ClickHouse/dbms/AggregateFunctions/AggregateFunctionTimeSeriesGroupSum.h
Ivan 97f2a2213e
Move all folders inside /dbms one level up (#9974)
* Move some code outside dbms/src folder
* Fix paths
2020-04-02 02:51:21 +03:00

288 lines
9.8 KiB
C++

#pragma once
#include <bitset>
#include <iostream>
#include <map>
#include <queue>
#include <sstream>
#include <unordered_set>
#include <utility>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnTuple.h>
#include <Columns/ColumnsNumber.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/DataTypeTuple.h>
#include <DataTypes/DataTypesNumber.h>
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
#include <Common/ArenaAllocator.h>
#include <Common/assert_cast.h>
#include <ext/range.h>
#include "IAggregateFunction.h"
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
}
template <bool rate>
struct AggregateFunctionTimeSeriesGroupSumData
{
using DataPoint = std::pair<Int64, Float64>;
struct Points
{
using Dps = std::queue<DataPoint>;
Dps dps;
void add(Int64 t, Float64 v)
{
dps.push(std::make_pair(t, v));
if (dps.size() > 2)
dps.pop();
}
Float64 getval(Int64 t)
{
Int64 t1, t2;
Float64 v1, v2;
if (rate)
{
if (dps.size() < 2)
return 0;
t1 = dps.back().first;
t2 = dps.front().first;
v1 = dps.back().second;
v2 = dps.front().second;
return (v1 - v2) / Float64(t1 - t2);
}
else
{
if (dps.size() == 1 && t == dps.front().first)
return dps.front().second;
t1 = dps.back().first;
t2 = dps.front().first;
v1 = dps.back().second;
v2 = dps.front().second;
return v2 + ((v1 - v2) * Float64(t - t2)) / Float64(t1 - t2);
}
}
};
typedef std::map<UInt64, Points> Series;
typedef PODArrayWithStackMemory<DataPoint, 128> AggSeries;
Series ss;
AggSeries result;
void add(UInt64 uid, Int64 t, Float64 v)
{ //suppose t is coming asc
typename Series::iterator it_ss;
if (ss.count(uid) == 0)
{ //time series not exist, insert new one
Points tmp;
tmp.add(t, v);
ss.emplace(uid, tmp);
it_ss = ss.find(uid);
}
else
{
it_ss = ss.find(uid);
it_ss->second.add(t, v);
}
if (result.size() > 0 && t < result.back().first)
throw Exception{"timeSeriesGroupSum or timeSeriesGroupRateSum must order by timestamp asc!!!", ErrorCodes::LOGICAL_ERROR};
if (result.size() > 0 && t == result.back().first)
{
//do not add new point
if (rate)
result.back().second += it_ss->second.getval(t);
else
result.back().second += v;
}
else
{
if (rate)
result.emplace_back(std::make_pair(t, it_ss->second.getval(t)));
else
result.emplace_back(std::make_pair(t, v));
}
size_t i = result.size() - 1;
//reverse find out the index of timestamp that more than previous timestamp of t
while (result[i].first > it_ss->second.dps.front().first && i >= 0)
i--;
i++;
while (i < result.size() - 1)
{
result[i].second += it_ss->second.getval(result[i].first);
i++;
}
}
void merge(const AggregateFunctionTimeSeriesGroupSumData & other)
{
//if ts has overlap, then aggregate two series by interpolation;
AggSeries tmp;
tmp.reserve(other.result.size() + result.size());
size_t i = 0, j = 0;
Int64 t1, t2;
Float64 v1, v2;
while (i < result.size() && j < other.result.size())
{
if (result[i].first < other.result[j].first)
{
if (j == 0)
{
tmp.emplace_back(result[i]);
}
else
{
t1 = other.result[j].first;
t2 = other.result[j - 1].first;
v1 = other.result[j].second;
v2 = other.result[j - 1].second;
Float64 value = result[i].second + v2 + (v1 - v2) * (Float64(result[i].first - t2)) / Float64(t1 - t2);
tmp.emplace_back(std::make_pair(result[i].first, value));
}
i++;
}
else if (result[i].first > other.result[j].first)
{
if (i == 0)
{
tmp.emplace_back(other.result[j]);
}
else
{
t1 = result[i].first;
t2 = result[i - 1].first;
v1 = result[i].second;
v2 = result[i - 1].second;
Float64 value = other.result[j].second + v2 + (v1 - v2) * (Float64(other.result[j].first - t2)) / Float64(t1 - t2);
tmp.emplace_back(std::make_pair(other.result[j].first, value));
}
j++;
}
else
{
tmp.emplace_back(std::make_pair(result[i].first, result[i].second + other.result[j].second));
i++;
j++;
}
}
while (i < result.size())
{
tmp.emplace_back(result[i]);
i++;
}
while (j < other.result.size())
{
tmp.push_back(other.result[j]);
j++;
}
swap(result, tmp);
}
void serialize(WriteBuffer & buf) const
{
size_t size = result.size();
writeVarUInt(size, buf);
buf.write(reinterpret_cast<const char *>(result.data()), sizeof(result[0]));
}
void deserialize(ReadBuffer & buf)
{
size_t size = 0;
readVarUInt(size, buf);
result.resize(size);
buf.read(reinterpret_cast<char *>(result.data()), size * sizeof(result[0]));
}
};
template <bool rate>
class AggregateFunctionTimeSeriesGroupSum final
: public IAggregateFunctionDataHelper<AggregateFunctionTimeSeriesGroupSumData<rate>, AggregateFunctionTimeSeriesGroupSum<rate>>
{
private:
public:
String getName() const override { return rate ? "timeSeriesGroupRateSum" : "timeSeriesGroupSum"; }
AggregateFunctionTimeSeriesGroupSum(const DataTypes & arguments)
: IAggregateFunctionDataHelper<AggregateFunctionTimeSeriesGroupSumData<rate>, AggregateFunctionTimeSeriesGroupSum<rate>>(arguments, {})
{
if (!WhichDataType(arguments[0].get()).isUInt64())
throw Exception{"Illegal type " + arguments[0].get()->getName() + " of argument 1 of aggregate function " + getName()
+ ", must be UInt64",
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
if (!WhichDataType(arguments[1].get()).isInt64())
throw Exception{"Illegal type " + arguments[1].get()->getName() + " of argument 2 of aggregate function " + getName()
+ ", must be Int64",
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
if (!WhichDataType(arguments[2].get()).isFloat64())
throw Exception{"Illegal type " + arguments[2].get()->getName() + " of argument 3 of aggregate function " + getName()
+ ", must be Float64",
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
}
DataTypePtr getReturnType() const override
{
auto datatypes = std::vector<DataTypePtr>();
datatypes.push_back(std::make_shared<DataTypeInt64>());
datatypes.push_back(std::make_shared<DataTypeFloat64>());
return std::make_shared<DataTypeArray>(std::make_shared<DataTypeTuple>(datatypes));
}
void add(AggregateDataPtr place, const IColumn ** columns, const size_t row_num, Arena *) const override
{
auto uid = assert_cast<const ColumnVector<UInt64> *>(columns[0])->getData()[row_num];
auto ts = assert_cast<const ColumnVector<Int64> *>(columns[1])->getData()[row_num];
auto val = assert_cast<const ColumnVector<Float64> *>(columns[2])->getData()[row_num];
if (uid && ts && val)
{
this->data(place).add(uid, ts, val);
}
}
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena *) const override { this->data(place).merge(this->data(rhs)); }
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override { this->data(place).serialize(buf); }
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override { this->data(place).deserialize(buf); }
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
{
const auto & value = this->data(place).result;
size_t size = value.size();
ColumnArray & arr_to = assert_cast<ColumnArray &>(to);
ColumnArray::Offsets & offsets_to = arr_to.getOffsets();
size_t old_size = offsets_to.back();
offsets_to.push_back(offsets_to.back() + size);
if (size)
{
typename ColumnInt64::Container & ts_to
= assert_cast<ColumnInt64 &>(assert_cast<ColumnTuple &>(arr_to.getData()).getColumn(0)).getData();
typename ColumnFloat64::Container & val_to
= assert_cast<ColumnFloat64 &>(assert_cast<ColumnTuple &>(arr_to.getData()).getColumn(1)).getData();
ts_to.reserve(old_size + size);
val_to.reserve(old_size + size);
size_t i = 0;
while (i < this->data(place).result.size())
{
ts_to.push_back(this->data(place).result[i].first);
val_to.push_back(this->data(place).result[i].second);
i++;
}
}
}
bool allocatesMemoryInArena() const override { return true; }
};
}