fill index granularity for this block
/// if it's unknown (in case of insert data or horizontal merge,
/// but not in case of vertical merge)
if (compute_granularity)
{
size_t index_granularity_for_block = computeIndexGranularity(block);
fillIndexGranularity(index_granularity_for_block, block.rows());
}
Block result_block = permuteBlockIfNeeded(block, permutation);
if (!header)
header = result_block.cloneEmpty();
columns_buffer.add(result_block.mutateColumns());
size_t current_mark_rows = index_granularity.getMarkRows(getCurrentMark());
size_t rows_in_buffer = columns_buffer.size();
if (rows_in_buffer >= current_mark_rows)
{
Block flushed_block = header.cloneWithColumns(columns_buffer.releaseColumns());
auto granules_to_write = getGranulesToWrite(index_granularity, flushed_block.rows(), getCurrentMark(), /* last_block = */ false);
writeDataBlockPrimaryIndexAndSkipIndices(flushed_block, granules_to_write);
setCurrentMark(getCurrentMark() + granules_to_write.size());
}
}
void MergeTreeDataPartWriterCompact::writeDataBlockPrimaryIndexAndSkipIndices(const Block & block, const Granules & granules_to_write)
{
writeDataBlock(block, granules_to_write);
if (settings.rewrite_primary_key)
{
Block primary_key_block = getBlockAndPermute(block, metadata_snapshot->getPrimaryKeyColumns(), nullptr);
calculateAndSerializePrimaryIndex(primary_key_block, granules_to_write);
}
Block skip_indices_block = getBlockAndPermute(block, getSkipIndicesColumns(), nullptr);
calculateAndSerializeSkipIndices(skip_indices_block, granules_to_write);
}
void MergeTreeDataPartWriterCompact::writeDataBlock(const Block & block, const Granules & granules)
{
for (const auto & granule : granules)
{
data_written = true;
auto name_and_type = columns_list.begin();
for (size_t i = 0; i < columns_list.size(); ++i, ++name_and_type)
{
/// Tricky part, because we share compressed streams between different columns substreams.
/// Compressed streams write data to the single file, but with different compression codecs.
/// So we flush each stream (using next()) before using new one, because otherwise we will override
/// data in result file.
CompressedStreamPtr prev_stream;
auto stream_getter = [&, this](const ISerialization::SubstreamPath & substream_path) -> WriteBuffer *
{
String stream_name = ISerialization::getFileNameForStream(*name_and_type, substream_path);
auto & result_stream = compressed_streams[stream_name];
/// Write one compressed block per column in granule for more optimal reading.
if (prev_stream && prev_stream != result_stream)
{
/// Offset should be 0, because compressed block is written for every granule.
assert(result_stream->hashing_buf.offset() == 0);
prev_stream->hashing_buf.next();
}
prev_stream = result_stream;
return &result_stream->hashing_buf;
};
writeIntBinary(plain_hashing.count(), marks);
writeIntBinary(UInt64(0), marks);
writeColumnSingleGranule(
block.getByName(name_and_type->name), serializations[name_and_type->name],
stream_getter, granule.start_row, granule.rows_to_write);
/// Each type always have at least one substream
prev_stream->hashing_buf.next(); //-V522
}
writeIntBinary(granule.rows_to_write, marks);
}
}
void MergeTreeDataPartWriterCompact::finishDataSerialization(IMergeTreeDataPart::Checksums & checksums, bool sync)
{
if (columns_buffer.size() != 0)
{
auto block = header.cloneWithColumns(columns_buffer.releaseColumns());
auto granules_to_write = getGranulesToWrite(index_granularity, block.rows(), getCurrentMark(), /* last_block = */ true);
if (!granules_to_write.back().is_complete)
{
/// Correct last mark as it should contain exact amount of rows.
index_granularity.popMark();
index_granularity.appendMark(granules_to_write.back().rows_to_write);
}
writeDataBlockPrimaryIndexAndSkipIndices(block, granules_to_write);
}
#ifndef NDEBUG
/// Offsets should be 0, because compressed block is written for every granule.
for (const auto & [_, stream] : streams_by_codec)
assert(stream->hashing_buf.offset() == 0);
#endif
if (with_final_mark && data_written)
{
for (size_t i = 0; i < columns_list.size(); ++i)
{
writeIntBinary(plain_hashing.count(), marks);
writeIntBinary(UInt64(0), marks);
}
writeIntBinary(UInt64(0), marks);
}
plain_file->next();
marks.next();
addToChecksums(checksums);
plain_file->finalize();
marks_file->finalize();
if (sync)
{
plain_file->sync();
marks_file->sync();
}
}
static void fillIndexGranularityImpl(
MergeTreeIndexGranularity & index_granularity,
size_t index_offset,
size_t index_granularity_for_block,
size_t rows_in_block)
{
for (size_t current_row = index_offset; current_row < rows_in_block; current_row += index_granularity_for_block)
{
size_t rows_left_in_block = rows_in_block - current_row;
/// Try to extend last granule if block is large enough
/// or it isn't first in granule (index_offset != 0).
if (rows_left_in_block < index_granularity_for_block &&
(rows_in_block >= index_granularity_for_block || index_offset != 0))
{
// If enough rows are left, create a new granule. Otherwise, extend previous granule.
// So, real size of granule differs from index_granularity_for_block not more than 50%.
if (rows_left_in_block * 2 >= index_granularity_for_block)
index_granularity.appendMark(rows_left_in_block);
else
index_granularity.addRowsToLastMark(rows_left_in_block);
}
else
{
index_granularity.appendMark(index_granularity_for_block);
}
}
}
void MergeTreeDataPartWriterCompact::fillIndexGranularity(size_t index_granularity_for_block, size_t rows_in_block)
{
size_t index_offset = 0;
if (index_granularity.getMarksCount() > getCurrentMark())
index_offset = index_granularity.getMarkRows(getCurrentMark()) - columns_buffer.size();
fillIndexGranularityImpl(
index_granularity,
index_offset,
index_granularity_for_block,
rows_in_block);
}
void MergeTreeDataPartWriterCompact::addToChecksums(MergeTreeDataPartChecksums & checksums)
{
String data_file_name = MergeTreeDataPartCompact::DATA_FILE_NAME_WITH_EXTENSION;
String marks_file_name = MergeTreeDataPartCompact::DATA_FILE_NAME + marks_file_extension;
size_t uncompressed_size = 0;
CityHash_v1_0_2::uint128 uncompressed_hash{0, 0};
for (const auto & [_, stream] : streams_by_codec)
{
uncompressed_size += stream->hashing_buf.count();
auto stream_hash = stream->hashing_buf.getHash();
uncompressed_hash = CityHash_v1_0_2::CityHash128WithSeed(
reinterpret_cast<char *>(&stream_hash), sizeof(stream_hash), uncompressed_hash);
}
checksums.files[data_file_name].is_compressed = true;
checksums.files[data_file_name].uncompressed_size = uncompressed_size;
checksums.files[data_file_name].uncompressed_hash = uncompressed_hash;
checksums.files[data_file_name].file_size = plain_hashing.count();
checksums.files[data_file_name].file_hash = plain_hashing.getHash();
checksums.files[marks_file_name].file_size = marks.count();
checksums.files[marks_file_name].file_hash = marks.getHash();
}
void MergeTreeDataPartWriterCompact::ColumnsBuffer::add(MutableColumns && columns)
{
if (accumulated_columns.empty())
accumulated_columns = std::move(columns);
else
{
for (size_t i = 0; i < columns.size(); ++i)
accumulated_columns[i]->insertRangeFrom(*columns[i], 0, columns[i]->size());
}
}
Columns MergeTreeDataPartWriterCompact::ColumnsBuffer::releaseColumns()
{
Columns res(std::make_move_iterator(accumulated_columns.begin()),
std::make_move_iterator(accumulated_columns.end()));
accumulated_columns.clear();
return res;
}
size_t MergeTreeDataPartWriterCompact::ColumnsBuffer::size() const
{
if (accumulated_columns.empty())
return 0;
return accumulated_columns.at(0)->size();
}
void MergeTreeDataPartWriterCompact::finish(IMergeTreeDataPart::Checksums & checksums, bool sync)
{
// If we don't have anything to write, skip finalization.
if (!columns_list.empty())
finishDataSerialization(checksums, sync);
if (settings.rewrite_primary_key)
finishPrimaryIndexSerialization(checksums, sync);
finishSkipIndicesSerialization(checksums, sync);
}
}