mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-04 21:42:39 +00:00
234 lines
7.0 KiB
C++
234 lines
7.0 KiB
C++
#pragma once
|
|
|
|
#include <cstdint>
|
|
#include <cstddef>
|
|
#include <cstring>
|
|
#include <base/extended_types.h>
|
|
|
|
|
|
/// Allows to check the internals of IEEE-754 floating point number.
|
|
|
|
template <typename T> struct FloatTraits;
|
|
|
|
template <>
|
|
struct FloatTraits<BFloat16>
|
|
{
|
|
using UInt = uint16_t;
|
|
static constexpr size_t bits = 16;
|
|
static constexpr size_t exponent_bits = 8;
|
|
static constexpr size_t mantissa_bits = bits - exponent_bits - 1;
|
|
};
|
|
|
|
template <>
|
|
struct FloatTraits<float>
|
|
{
|
|
using UInt = uint32_t;
|
|
static constexpr size_t bits = 32;
|
|
static constexpr size_t exponent_bits = 8;
|
|
static constexpr size_t mantissa_bits = bits - exponent_bits - 1;
|
|
};
|
|
|
|
template <>
|
|
struct FloatTraits<double>
|
|
{
|
|
using UInt = uint64_t;
|
|
static constexpr size_t bits = 64;
|
|
static constexpr size_t exponent_bits = 11;
|
|
static constexpr size_t mantissa_bits = bits - exponent_bits - 1;
|
|
};
|
|
|
|
|
|
/// x = sign * (2 ^ normalized_exponent) * (1 + mantissa * 2 ^ -mantissa_bits)
|
|
/// x = sign * (2 ^ normalized_exponent + mantissa * 2 ^ (normalized_exponent - mantissa_bits))
|
|
template <typename T>
|
|
struct DecomposedFloat
|
|
{
|
|
using Traits = FloatTraits<T>;
|
|
|
|
explicit DecomposedFloat(T x)
|
|
{
|
|
memcpy(&x_uint, &x, sizeof(x));
|
|
}
|
|
|
|
typename Traits::UInt x_uint;
|
|
|
|
bool isNegative() const
|
|
{
|
|
return x_uint >> (Traits::bits - 1);
|
|
}
|
|
|
|
/// Returns 0 for both +0. and -0.
|
|
int sign() const
|
|
{
|
|
if (exponent() == 0 && mantissa() == 0)
|
|
return 0;
|
|
return isNegative() ? -1 : 1;
|
|
}
|
|
|
|
uint16_t exponent() const
|
|
{
|
|
return (x_uint >> (Traits::mantissa_bits)) & (((1ull << (Traits::exponent_bits + 1)) - 1) >> 1);
|
|
}
|
|
|
|
int16_t normalizedExponent() const
|
|
{
|
|
return int16_t(exponent()) - ((1ull << (Traits::exponent_bits - 1)) - 1);
|
|
}
|
|
|
|
uint64_t mantissa() const
|
|
{
|
|
return x_uint & ((1ull << Traits::mantissa_bits) - 1);
|
|
}
|
|
|
|
int64_t mantissaWithSign() const
|
|
{
|
|
return isNegative() ? -mantissa() : mantissa();
|
|
}
|
|
|
|
/// NOTE Probably floating point instructions can be better.
|
|
bool isIntegerInRepresentableRange() const
|
|
{
|
|
return x_uint == 0
|
|
|| (normalizedExponent() >= 0 /// The number is not less than one
|
|
/// The number is inside the range where every integer has exact representation in float
|
|
&& normalizedExponent() <= static_cast<int16_t>(Traits::mantissa_bits)
|
|
/// After multiplying by 2^exp, the fractional part becomes zero, means the number is integer
|
|
&& ((mantissa() & ((1ULL << (Traits::mantissa_bits - normalizedExponent())) - 1)) == 0));
|
|
}
|
|
|
|
bool isFinite() const
|
|
{
|
|
return exponent() != ((1ull << Traits::exponent_bits) - 1);
|
|
}
|
|
|
|
bool isNaN() const
|
|
{
|
|
return !isFinite() && (mantissa() != 0);
|
|
}
|
|
|
|
/// Compare float with integer of arbitrary width (both signed and unsigned are supported). Assuming two's complement arithmetic.
|
|
/// This function is generic, big integers (128, 256 bit) are supported as well.
|
|
/// Infinities are compared correctly. NaNs are treat similarly to infinities, so they can be less than all numbers.
|
|
/// (note that we need total order)
|
|
/// Returns -1, 0 or 1.
|
|
template <typename Int>
|
|
int compare(Int rhs) const
|
|
{
|
|
if (rhs == 0)
|
|
return sign();
|
|
|
|
/// Different signs
|
|
if (isNegative() && rhs > 0)
|
|
return -1;
|
|
if (!isNegative() && rhs < 0)
|
|
return 1;
|
|
|
|
/// Fractional number with magnitude less than one
|
|
if (normalizedExponent() < 0)
|
|
{
|
|
if (!isNegative())
|
|
return rhs > 0 ? -1 : 1;
|
|
return rhs >= 0 ? -1 : 1;
|
|
}
|
|
|
|
/// The case of the most negative integer
|
|
if constexpr (is_signed_v<Int>)
|
|
{
|
|
if (rhs == std::numeric_limits<Int>::lowest())
|
|
{
|
|
assert(isNegative());
|
|
|
|
if (normalizedExponent() < static_cast<int16_t>(8 * sizeof(Int) - is_signed_v<Int>))
|
|
return 1;
|
|
if (normalizedExponent() > static_cast<int16_t>(8 * sizeof(Int) - is_signed_v<Int>))
|
|
return -1;
|
|
|
|
if (mantissa() == 0)
|
|
return 0;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/// Too large number: abs(float) > abs(rhs). Also the case with infinities and NaN.
|
|
if (normalizedExponent() >= static_cast<int16_t>(8 * sizeof(Int) - is_signed_v<Int>))
|
|
return isNegative() ? -1 : 1;
|
|
|
|
using UInt = std::conditional_t<(sizeof(Int) > sizeof(typename Traits::UInt)), make_unsigned_t<Int>, typename Traits::UInt>;
|
|
UInt uint_rhs = rhs < 0 ? -rhs : rhs;
|
|
|
|
/// Smaller octave: abs(rhs) < abs(float)
|
|
/// FYI, TIL: octave is also called "binade", https://en.wikipedia.org/wiki/Binade
|
|
if (uint_rhs < (static_cast<UInt>(1) << normalizedExponent()))
|
|
return isNegative() ? -1 : 1;
|
|
|
|
/// Larger octave: abs(rhs) > abs(float)
|
|
if (normalizedExponent() + 1 < static_cast<int16_t>(8 * sizeof(Int) - is_signed_v<Int>)
|
|
&& uint_rhs >= (static_cast<UInt>(1) << (normalizedExponent() + 1)))
|
|
return isNegative() ? 1 : -1;
|
|
|
|
/// The same octave
|
|
/// uint_rhs == 2 ^ normalizedExponent + mantissa * 2 ^ (normalizedExponent - mantissa_bits)
|
|
|
|
bool large_and_always_integer = normalizedExponent() >= static_cast<int16_t>(Traits::mantissa_bits);
|
|
|
|
UInt a = large_and_always_integer
|
|
? static_cast<UInt>(mantissa()) << (normalizedExponent() - Traits::mantissa_bits)
|
|
: static_cast<UInt>(mantissa()) >> (Traits::mantissa_bits - normalizedExponent());
|
|
|
|
UInt b = uint_rhs - (static_cast<UInt>(1) << normalizedExponent());
|
|
|
|
if (a < b)
|
|
return isNegative() ? 1 : -1;
|
|
if (a > b)
|
|
return isNegative() ? -1 : 1;
|
|
|
|
/// Float has no fractional part means that the numbers are equal.
|
|
if (large_and_always_integer || (mantissa() & ((1ULL << (Traits::mantissa_bits - normalizedExponent())) - 1)) == 0)
|
|
return 0;
|
|
/// Float has fractional part means its abs value is larger.
|
|
return isNegative() ? -1 : 1;
|
|
}
|
|
|
|
|
|
template <typename Int>
|
|
bool equals(Int rhs) const
|
|
{
|
|
return compare(rhs) == 0;
|
|
}
|
|
|
|
template <typename Int>
|
|
bool notEquals(Int rhs) const
|
|
{
|
|
return compare(rhs) != 0;
|
|
}
|
|
|
|
template <typename Int>
|
|
bool less(Int rhs) const
|
|
{
|
|
return compare(rhs) < 0;
|
|
}
|
|
|
|
template <typename Int>
|
|
bool greater(Int rhs) const
|
|
{
|
|
return compare(rhs) > 0;
|
|
}
|
|
|
|
template <typename Int>
|
|
bool lessOrEquals(Int rhs) const
|
|
{
|
|
return compare(rhs) <= 0;
|
|
}
|
|
|
|
template <typename Int>
|
|
bool greaterOrEquals(Int rhs) const
|
|
{
|
|
return compare(rhs) >= 0;
|
|
}
|
|
};
|
|
|
|
|
|
using DecomposedFloat64 = DecomposedFloat<double>;
|
|
using DecomposedFloat32 = DecomposedFloat<float>;
|
|
using DecomposedFloat16 = DecomposedFloat<BFloat16>;
|