ClickHouse/dbms/src/Functions/FunctionsArithmetic.h
2018-06-21 18:24:36 +03:00

1578 lines
59 KiB
C++

#pragma once
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeDate.h>
#include <DataTypes/DataTypeDateTime.h>
#include <DataTypes/DataTypeInterval.h>
#include <DataTypes/Native.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnConst.h>
#include <Functions/IFunction.h>
#include <Functions/FunctionHelpers.h>
#include <Functions/FunctionFactory.h>
#include <DataTypes/NumberTraits.h>
#include <Core/AccurateComparison.h>
#include <Common/FieldVisitors.h>
#include <Common/typeid_cast.h>
#include <IO/WriteHelpers.h>
#include <Interpreters/ExpressionActions.h>
#include <ext/range.h>
#include <common/intExp.h>
#include <boost/integer/common_factor.hpp>
#if USE_EMBEDDED_COMPILER
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#include <llvm/IR/IRBuilder.h> // Y_IGNORE
#pragma GCC diagnostic pop
#endif
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_DIVISION;
extern const int ILLEGAL_COLUMN;
extern const int LOGICAL_ERROR;
extern const int TOO_LESS_ARGUMENTS_FOR_FUNCTION;
}
/** Arithmetic operations: +, -, *, /, %,
* intDiv (integer division), unary minus.
* Bitwise operations: |, &, ^, ~.
* Etc.
*/
template <typename A, typename B, typename Op, typename ResultType_ = typename Op::ResultType>
struct BinaryOperationImplBase
{
using ResultType = ResultType_;
static void NO_INLINE vector_vector(const PaddedPODArray<A> & a, const PaddedPODArray<B> & b, PaddedPODArray<ResultType> & c)
{
size_t size = a.size();
for (size_t i = 0; i < size; ++i)
c[i] = Op::template apply<ResultType>(a[i], b[i]);
}
static void NO_INLINE vector_constant(const PaddedPODArray<A> & a, B b, PaddedPODArray<ResultType> & c)
{
size_t size = a.size();
for (size_t i = 0; i < size; ++i)
c[i] = Op::template apply<ResultType>(a[i], b);
}
static void NO_INLINE constant_vector(A a, const PaddedPODArray<B> & b, PaddedPODArray<ResultType> & c)
{
size_t size = b.size();
for (size_t i = 0; i < size; ++i)
c[i] = Op::template apply<ResultType>(a, b[i]);
}
static ResultType constant_constant(A a, B b)
{
return Op::template apply<ResultType>(a, b);
}
};
template <typename A, typename B, typename Op, typename ResultType = typename Op::ResultType>
struct BinaryOperationImpl : BinaryOperationImplBase<A, B, Op, ResultType>
{
};
template <typename A, typename Op>
struct UnaryOperationImpl
{
using ResultType = typename Op::ResultType;
static void NO_INLINE vector(const PaddedPODArray<A> & a, PaddedPODArray<ResultType> & c)
{
size_t size = a.size();
for (size_t i = 0; i < size; ++i)
c[i] = Op::apply(a[i]);
}
static void constant(A a, ResultType & c)
{
c = Op::apply(a);
}
};
template <typename A, typename B>
struct PlusImpl
{
using ResultType = typename NumberTraits::ResultOfAdditionMultiplication<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
/// Next everywhere, static_cast - so that there is no wrong result in expressions of the form Int64 c = UInt32(a) * Int32(-1).
return static_cast<Result>(a) + b;
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * left, llvm::Value * right, bool)
{
return left->getType()->isIntegerTy() ? b.CreateAdd(left, right) : b.CreateFAdd(left, right);
}
#endif
};
template <typename A, typename B>
struct MultiplyImpl
{
using ResultType = typename NumberTraits::ResultOfAdditionMultiplication<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a) * b;
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * left, llvm::Value * right, bool)
{
return left->getType()->isIntegerTy() ? b.CreateMul(left, right) : b.CreateFMul(left, right);
}
#endif
};
template <typename A, typename B>
struct MinusImpl
{
using ResultType = typename NumberTraits::ResultOfSubtraction<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a) - b;
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * left, llvm::Value * right, bool)
{
return left->getType()->isIntegerTy() ? b.CreateSub(left, right) : b.CreateFSub(left, right);
}
#endif
};
template <typename A, typename B>
struct DivideFloatingImpl
{
using ResultType = typename NumberTraits::ResultOfFloatingPointDivision<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a) / b;
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * left, llvm::Value * right, bool)
{
if (left->getType()->isIntegerTy())
throw Exception("DivideFloatingImpl expected a floating-point type", ErrorCodes::LOGICAL_ERROR);
return b.CreateFDiv(left, right);
}
#endif
};
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-compare"
template <typename A, typename B>
inline void throwIfDivisionLeadsToFPE(A a, B b)
{
/// Is it better to use siglongjmp instead of checks?
if (unlikely(b == 0))
throw Exception("Division by zero", ErrorCodes::ILLEGAL_DIVISION);
/// http://avva.livejournal.com/2548306.html
if (unlikely(std::is_signed_v<A> && std::is_signed_v<B> && a == std::numeric_limits<A>::min() && b == -1))
throw Exception("Division of minimal signed number by minus one", ErrorCodes::ILLEGAL_DIVISION);
}
template <typename A, typename B>
inline bool divisionLeadsToFPE(A a, B b)
{
if (unlikely(b == 0))
return true;
if (unlikely(std::is_signed_v<A> && std::is_signed_v<B> && a == std::numeric_limits<A>::min() && b == -1))
return true;
return false;
}
#pragma GCC diagnostic pop
template <typename A, typename B>
struct DivideIntegralImpl
{
using ResultType = typename NumberTraits::ResultOfIntegerDivision<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
throwIfDivisionLeadsToFPE(a, b);
return a / b;
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = false; /// don't know how to throw from LLVM IR
#endif
};
template <typename A, typename B>
struct DivideIntegralOrZeroImpl
{
using ResultType = typename NumberTraits::ResultOfIntegerDivision<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return unlikely(divisionLeadsToFPE(a, b)) ? 0 : a / b;
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = false; /// TODO implement the checks
#endif
};
template <typename A, typename B>
struct ModuloImpl
{
using ResultType = typename NumberTraits::ResultOfModulo<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
throwIfDivisionLeadsToFPE(typename NumberTraits::ToInteger<A>::Type(a), typename NumberTraits::ToInteger<B>::Type(b));
return typename NumberTraits::ToInteger<A>::Type(a) % typename NumberTraits::ToInteger<B>::Type(b);
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = false; /// don't know how to throw from LLVM IR
#endif
};
template <typename A, typename B>
struct BitAndImpl
{
using ResultType = typename NumberTraits::ResultOfBit<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a) & static_cast<Result>(b);
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * left, llvm::Value * right, bool)
{
if (!left->getType()->isIntegerTy())
throw Exception("BitAndImpl expected an integral type", ErrorCodes::LOGICAL_ERROR);
return b.CreateAnd(left, right);
}
#endif
};
template <typename A, typename B>
struct BitOrImpl
{
using ResultType = typename NumberTraits::ResultOfBit<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a) | static_cast<Result>(b);
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * left, llvm::Value * right, bool)
{
if (!left->getType()->isIntegerTy())
throw Exception("BitOrImpl expected an integral type", ErrorCodes::LOGICAL_ERROR);
return b.CreateOr(left, right);
}
#endif
};
template <typename A, typename B>
struct BitXorImpl
{
using ResultType = typename NumberTraits::ResultOfBit<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a) ^ static_cast<Result>(b);
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * left, llvm::Value * right, bool)
{
if (!left->getType()->isIntegerTy())
throw Exception("BitXorImpl expected an integral type", ErrorCodes::LOGICAL_ERROR);
return b.CreateXor(left, right);
}
#endif
};
template <typename A, typename B>
struct BitShiftLeftImpl
{
using ResultType = typename NumberTraits::ResultOfBit<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a) << static_cast<Result>(b);
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * left, llvm::Value * right, bool)
{
if (!left->getType()->isIntegerTy())
throw Exception("BitShiftLeftImpl expected an integral type", ErrorCodes::LOGICAL_ERROR);
return b.CreateShl(left, right);
}
#endif
};
template <typename A, typename B>
struct BitShiftRightImpl
{
using ResultType = typename NumberTraits::ResultOfBit<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a) >> static_cast<Result>(b);
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * left, llvm::Value * right, bool is_signed)
{
if (!left->getType()->isIntegerTy())
throw Exception("BitShiftRightImpl expected an integral type", ErrorCodes::LOGICAL_ERROR);
return is_signed ? b.CreateAShr(left, right) : b.CreateLShr(left, right);
}
#endif
};
template <typename A, typename B>
struct BitRotateLeftImpl
{
using ResultType = typename NumberTraits::ResultOfBit<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return (static_cast<Result>(a) << static_cast<Result>(b))
| (static_cast<Result>(a) >> ((sizeof(Result) * 8) - static_cast<Result>(b)));
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * left, llvm::Value * right, bool)
{
if (!left->getType()->isIntegerTy())
throw Exception("BitRotateLeftImpl expected an integral type", ErrorCodes::LOGICAL_ERROR);
auto * size = llvm::ConstantInt::get(left->getType(), left->getType()->getPrimitiveSizeInBits());
/// XXX how is this supposed to behave in signed mode?
return b.CreateOr(b.CreateShl(left, right), b.CreateLShr(left, b.CreateSub(size, right)));
}
#endif
};
template <typename A, typename B>
struct BitRotateRightImpl
{
using ResultType = typename NumberTraits::ResultOfBit<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return (static_cast<Result>(a) >> static_cast<Result>(b))
| (static_cast<Result>(a) << ((sizeof(Result) * 8) - static_cast<Result>(b)));
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * left, llvm::Value * right, bool)
{
if (!left->getType()->isIntegerTy())
throw Exception("BitRotateRightImpl expected an integral type", ErrorCodes::LOGICAL_ERROR);
auto * size = llvm::ConstantInt::get(left->getType(), left->getType()->getPrimitiveSizeInBits());
return b.CreateOr(b.CreateLShr(left, right), b.CreateShl(left, b.CreateSub(size, right)));
}
#endif
};
template <typename A, typename B>
struct BitTestImpl
{
using ResultType = UInt8;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return (typename NumberTraits::ToInteger<A>::Type(a) >> typename NumberTraits::ToInteger<B>::Type(b)) & 1;
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = false; /// TODO
#endif
};
template <typename A, typename B>
struct LeastBaseImpl
{
using ResultType = NumberTraits::ResultOfLeast<A, B>;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
/** gcc 4.9.2 successfully vectorizes a loop from this function. */
return static_cast<Result>(a) < static_cast<Result>(b) ? static_cast<Result>(a) : static_cast<Result>(b);
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * left, llvm::Value * right, bool is_signed)
{
if (!left->getType()->isIntegerTy())
/// XXX minnum is basically fmin(), it may or may not match whatever apply() does
return b.CreateMinNum(left, right);
return b.CreateSelect(is_signed ? b.CreateICmpSLT(left, right) : b.CreateICmpULT(left, right), left, right);
}
#endif
};
template <typename A, typename B>
struct LeastSpecialImpl
{
using ResultType = std::make_signed_t<A>;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
static_assert(std::is_same_v<Result, ResultType>, "ResultType != Result");
return accurate::lessOp(a, b) ? static_cast<Result>(a) : static_cast<Result>(b);
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = false; /// ???
#endif
};
template <typename A, typename B>
using LeastImpl = std::conditional_t<!NumberTraits::LeastGreatestSpecialCase<A, B>, LeastBaseImpl<A, B>, LeastSpecialImpl<A, B>>;
template <typename A, typename B>
struct GreatestBaseImpl
{
using ResultType = NumberTraits::ResultOfGreatest<A, B>;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a) > static_cast<Result>(b) ? static_cast<Result>(a) : static_cast<Result>(b);
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * left, llvm::Value * right, bool is_signed)
{
if (!left->getType()->isIntegerTy())
/// XXX maxnum is basically fmax(), it may or may not match whatever apply() does
/// XXX CreateMaxNum is broken on LLVM 5.0 and 6.0 (generates minnum instead; fixed in 7)
return b.CreateBinaryIntrinsic(llvm::Intrinsic::maxnum, left, right);
return b.CreateSelect(is_signed ? b.CreateICmpSGT(left, right) : b.CreateICmpUGT(left, right), left, right);
}
#endif
};
template <typename A, typename B>
struct GreatestSpecialImpl
{
using ResultType = std::make_unsigned_t<A>;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
static_assert(std::is_same_v<Result, ResultType>, "ResultType != Result");
return accurate::greaterOp(a, b) ? static_cast<Result>(a) : static_cast<Result>(b);
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = false; /// ???
#endif
};
template <typename A, typename B>
using GreatestImpl = std::conditional_t<!NumberTraits::LeastGreatestSpecialCase<A, B>, GreatestBaseImpl<A, B>, GreatestSpecialImpl<A, B>>;
template <typename A>
struct NegateImpl
{
using ResultType = typename NumberTraits::ResultOfNegate<A>::Type;
static inline ResultType apply(A a)
{
return -static_cast<ResultType>(a);
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * arg, bool)
{
return arg->getType()->isIntegerTy() ? b.CreateNeg(arg) : b.CreateFNeg(arg);
}
#endif
};
template <typename A>
struct BitNotImpl
{
using ResultType = typename NumberTraits::ResultOfBitNot<A>::Type;
static inline ResultType apply(A a)
{
return ~static_cast<ResultType>(a);
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * arg, bool)
{
if (!arg->getType()->isIntegerTy())
throw Exception("BitNotImpl expected an integral type", ErrorCodes::LOGICAL_ERROR);
return b.CreateNot(arg);
}
#endif
};
template <typename A>
struct AbsImpl
{
using ResultType = typename NumberTraits::ResultOfAbs<A>::Type;
static inline ResultType apply(A a)
{
if constexpr (std::is_integral_v<A> && std::is_signed_v<A>)
return a < 0 ? static_cast<ResultType>(~a) + 1 : a;
else if constexpr (std::is_integral_v<A> && std::is_unsigned_v<A>)
return static_cast<ResultType>(a);
else if constexpr (std::is_floating_point_v<A>)
return static_cast<ResultType>(std::abs(a));
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = false; /// special type handling, some other time
#endif
};
template <typename A, typename B>
struct GCDImpl
{
using ResultType = typename NumberTraits::ResultOfAdditionMultiplication<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
throwIfDivisionLeadsToFPE(typename NumberTraits::ToInteger<A>::Type(a), typename NumberTraits::ToInteger<B>::Type(b));
throwIfDivisionLeadsToFPE(typename NumberTraits::ToInteger<B>::Type(b), typename NumberTraits::ToInteger<A>::Type(a));
return boost::integer::gcd(
typename NumberTraits::ToInteger<Result>::Type(a),
typename NumberTraits::ToInteger<Result>::Type(b));
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = false; /// exceptions (and a non-trivial algorithm)
#endif
};
template <typename A, typename B>
struct LCMImpl
{
using ResultType = typename NumberTraits::ResultOfAdditionMultiplication<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
throwIfDivisionLeadsToFPE(typename NumberTraits::ToInteger<A>::Type(a), typename NumberTraits::ToInteger<B>::Type(b));
throwIfDivisionLeadsToFPE(typename NumberTraits::ToInteger<B>::Type(b), typename NumberTraits::ToInteger<A>::Type(a));
return boost::integer::lcm(
typename NumberTraits::ToInteger<Result>::Type(a),
typename NumberTraits::ToInteger<Result>::Type(b));
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = false; /// exceptions (and a non-trivial algorithm)
#endif
};
template <typename A>
struct IntExp2Impl
{
using ResultType = UInt64;
static inline ResultType apply(A a)
{
return intExp2(a);
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * arg, bool)
{
if (!arg->getType()->isIntegerTy())
throw Exception("IntExp2Impl expected an integral type", ErrorCodes::LOGICAL_ERROR);
return b.CreateShl(llvm::ConstantInt::get(arg->getType(), 1), arg);
}
#endif
};
template <typename A>
struct IntExp10Impl
{
using ResultType = UInt64;
static inline ResultType apply(A a)
{
return intExp10(a);
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = false; /// library function
#endif
};
/// Used to indicate undefined operation
struct InvalidType;
template <bool V, typename T> struct Case : std::bool_constant<V> { using type = T; };
/// Switch<Case<C0, T0>, ...> -- select the first Ti for which Ci is true; InvalidType if none.
template <typename... Ts> using Switch = typename std::disjunction<Ts..., Case<true, InvalidType>>::type;
template <typename DataType> constexpr bool IsIntegral = false;
template <> constexpr bool IsIntegral<DataTypeUInt8> = true;
template <> constexpr bool IsIntegral<DataTypeUInt16> = true;
template <> constexpr bool IsIntegral<DataTypeUInt32> = true;
template <> constexpr bool IsIntegral<DataTypeUInt64> = true;
template <> constexpr bool IsIntegral<DataTypeInt8> = true;
template <> constexpr bool IsIntegral<DataTypeInt16> = true;
template <> constexpr bool IsIntegral<DataTypeInt32> = true;
template <> constexpr bool IsIntegral<DataTypeInt64> = true;
template <typename DataType> constexpr bool IsDateOrDateTime = false;
template <> constexpr bool IsDateOrDateTime<DataTypeDate> = true;
template <> constexpr bool IsDateOrDateTime<DataTypeDateTime> = true;
template <typename T> using DataTypeFromFieldType = std::conditional_t<std::is_same_v<T, NumberTraits::Error>, InvalidType, DataTypeNumber<T>>;
template <template <typename, typename> class Operation, typename LeftDataType, typename RightDataType>
struct BinaryOperationTraits
{
using T0 = typename LeftDataType::FieldType;
using T1 = typename RightDataType::FieldType;
using Op = Operation<T0, T1>;
/// Appropriate result type for binary operator on numeric types. "Date" can also mean
/// DateTime, but if both operands are Dates, their type must be the same (e.g. Date - DateTime is invalid).
using ResultDataType = Switch<
/// number <op> number -> see corresponding impl
Case<!IsDateOrDateTime<LeftDataType> && !IsDateOrDateTime<RightDataType>,
DataTypeFromFieldType<typename Op::ResultType>>,
/// Date + Integral -> Date
/// Integral + Date -> Date
Case<std::is_same_v<Op, PlusImpl<T0, T1>>, Switch<
Case<IsIntegral<RightDataType>, LeftDataType>,
Case<IsIntegral<LeftDataType>, RightDataType>>>,
/// Date - Date -> Int32
/// Date - Integral -> Date
Case<std::is_same_v<Op, MinusImpl<T0, T1>>, Switch<
Case<std::is_same_v<LeftDataType, RightDataType>, DataTypeInt32>,
Case<IsDateOrDateTime<LeftDataType> && IsIntegral<RightDataType>, LeftDataType>>>,
/// least(Date, Date) -> Date
/// greatest(Date, Date) -> Date
Case<std::is_same_v<LeftDataType, RightDataType> && (std::is_same_v<Op, LeastImpl<T0, T1>> || std::is_same_v<Op, GreatestImpl<T0, T1>>),
LeftDataType>>;
};
template <typename... Ts, typename F>
static bool castTypeToEither(const IDataType * type, F && f)
{
/// XXX can't use && here because gcc-7 complains about parentheses around && within ||
return ((typeid_cast<const Ts *>(type) ? f(*typeid_cast<const Ts *>(type)) : false) || ...);
}
template <template <typename, typename> class Op, typename Name>
class FunctionBinaryArithmetic : public IFunction
{
const Context & context;
template <typename F>
static bool castType(const IDataType * type, F && f)
{
return castTypeToEither<
DataTypeUInt8,
DataTypeUInt16,
DataTypeUInt32,
DataTypeUInt64,
DataTypeInt8,
DataTypeInt16,
DataTypeInt32,
DataTypeInt64,
DataTypeFloat32,
DataTypeFloat64,
DataTypeDate,
DataTypeDateTime
>(type, std::forward<F>(f));
}
template <typename F>
static bool castBothTypes(const IDataType * left, const IDataType * right, F && f)
{
return castType(left, [&](const auto & left) { return castType(right, [&](const auto & right) { return f(left, right); }); });
}
FunctionBuilderPtr getFunctionForIntervalArithmetic(const DataTypePtr & type0, const DataTypePtr & type1) const
{
/// Special case when the function is plus or minus, one of arguments is Date/DateTime and another is Interval.
/// We construct another function (example: addMonths) and call it.
bool function_is_plus = std::is_same_v<Op<UInt8, UInt8>, PlusImpl<UInt8, UInt8>>;
bool function_is_minus = std::is_same_v<Op<UInt8, UInt8>, MinusImpl<UInt8, UInt8>>;
if (!function_is_plus && !function_is_minus)
return {};
int interval_arg = 1;
const DataTypeInterval * interval_data_type = checkAndGetDataType<DataTypeInterval>(type1.get());
if (!interval_data_type)
{
interval_arg = 0;
interval_data_type = checkAndGetDataType<DataTypeInterval>(type0.get());
}
if (!interval_data_type)
return {};
if (interval_arg == 0 && function_is_minus)
throw Exception("Wrong order of arguments for function " + getName() + ": argument of type Interval cannot be first.",
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
const DataTypeDate * date_data_type = checkAndGetDataType<DataTypeDate>(interval_arg == 0 ? type1.get() : type0.get());
const DataTypeDateTime * date_time_data_type = nullptr;
if (!date_data_type)
{
date_time_data_type = checkAndGetDataType<DataTypeDateTime>(interval_arg == 0 ? type1.get() : type0.get());
if (!date_time_data_type)
throw Exception("Wrong argument types for function " + getName() + ": if one argument is Interval, then another must be Date or DateTime.",
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
std::stringstream function_name;
function_name << (function_is_plus ? "add" : "subtract") << interval_data_type->kindToString() << 's';
return FunctionFactory::instance().get(function_name.str(), context);
}
public:
static constexpr auto name = Name::name;
static FunctionPtr create(const Context & context) { return std::make_shared<FunctionBinaryArithmetic>(context); }
FunctionBinaryArithmetic(const Context & context) : context(context) {}
String getName() const override
{
return name;
}
size_t getNumberOfArguments() const override { return 2; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
/// Special case when the function is plus or minus, one of arguments is Date/DateTime and another is Interval.
if (auto function_builder = getFunctionForIntervalArithmetic(arguments[0], arguments[1]))
{
ColumnsWithTypeAndName new_arguments(2);
for (size_t i = 0; i < 2; ++i)
new_arguments[i].type = arguments[i];
/// Interval argument must be second.
if (checkDataType<DataTypeInterval>(new_arguments[0].type.get()))
std::swap(new_arguments[0], new_arguments[1]);
/// Change interval argument to its representation
new_arguments[1].type = std::make_shared<DataTypeNumber<DataTypeInterval::FieldType>>();
auto function = function_builder->build(new_arguments);
return function->getReturnType();
}
DataTypePtr type_res;
bool valid = castBothTypes(arguments[0].get(), arguments[1].get(), [&](const auto & left, const auto & right)
{
using LeftDataType = std::decay_t<decltype(left)>;
using RightDataType = std::decay_t<decltype(right)>;
using ResultDataType = typename BinaryOperationTraits<Op, LeftDataType, RightDataType>::ResultDataType;
if constexpr (!std::is_same_v<ResultDataType, InvalidType>)
{
type_res = std::make_shared<ResultDataType>();
return true;
}
return false;
});
if (!valid)
throw Exception("Illegal types " + arguments[0]->getName() + " and " + arguments[1]->getName() + " of arguments of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
return type_res;
}
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) override
{
/// Special case when the function is plus or minus, one of arguments is Date/DateTime and another is Interval.
if (auto function_builder = getFunctionForIntervalArithmetic(block.getByPosition(arguments[0]).type, block.getByPosition(arguments[1]).type))
{
ColumnNumbers new_arguments = arguments;
/// Interval argument must be second.
if (checkDataType<DataTypeInterval>(block.getByPosition(arguments[0]).type.get()))
std::swap(new_arguments[0], new_arguments[1]);
/// Change interval argument type to its representation
Block new_block = block;
new_block.getByPosition(new_arguments[1]).type = std::make_shared<DataTypeNumber<DataTypeInterval::FieldType>>();
ColumnsWithTypeAndName new_arguments_with_type_and_name =
{new_block.getByPosition(new_arguments[0]), new_block.getByPosition(new_arguments[1])};
auto function = function_builder->build(new_arguments_with_type_and_name);
function->execute(new_block, new_arguments, result, input_rows_count);
block.getByPosition(result).column = new_block.getByPosition(result).column;
return;
}
auto * left = block.getByPosition(arguments[0]).type.get();
auto * right = block.getByPosition(arguments[1]).type.get();
bool valid = castBothTypes(left, right, [&](const auto & left, const auto & right)
{
using LeftDataType = std::decay_t<decltype(left)>;
using RightDataType = std::decay_t<decltype(right)>;
using ResultDataType = typename BinaryOperationTraits<Op, LeftDataType, RightDataType>::ResultDataType;
if constexpr (!std::is_same_v<ResultDataType, InvalidType>)
{
using T0 = typename LeftDataType::FieldType;
using T1 = typename RightDataType::FieldType;
using ResultType = typename ResultDataType::FieldType;
using OpImpl = BinaryOperationImpl<T0, T1, Op<T0, T1>, ResultType>;
auto col_left_raw = block.getByPosition(arguments[0]).column.get();
auto col_right_raw = block.getByPosition(arguments[1]).column.get();
if (auto col_left = checkAndGetColumnConst<ColumnVector<T0>>(col_left_raw))
{
if (auto col_right = checkAndGetColumnConst<ColumnVector<T1>>(col_right_raw))
{
/// the only case with a non-vector result
auto res = OpImpl::constant_constant(col_left->template getValue<T0>(), col_right->template getValue<T1>());
block.getByPosition(result).column = ResultDataType().createColumnConst(col_left->size(), toField(res));
return true;
}
}
auto col_res = ColumnVector<ResultType>::create();
auto & vec_res = col_res->getData();
vec_res.resize(block.rows());
if (auto col_left = checkAndGetColumnConst<ColumnVector<T0>>(col_left_raw))
{
if (auto col_right = checkAndGetColumn<ColumnVector<T1>>(col_right_raw))
OpImpl::constant_vector(col_left->template getValue<T0>(), col_right->getData(), vec_res);
else
return false;
}
else if (auto col_left = checkAndGetColumn<ColumnVector<T0>>(col_left_raw))
{
if (auto col_right = checkAndGetColumn<ColumnVector<T1>>(col_right_raw))
OpImpl::vector_vector(col_left->getData(), col_right->getData(), vec_res);
else if (auto col_right = checkAndGetColumnConst<ColumnVector<T1>>(col_right_raw))
OpImpl::vector_constant(col_left->getData(), col_right->template getValue<T1>(), vec_res);
else
return false;
}
else
{
return false;
}
block.getByPosition(result).column = std::move(col_res);
return true;
}
return false;
});
if (!valid)
throw Exception(getName() + "'s arguments do not match the expected data types", ErrorCodes::LOGICAL_ERROR);
}
#if USE_EMBEDDED_COMPILER
bool isCompilableImpl(const DataTypes & arguments) const override
{
return castBothTypes(arguments[0].get(), arguments[1].get(), [&](const auto & left, const auto & right)
{
using LeftDataType = std::decay_t<decltype(left)>;
using RightDataType = std::decay_t<decltype(right)>;
using ResultDataType = typename BinaryOperationTraits<Op, LeftDataType, RightDataType>::ResultDataType;
using OpSpec = Op<typename LeftDataType::FieldType, typename RightDataType::FieldType>;
return !std::is_same_v<ResultDataType, InvalidType> && OpSpec::compilable;
});
}
llvm::Value * compileImpl(llvm::IRBuilderBase & builder, const DataTypes & types, ValuePlaceholders values) const override
{
llvm::Value * result = nullptr;
castBothTypes(types[0].get(), types[1].get(), [&](const auto & left, const auto & right)
{
using LeftDataType = std::decay_t<decltype(left)>;
using RightDataType = std::decay_t<decltype(right)>;
using ResultDataType = typename BinaryOperationTraits<Op, LeftDataType, RightDataType>::ResultDataType;
using OpSpec = Op<typename LeftDataType::FieldType, typename RightDataType::FieldType>;
if constexpr (!std::is_same_v<ResultDataType, InvalidType> && OpSpec::compilable)
{
auto & b = static_cast<llvm::IRBuilder<> &>(builder);
auto type = std::make_shared<ResultDataType>();
auto * lval = nativeCast(b, types[0], values[0](), type);
auto * rval = nativeCast(b, types[1], values[1](), type);
result = OpSpec::compile(b, lval, rval, std::is_signed_v<typename ResultDataType::FieldType>);
return true;
}
return false;
});
return result;
}
#endif
};
template <typename FunctionName>
struct FunctionUnaryArithmeticMonotonicity;
template <template <typename> class Op, typename Name, bool is_injective>
class FunctionUnaryArithmetic : public IFunction
{
template <typename F>
static bool castType(const IDataType * type, F && f)
{
return castTypeToEither<
DataTypeUInt8,
DataTypeUInt16,
DataTypeUInt32,
DataTypeUInt64,
DataTypeInt8,
DataTypeInt16,
DataTypeInt32,
DataTypeInt64,
DataTypeFloat32,
DataTypeFloat64
>(type, std::forward<F>(f));
}
public:
static constexpr auto name = Name::name;
static FunctionPtr create(const Context &) { return std::make_shared<FunctionUnaryArithmetic>(); }
String getName() const override
{
return name;
}
size_t getNumberOfArguments() const override { return 1; }
bool isInjective(const Block &) override { return is_injective; }
bool useDefaultImplementationForConstants() const override { return true; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
DataTypePtr result;
bool valid = castType(arguments[0].get(), [&](const auto & type)
{
using T0 = typename std::decay_t<decltype(type)>::FieldType;
result = std::make_shared<DataTypeNumber<typename Op<T0>::ResultType>>();
return true;
});
if (!valid)
throw Exception("Illegal type " + arguments[0]->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
return result;
}
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t /*input_rows_count*/) override
{
bool valid = castType(block.getByPosition(arguments[0]).type.get(), [&](const auto & type)
{
using T0 = typename std::decay_t<decltype(type)>::FieldType;
if (auto col = checkAndGetColumn<ColumnVector<T0>>(block.getByPosition(arguments[0]).column.get()))
{
auto col_res = ColumnVector<typename Op<T0>::ResultType>::create();
auto & vec_res = col_res->getData();
vec_res.resize(col->getData().size());
UnaryOperationImpl<T0, Op<T0>>::vector(col->getData(), vec_res);
block.getByPosition(result).column = std::move(col_res);
return true;
}
return false;
});
if (!valid)
throw Exception(getName() + "'s argument does not match the expected data type", ErrorCodes::LOGICAL_ERROR);
}
#if USE_EMBEDDED_COMPILER
bool isCompilableImpl(const DataTypes & arguments) const override
{
return castType(arguments[0].get(), [&](const auto & type)
{
return Op<typename std::decay_t<decltype(type)>::FieldType>::compilable;
});
}
llvm::Value * compileImpl(llvm::IRBuilderBase & builder, const DataTypes & types, ValuePlaceholders values) const override
{
llvm::Value * result = nullptr;
castType(types[0].get(), [&](const auto & type)
{
using T0 = typename std::decay_t<decltype(type)>::FieldType;
using T1 = typename Op<T0>::ResultType;
if constexpr (Op<T0>::compilable)
{
auto & b = static_cast<llvm::IRBuilder<> &>(builder);
auto * v = nativeCast(b, types[0], values[0](), std::make_shared<DataTypeNumber<T1>>());
result = Op<T0>::compile(b, v, std::is_signed_v<T1>);
return true;
}
return false;
});
return result;
}
#endif
bool hasInformationAboutMonotonicity() const override
{
return FunctionUnaryArithmeticMonotonicity<Name>::has();
}
Monotonicity getMonotonicityForRange(const IDataType &, const Field & left, const Field & right) const override
{
return FunctionUnaryArithmeticMonotonicity<Name>::get(left, right);
}
};
struct NamePlus { static constexpr auto name = "plus"; };
struct NameMinus { static constexpr auto name = "minus"; };
struct NameMultiply { static constexpr auto name = "multiply"; };
struct NameDivideFloating { static constexpr auto name = "divide"; };
struct NameDivideIntegral { static constexpr auto name = "intDiv"; };
struct NameDivideIntegralOrZero { static constexpr auto name = "intDivOrZero"; };
struct NameModulo { static constexpr auto name = "modulo"; };
struct NameNegate { static constexpr auto name = "negate"; };
struct NameAbs { static constexpr auto name = "abs"; };
struct NameBitAnd { static constexpr auto name = "bitAnd"; };
struct NameBitOr { static constexpr auto name = "bitOr"; };
struct NameBitXor { static constexpr auto name = "bitXor"; };
struct NameBitNot { static constexpr auto name = "bitNot"; };
struct NameBitShiftLeft { static constexpr auto name = "bitShiftLeft"; };
struct NameBitShiftRight { static constexpr auto name = "bitShiftRight"; };
struct NameBitRotateLeft { static constexpr auto name = "bitRotateLeft"; };
struct NameBitRotateRight { static constexpr auto name = "bitRotateRight"; };
struct NameBitTest { static constexpr auto name = "bitTest"; };
struct NameBitTestAny { static constexpr auto name = "bitTestAny"; };
struct NameBitTestAll { static constexpr auto name = "bitTestAll"; };
struct NameLeast { static constexpr auto name = "least"; };
struct NameGreatest { static constexpr auto name = "greatest"; };
struct NameGCD { static constexpr auto name = "gcd"; };
struct NameLCM { static constexpr auto name = "lcm"; };
struct NameIntExp2 { static constexpr auto name = "intExp2"; };
struct NameIntExp10 { static constexpr auto name = "intExp10"; };
using FunctionPlus = FunctionBinaryArithmetic<PlusImpl, NamePlus>;
using FunctionMinus = FunctionBinaryArithmetic<MinusImpl, NameMinus>;
using FunctionMultiply = FunctionBinaryArithmetic<MultiplyImpl, NameMultiply>;
using FunctionDivideFloating = FunctionBinaryArithmetic<DivideFloatingImpl, NameDivideFloating>;
using FunctionDivideIntegral = FunctionBinaryArithmetic<DivideIntegralImpl, NameDivideIntegral>;
using FunctionDivideIntegralOrZero = FunctionBinaryArithmetic<DivideIntegralOrZeroImpl, NameDivideIntegralOrZero>;
using FunctionModulo = FunctionBinaryArithmetic<ModuloImpl, NameModulo>;
using FunctionNegate = FunctionUnaryArithmetic<NegateImpl, NameNegate, true>;
using FunctionAbs = FunctionUnaryArithmetic<AbsImpl, NameAbs, false>;
using FunctionBitAnd = FunctionBinaryArithmetic<BitAndImpl, NameBitAnd>;
using FunctionBitOr = FunctionBinaryArithmetic<BitOrImpl, NameBitOr>;
using FunctionBitXor = FunctionBinaryArithmetic<BitXorImpl, NameBitXor>;
using FunctionBitNot = FunctionUnaryArithmetic<BitNotImpl, NameBitNot, true>;
using FunctionBitShiftLeft = FunctionBinaryArithmetic<BitShiftLeftImpl, NameBitShiftLeft>;
using FunctionBitShiftRight = FunctionBinaryArithmetic<BitShiftRightImpl, NameBitShiftRight>;
using FunctionBitRotateLeft = FunctionBinaryArithmetic<BitRotateLeftImpl, NameBitRotateLeft>;
using FunctionBitRotateRight = FunctionBinaryArithmetic<BitRotateRightImpl, NameBitRotateRight>;
using FunctionBitTest = FunctionBinaryArithmetic<BitTestImpl, NameBitTest>;
using FunctionLeast = FunctionBinaryArithmetic<LeastImpl, NameLeast>;
using FunctionGreatest = FunctionBinaryArithmetic<GreatestImpl, NameGreatest>;
using FunctionGCD = FunctionBinaryArithmetic<GCDImpl, NameGCD>;
using FunctionLCM = FunctionBinaryArithmetic<LCMImpl, NameLCM>;
/// Assumed to be injective for the purpose of query optimization, but in fact it is not injective because of possible overflow.
using FunctionIntExp2 = FunctionUnaryArithmetic<IntExp2Impl, NameIntExp2, true>;
using FunctionIntExp10 = FunctionUnaryArithmetic<IntExp10Impl, NameIntExp10, true>;
/// Monotonicity properties for some functions.
template <> struct FunctionUnaryArithmeticMonotonicity<NameNegate>
{
static bool has() { return true; }
static IFunction::Monotonicity get(const Field &, const Field &)
{
return { true, false };
}
};
template <> struct FunctionUnaryArithmeticMonotonicity<NameAbs>
{
static bool has() { return true; }
static IFunction::Monotonicity get(const Field & left, const Field & right)
{
Float64 left_float = left.isNull() ? -std::numeric_limits<Float64>::infinity() : applyVisitor(FieldVisitorConvertToNumber<Float64>(), left);
Float64 right_float = right.isNull() ? std::numeric_limits<Float64>::infinity() : applyVisitor(FieldVisitorConvertToNumber<Float64>(), right);
if ((left_float < 0 && right_float > 0) || (left_float > 0 && right_float < 0))
return {};
return { true, (left_float > 0) };
}
};
template <> struct FunctionUnaryArithmeticMonotonicity<NameBitNot>
{
static bool has() { return false; }
static IFunction::Monotonicity get(const Field &, const Field &)
{
return {};
}
};
template <> struct FunctionUnaryArithmeticMonotonicity<NameIntExp2>
{
static bool has() { return true; }
static IFunction::Monotonicity get(const Field & left, const Field & right)
{
Float64 left_float = left.isNull() ? -std::numeric_limits<Float64>::infinity() : applyVisitor(FieldVisitorConvertToNumber<Float64>(), left);
Float64 right_float = right.isNull() ? std::numeric_limits<Float64>::infinity() : applyVisitor(FieldVisitorConvertToNumber<Float64>(), right);
if (left_float < 0 || right_float > 63)
return {};
return { true };
}
};
template <> struct FunctionUnaryArithmeticMonotonicity<NameIntExp10>
{
static bool has() { return true; }
static IFunction::Monotonicity get(const Field & left, const Field & right)
{
Float64 left_float = left.isNull() ? -std::numeric_limits<Float64>::infinity() : applyVisitor(FieldVisitorConvertToNumber<Float64>(), left);
Float64 right_float = right.isNull() ? std::numeric_limits<Float64>::infinity() : applyVisitor(FieldVisitorConvertToNumber<Float64>(), right);
if (left_float < 0 || right_float > 19)
return {};
return { true };
}
};
}
/// Optimizations for integer division by a constant.
#if __SSE2__
#define LIBDIVIDE_USE_SSE2 1
#endif
#include <libdivide.h>
namespace DB
{
template <typename A, typename B>
struct DivideIntegralByConstantImpl
: BinaryOperationImplBase<A, B, DivideIntegralImpl<A, B>>
{
using ResultType = typename DivideIntegralImpl<A, B>::ResultType;
static void vector_constant(const PaddedPODArray<A> & a, B b, PaddedPODArray<ResultType> & c)
{
if (unlikely(b == 0))
throw Exception("Division by zero", ErrorCodes::ILLEGAL_DIVISION);
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-compare"
if (unlikely(std::is_signed_v<B> && b == -1))
{
size_t size = a.size();
for (size_t i = 0; i < size; ++i)
c[i] = -c[i];
return;
}
#pragma GCC diagnostic pop
libdivide::divider<A> divider(b);
size_t size = a.size();
const A * a_pos = &a[0];
const A * a_end = a_pos + size;
ResultType * c_pos = &c[0];
#if __SSE2__
static constexpr size_t values_per_sse_register = 16 / sizeof(A);
const A * a_end_sse = a_pos + size / values_per_sse_register * values_per_sse_register;
while (a_pos < a_end_sse)
{
_mm_storeu_si128(reinterpret_cast<__m128i *>(c_pos),
_mm_loadu_si128(reinterpret_cast<const __m128i *>(a_pos)) / divider);
a_pos += values_per_sse_register;
c_pos += values_per_sse_register;
}
#endif
while (a_pos < a_end)
{
*c_pos = *a_pos / divider;
++a_pos;
++c_pos;
}
}
};
template <typename A, typename B>
struct ModuloByConstantImpl
: BinaryOperationImplBase<A, B, ModuloImpl<A, B>>
{
using ResultType = typename ModuloImpl<A, B>::ResultType;
static void vector_constant(const PaddedPODArray<A> & a, B b, PaddedPODArray<ResultType> & c)
{
if (unlikely(b == 0))
throw Exception("Division by zero", ErrorCodes::ILLEGAL_DIVISION);
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-compare"
if (unlikely((std::is_signed_v<B> && b == -1) || b == 1))
{
size_t size = a.size();
for (size_t i = 0; i < size; ++i)
c[i] = 0;
return;
}
#pragma GCC diagnostic pop
libdivide::divider<A> divider(b);
/// Here we failed to make the SSE variant from libdivide give an advantage.
size_t size = a.size();
for (size_t i = 0; i < size; ++i)
c[i] = a[i] - (a[i] / divider) * b; /// NOTE: perhaps, the division semantics with the remainder of negative numbers is not preserved.
}
};
/** Specializations are specified for dividing numbers of the type UInt64 and UInt32 by the numbers of the same sign.
* Can be expanded to all possible combinations, but more code is needed.
*/
template <> struct BinaryOperationImpl<UInt64, UInt8, DivideIntegralImpl<UInt64, UInt8>> : DivideIntegralByConstantImpl<UInt64, UInt8> {};
template <> struct BinaryOperationImpl<UInt64, UInt16, DivideIntegralImpl<UInt64, UInt16>> : DivideIntegralByConstantImpl<UInt64, UInt16> {};
template <> struct BinaryOperationImpl<UInt64, UInt32, DivideIntegralImpl<UInt64, UInt32>> : DivideIntegralByConstantImpl<UInt64, UInt32> {};
template <> struct BinaryOperationImpl<UInt64, UInt64, DivideIntegralImpl<UInt64, UInt64>> : DivideIntegralByConstantImpl<UInt64, UInt64> {};
template <> struct BinaryOperationImpl<UInt32, UInt8, DivideIntegralImpl<UInt32, UInt8>> : DivideIntegralByConstantImpl<UInt32, UInt8> {};
template <> struct BinaryOperationImpl<UInt32, UInt16, DivideIntegralImpl<UInt32, UInt16>> : DivideIntegralByConstantImpl<UInt32, UInt16> {};
template <> struct BinaryOperationImpl<UInt32, UInt32, DivideIntegralImpl<UInt32, UInt32>> : DivideIntegralByConstantImpl<UInt32, UInt32> {};
template <> struct BinaryOperationImpl<UInt32, UInt64, DivideIntegralImpl<UInt32, UInt64>> : DivideIntegralByConstantImpl<UInt32, UInt64> {};
template <> struct BinaryOperationImpl<Int64, Int8, DivideIntegralImpl<Int64, Int8>> : DivideIntegralByConstantImpl<Int64, Int8> {};
template <> struct BinaryOperationImpl<Int64, Int16, DivideIntegralImpl<Int64, Int16>> : DivideIntegralByConstantImpl<Int64, Int16> {};
template <> struct BinaryOperationImpl<Int64, Int32, DivideIntegralImpl<Int64, Int32>> : DivideIntegralByConstantImpl<Int64, Int32> {};
template <> struct BinaryOperationImpl<Int64, Int64, DivideIntegralImpl<Int64, Int64>> : DivideIntegralByConstantImpl<Int64, Int64> {};
template <> struct BinaryOperationImpl<Int32, Int8, DivideIntegralImpl<Int32, Int8>> : DivideIntegralByConstantImpl<Int32, Int8> {};
template <> struct BinaryOperationImpl<Int32, Int16, DivideIntegralImpl<Int32, Int16>> : DivideIntegralByConstantImpl<Int32, Int16> {};
template <> struct BinaryOperationImpl<Int32, Int32, DivideIntegralImpl<Int32, Int32>> : DivideIntegralByConstantImpl<Int32, Int32> {};
template <> struct BinaryOperationImpl<Int32, Int64, DivideIntegralImpl<Int32, Int64>> : DivideIntegralByConstantImpl<Int32, Int64> {};
template <> struct BinaryOperationImpl<UInt64, UInt8, ModuloImpl<UInt64, UInt8>> : ModuloByConstantImpl<UInt64, UInt8> {};
template <> struct BinaryOperationImpl<UInt64, UInt16, ModuloImpl<UInt64, UInt16>> : ModuloByConstantImpl<UInt64, UInt16> {};
template <> struct BinaryOperationImpl<UInt64, UInt32, ModuloImpl<UInt64, UInt32>> : ModuloByConstantImpl<UInt64, UInt32> {};
template <> struct BinaryOperationImpl<UInt64, UInt64, ModuloImpl<UInt64, UInt64>> : ModuloByConstantImpl<UInt64, UInt64> {};
template <> struct BinaryOperationImpl<UInt32, UInt8, ModuloImpl<UInt32, UInt8>> : ModuloByConstantImpl<UInt32, UInt8> {};
template <> struct BinaryOperationImpl<UInt32, UInt16, ModuloImpl<UInt32, UInt16>> : ModuloByConstantImpl<UInt32, UInt16> {};
template <> struct BinaryOperationImpl<UInt32, UInt32, ModuloImpl<UInt32, UInt32>> : ModuloByConstantImpl<UInt32, UInt32> {};
template <> struct BinaryOperationImpl<UInt32, UInt64, ModuloImpl<UInt32, UInt64>> : ModuloByConstantImpl<UInt32, UInt64> {};
template <> struct BinaryOperationImpl<Int64, Int8, ModuloImpl<Int64, Int8>> : ModuloByConstantImpl<Int64, Int8> {};
template <> struct BinaryOperationImpl<Int64, Int16, ModuloImpl<Int64, Int16>> : ModuloByConstantImpl<Int64, Int16> {};
template <> struct BinaryOperationImpl<Int64, Int32, ModuloImpl<Int64, Int32>> : ModuloByConstantImpl<Int64, Int32> {};
template <> struct BinaryOperationImpl<Int64, Int64, ModuloImpl<Int64, Int64>> : ModuloByConstantImpl<Int64, Int64> {};
template <> struct BinaryOperationImpl<Int32, Int8, ModuloImpl<Int32, Int8>> : ModuloByConstantImpl<Int32, Int8> {};
template <> struct BinaryOperationImpl<Int32, Int16, ModuloImpl<Int32, Int16>> : ModuloByConstantImpl<Int32, Int16> {};
template <> struct BinaryOperationImpl<Int32, Int32, ModuloImpl<Int32, Int32>> : ModuloByConstantImpl<Int32, Int32> {};
template <> struct BinaryOperationImpl<Int32, Int64, ModuloImpl<Int32, Int64>> : ModuloByConstantImpl<Int32, Int64> {};
template <typename Impl, typename Name>
struct FunctionBitTestMany : public IFunction
{
public:
static constexpr auto name = Name::name;
static FunctionPtr create(const Context &) { return std::make_shared<FunctionBitTestMany>(); }
String getName() const override { return name; }
bool isVariadic() const override { return true; }
size_t getNumberOfArguments() const override { return 0; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
if (arguments.size() < 2)
throw Exception{"Number of arguments for function " + getName() + " doesn't match: passed "
+ toString(arguments.size()) + ", should be at least 2.", ErrorCodes::TOO_LESS_ARGUMENTS_FOR_FUNCTION};
const auto first_arg = arguments.front().get();
if (!first_arg->isInteger())
throw Exception{"Illegal type " + first_arg->getName() + " of first argument of function " + getName(), ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
for (const auto i : ext::range(1, arguments.size()))
{
const auto pos_arg = arguments[i].get();
if (!pos_arg->isUnsignedInteger())
throw Exception{"Illegal type " + pos_arg->getName() + " of " + toString(i) + " argument of function " + getName(), ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
}
return std::make_shared<DataTypeUInt8>();
}
void executeImpl(Block & block , const ColumnNumbers & arguments, size_t result, size_t /*input_rows_count*/) override
{
const auto value_col = block.getByPosition(arguments.front()).column.get();
if (!execute<UInt8>(block, arguments, result, value_col)
&& !execute<UInt16>(block, arguments, result, value_col)
&& !execute<UInt32>(block, arguments, result, value_col)
&& !execute<UInt64>(block, arguments, result, value_col)
&& !execute<Int8>(block, arguments, result, value_col)
&& !execute<Int16>(block, arguments, result, value_col)
&& !execute<Int32>(block, arguments, result, value_col)
&& !execute<Int64>(block, arguments, result, value_col))
throw Exception{"Illegal column " + value_col->getName() + " of argument of function " + getName(), ErrorCodes::ILLEGAL_COLUMN};
}
private:
template <typename T>
bool execute(
Block & block, const ColumnNumbers & arguments, const size_t result,
const IColumn * const value_col_untyped)
{
if (const auto value_col = checkAndGetColumn<ColumnVector<T>>(value_col_untyped))
{
const auto size = value_col->size();
bool is_const;
const auto mask = createConstMask<T>(block, arguments, is_const);
const auto & val = value_col->getData();
auto out_col = ColumnVector<UInt8>::create(size);
auto & out = out_col->getData();
if (is_const)
{
for (const auto i : ext::range(0, size))
out[i] = Impl::apply(val[i], mask);
}
else
{
const auto mask = createMask<T>(size, block, arguments);
for (const auto i : ext::range(0, size))
out[i] = Impl::apply(val[i], mask[i]);
}
block.getByPosition(result).column = std::move(out_col);
return true;
}
else if (const auto value_col = checkAndGetColumnConst<ColumnVector<T>>(value_col_untyped))
{
const auto size = value_col->size();
bool is_const;
const auto mask = createConstMask<T>(block, arguments, is_const);
const auto val = value_col->template getValue<T>();
if (is_const)
{
block.getByPosition(result).column = block.getByPosition(result).type->createColumnConst(size, toField(Impl::apply(val, mask)));
}
else
{
const auto mask = createMask<T>(size, block, arguments);
auto out_col = ColumnVector<UInt8>::create(size);
auto & out = out_col->getData();
for (const auto i : ext::range(0, size))
out[i] = Impl::apply(val, mask[i]);
block.getByPosition(result).column = std::move(out_col);
}
return true;
}
return false;
}
template <typename ValueType>
ValueType createConstMask(const Block & block, const ColumnNumbers & arguments, bool & is_const)
{
is_const = true;
ValueType mask = 0;
for (const auto i : ext::range(1, arguments.size()))
{
if (auto pos_col_const = checkAndGetColumnConst<ColumnVector<ValueType>>(block.getByPosition(arguments[i]).column.get()))
{
const auto pos = pos_col_const->template getValue<ValueType>();
mask = mask | (1 << pos);
}
else
{
is_const = false;
return {};
}
}
return mask;
}
template <typename ValueType>
PaddedPODArray<ValueType> createMask(const size_t size, const Block & block, const ColumnNumbers & arguments)
{
PaddedPODArray<ValueType> mask(size, ValueType{});
for (const auto i : ext::range(1, arguments.size()))
{
const auto pos_col = block.getByPosition(arguments[i]).column.get();
if (!addToMaskImpl<UInt8>(mask, pos_col)
&& !addToMaskImpl<UInt16>(mask, pos_col)
&& !addToMaskImpl<UInt32>(mask, pos_col)
&& !addToMaskImpl<UInt64>(mask, pos_col))
throw Exception{"Illegal column " + pos_col->getName() + " of argument of function " + getName(), ErrorCodes::ILLEGAL_COLUMN};
}
return mask;
}
template <typename PosType, typename ValueType>
bool addToMaskImpl(PaddedPODArray<ValueType> & mask, const IColumn * const pos_col_untyped)
{
if (const auto pos_col = checkAndGetColumn<ColumnVector<PosType>>(pos_col_untyped))
{
const auto & pos = pos_col->getData();
for (const auto i : ext::range(0, mask.size()))
mask[i] = mask[i] | (1 << pos[i]);
return true;
}
else if (const auto pos_col = checkAndGetColumnConst<ColumnVector<PosType>>(pos_col_untyped))
{
const auto & pos = pos_col->template getValue<PosType>();
const auto new_mask = 1 << pos;
for (const auto i : ext::range(0, mask.size()))
mask[i] = mask[i] | new_mask;
return true;
}
return false;
}
};
struct BitTestAnyImpl
{
template <typename A, typename B>
static inline UInt8 apply(A a, B b) { return (a & b) != 0; }
};
struct BitTestAllImpl
{
template <typename A, typename B>
static inline UInt8 apply(A a, B b) { return (a & b) == b; }
};
using FunctionBitTestAny = FunctionBitTestMany<BitTestAnyImpl, NameBitTestAny>;
using FunctionBitTestAll = FunctionBitTestMany<BitTestAllImpl, NameBitTestAll>;
}