ClickHouse/src/Functions/FunctionsLogical.cpp
2023-01-23 22:18:05 +01:00

780 lines
27 KiB
C++

#include <Functions/FunctionFactory.h>
#include <Functions/FunctionsLogical.h>
#include <Columns/ColumnConst.h>
#include <Columns/ColumnNullable.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnsNumber.h>
#include <Common/FieldVisitorConvertToNumber.h>
#include <Columns/MaskOperations.h>
#include <Common/typeid_cast.h>
#include <Columns/IColumn.h>
#include <DataTypes/DataTypeNullable.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeFactory.h>
#include <Functions/FunctionHelpers.h>
#include <Functions/FunctionUnaryArithmetic.h>
#include <Common/FieldVisitors.h>
#include <cstring>
#include <algorithm>
namespace DB
{
REGISTER_FUNCTION(Logical)
{
factory.registerFunction<FunctionAnd>();
factory.registerFunction<FunctionOr>();
factory.registerFunction<FunctionXor>();
factory.registerFunction<FunctionNot>({}, FunctionFactory::CaseInsensitive); /// Operator NOT(x) can be parsed as a function.
}
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int TOO_FEW_ARGUMENTS_FOR_FUNCTION;
extern const int ILLEGAL_COLUMN;
}
namespace
{
using namespace FunctionsLogicalDetail;
using UInt8Container = ColumnUInt8::Container;
using UInt8ColumnPtrs = std::vector<const ColumnUInt8 *>;
MutableColumnPtr buildColumnFromTernaryData(const UInt8Container & ternary_data, const bool make_nullable)
{
const size_t rows_count = ternary_data.size();
auto new_column = ColumnUInt8::create(rows_count);
for (size_t i = 0; i < rows_count; ++i)
new_column->getData()[i] = (ternary_data[i] == Ternary::True);
if (!make_nullable)
return new_column;
auto null_column = ColumnUInt8::create(rows_count);
for (size_t i = 0; i < rows_count; ++i)
null_column->getData()[i] = (ternary_data[i] == Ternary::Null);
return ColumnNullable::create(std::move(new_column), std::move(null_column));
}
template <typename T>
bool tryConvertColumnToBool(const IColumn * column, UInt8Container & res)
{
const auto column_typed = checkAndGetColumn<ColumnVector<T>>(column);
if (!column_typed)
return false;
auto & data = column_typed->getData();
size_t data_size = data.size();
for (size_t i = 0; i < data_size; ++i)
res[i] = static_cast<bool>(data[i]);
return true;
}
void convertAnyColumnToBool(const IColumn * column, UInt8Container & res)
{
if (!tryConvertColumnToBool<Int8>(column, res) &&
!tryConvertColumnToBool<Int16>(column, res) &&
!tryConvertColumnToBool<Int32>(column, res) &&
!tryConvertColumnToBool<Int64>(column, res) &&
!tryConvertColumnToBool<UInt16>(column, res) &&
!tryConvertColumnToBool<UInt32>(column, res) &&
!tryConvertColumnToBool<UInt64>(column, res) &&
!tryConvertColumnToBool<Float32>(column, res) &&
!tryConvertColumnToBool<Float64>(column, res))
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Unexpected type of column: {}", column->getName());
}
template <class Op, bool IsTernary, typename Func>
bool extractConstColumns(ColumnRawPtrs & in, UInt8 & res, Func && func)
{
bool has_res = false;
for (Int64 i = static_cast<Int64>(in.size()) - 1; i >= 0; --i)
{
UInt8 x;
if (in[i]->onlyNull())
x = func(Null());
else if (isColumnConst(*in[i]))
x = func((*in[i])[0]);
else
continue;
if (has_res)
{
if constexpr (IsTernary)
res = Op::ternaryApply(res, x);
else
res = Op::apply(res, x);
}
else
{
res = x;
has_res = true;
}
in.erase(in.begin() + i);
}
return has_res;
}
template <class Op>
inline bool extractConstColumnsAsBool(ColumnRawPtrs & in, UInt8 & res)
{
return extractConstColumns<Op, false>(
in, res,
[](const Field & value)
{
return !value.isNull() && applyVisitor(FieldVisitorConvertToNumber<bool>(), value);
}
);
}
template <class Op>
inline bool extractConstColumnsAsTernary(ColumnRawPtrs & in, UInt8 & res_3v)
{
return extractConstColumns<Op, true>(
in, res_3v,
[](const Field & value)
{
return value.isNull()
? Ternary::makeValue(false, true)
: Ternary::makeValue(applyVisitor(FieldVisitorConvertToNumber<bool>(), value));
}
);
}
/// N.B. This class calculates result only for non-nullable types
template <typename Op, size_t N>
class AssociativeApplierImpl
{
using ResultValueType = typename Op::ResultType;
public:
/// Remembers the last N columns from `in`.
explicit AssociativeApplierImpl(const UInt8ColumnPtrs & in)
: vec(in[in.size() - N]->getData()), next(in) {}
/// Returns a combination of values in the i-th row of all columns stored in the constructor.
inline ResultValueType apply(const size_t i) const
{
const auto a = !!vec[i];
return Op::apply(a, next.apply(i));
}
private:
const UInt8Container & vec;
const AssociativeApplierImpl<Op, N - 1> next;
};
template <typename Op>
class AssociativeApplierImpl<Op, 1>
{
using ResultValueType = typename Op::ResultType;
public:
explicit AssociativeApplierImpl(const UInt8ColumnPtrs & in)
: vec(in[in.size() - 1]->getData()) {}
inline ResultValueType apply(const size_t i) const { return !!vec[i]; }
private:
const UInt8Container & vec;
};
template <typename ... Types>
struct TernaryValueBuilderImpl;
template <typename Type, typename ...Types>
struct TernaryValueBuilderImpl<Type, Types...>
{
static void build(const IColumn * x, UInt8* __restrict ternary_column_data)
{
size_t size = x->size();
if (x->onlyNull())
{
memset(ternary_column_data, Ternary::Null, size);
}
else if (const auto * nullable_column = typeid_cast<const ColumnNullable *>(x))
{
if (const auto * nested_column = typeid_cast<const ColumnVector<Type> *>(nullable_column->getNestedColumnPtr().get()))
{
const auto& null_data = nullable_column->getNullMapData();
const auto& column_data = nested_column->getData();
if constexpr (sizeof(Type) == 1)
{
for (size_t i = 0; i < size; ++i)
{
auto has_value = static_cast<UInt8>(column_data[i] != 0);
auto is_null = !!null_data[i];
ternary_column_data[i] = ((has_value << 1) | is_null) & (1 << !is_null);
}
}
else
{
for (size_t i = 0; i < size; ++i)
{
auto has_value = static_cast<UInt8>(column_data[i] != 0);
ternary_column_data[i] = has_value;
}
for (size_t i = 0; i < size; ++i)
{
auto has_value = ternary_column_data[i];
auto is_null = !!null_data[i];
ternary_column_data[i] = ((has_value << 1) | is_null) & (1 << !is_null);
}
}
}
else
TernaryValueBuilderImpl<Types...>::build(x, ternary_column_data);
}
else if (const auto column = typeid_cast<const ColumnVector<Type> *>(x))
{
auto &column_data = column->getData();
for (size_t i = 0; i < size; ++i)
{
ternary_column_data[i] = (column_data[i] != 0) << 1;
}
}
else
TernaryValueBuilderImpl<Types...>::build(x, ternary_column_data);
}
};
template <>
struct TernaryValueBuilderImpl<>
{
[[noreturn]] static void build(const IColumn * x, UInt8 * /* nullable_ternary_column_data */)
{
throw Exception(ErrorCodes::LOGICAL_ERROR,
"Unknown numeric column of type: {}", demangle(typeid(*x).name()));
}
};
using TernaryValueBuilder =
TernaryValueBuilderImpl<UInt8, UInt16, UInt32, UInt64, Int8, Int16, Int32, Int64, Float32, Float64>;
/// This class together with helper class TernaryValueBuilder can be used with columns of arbitrary data type
/// Converts column of any data type into an intermediate UInt8Column of ternary representation for the
/// vectorized ternary logic evaluation.
template <typename Op, size_t N>
class AssociativeGenericApplierImpl
{
using ResultValueType = typename Op::ResultType;
public:
/// Remembers the last N columns from `in`.
explicit AssociativeGenericApplierImpl(const ColumnRawPtrs & in)
: vec(in[in.size() - N]->size()), next{in}
{
TernaryValueBuilder::build(in[in.size() - N], vec.data());
}
/// Returns a combination of values in the i-th row of all columns stored in the constructor.
inline ResultValueType apply(const size_t i) const
{
return Op::ternaryApply(vec[i], next.apply(i));
}
private:
UInt8Container vec;
const AssociativeGenericApplierImpl<Op, N - 1> next;
};
template <typename Op>
class AssociativeGenericApplierImpl<Op, 1>
{
using ResultValueType = typename Op::ResultType;
public:
/// Remembers the last N columns from `in`.
explicit AssociativeGenericApplierImpl(const ColumnRawPtrs & in)
: vec(UInt8Container(in[in.size() - 1]->size()))
{
TernaryValueBuilder::build(in[in.size() - 1], vec.data());
}
inline ResultValueType apply(const size_t i) const { return vec[i]; }
private:
UInt8Container vec;
};
/// Apply target function by feeding it "batches" of N columns
/// Combining 8 columns per pass is the fastest method, because it's the maximum when clang vectorizes a loop.
template <
typename Op, template <typename, size_t> typename OperationApplierImpl, size_t N = 8>
struct OperationApplier
{
template <typename Columns, typename ResultData>
static void apply(Columns & in, ResultData & result_data, bool use_result_data_as_input = false)
{
if (!use_result_data_as_input)
doBatchedApply<false>(in, result_data.data(), result_data.size());
while (!in.empty())
doBatchedApply<true>(in, result_data.data(), result_data.size());
}
template <bool CarryResult, typename Columns, typename Result>
static void NO_INLINE doBatchedApply(Columns & in, Result * __restrict result_data, size_t size)
{
if (N > in.size())
{
OperationApplier<Op, OperationApplierImpl, N - 1>
::template doBatchedApply<CarryResult>(in, result_data, size);
return;
}
const OperationApplierImpl<Op, N> operation_applier_impl(in);
for (size_t i = 0; i < size; ++i)
{
if constexpr (CarryResult)
{
if constexpr (std::is_same_v<OperationApplierImpl<Op, N>, AssociativeApplierImpl<Op, N>>)
result_data[i] = Op::apply(result_data[i], operation_applier_impl.apply(i));
else
result_data[i] = Op::ternaryApply(result_data[i], operation_applier_impl.apply(i));
}
else
result_data[i] = operation_applier_impl.apply(i);
}
in.erase(in.end() - N, in.end());
}
};
template <
typename Op, template <typename, size_t> typename OperationApplierImpl>
struct OperationApplier<Op, OperationApplierImpl, 0>
{
template <bool, typename Columns, typename Result>
static void NO_INLINE doBatchedApply(Columns &, Result &, size_t)
{
throw Exception(ErrorCodes::LOGICAL_ERROR, "OperationApplier<...>::apply(...): not enough arguments to run this method");
}
};
template <class Op>
ColumnPtr executeForTernaryLogicImpl(ColumnRawPtrs arguments, const DataTypePtr & result_type, size_t input_rows_count)
{
/// Combine all constant columns into a single constant value.
UInt8 const_3v_value = 0;
const bool has_consts = extractConstColumnsAsTernary<Op>(arguments, const_3v_value);
/// If the constant value uniquely determines the result, return it.
if (has_consts && (arguments.empty() || Op::isSaturatedValueTernary(const_3v_value)))
{
return ColumnConst::create(
buildColumnFromTernaryData(UInt8Container({const_3v_value}), result_type->isNullable()),
input_rows_count
);
}
const auto result_column = has_consts ?
ColumnUInt8::create(input_rows_count, const_3v_value) : ColumnUInt8::create(input_rows_count);
OperationApplier<Op, AssociativeGenericApplierImpl>::apply(arguments, result_column->getData(), has_consts);
return buildColumnFromTernaryData(result_column->getData(), result_type->isNullable());
}
template <typename Op, typename ... Types>
struct TypedExecutorInvoker;
template <typename Op>
using FastApplierImpl =
TypedExecutorInvoker<Op, UInt8, UInt16, UInt32, UInt64, Int8, Int16, Int32, Int64, Float32, Float64>;
template <typename Op, typename Type, typename ... Types>
struct TypedExecutorInvoker<Op, Type, Types ...>
{
template <typename T, typename Result>
static void apply(const ColumnVector<T> & x, const IColumn & y, Result & result)
{
if (const auto column = typeid_cast<const ColumnVector<Type> *>(&y))
std::transform(
x.getData().cbegin(), x.getData().cend(),
column->getData().cbegin(), result.begin(),
[](const auto a, const auto b) { return Op::apply(static_cast<bool>(a), static_cast<bool>(b)); });
else
TypedExecutorInvoker<Op, Types ...>::template apply<T>(x, y, result);
}
template <typename Result>
static void apply(const IColumn & x, const IColumn & y, Result & result)
{
if (const auto column = typeid_cast<const ColumnVector<Type> *>(&x))
FastApplierImpl<Op>::template apply<Type>(*column, y, result);
else
TypedExecutorInvoker<Op, Types ...>::apply(x, y, result);
}
};
template <typename Op>
struct TypedExecutorInvoker<Op>
{
template <typename T, typename Result>
static void apply(const ColumnVector<T> &, const IColumn & y, Result &)
{
throw Exception(ErrorCodes::LOGICAL_ERROR, "Unknown numeric column y of type: {}", demangle(typeid(y).name()));
}
template <typename Result>
static void apply(const IColumn & x, const IColumn &, Result &)
{
throw Exception(ErrorCodes::LOGICAL_ERROR, "Unknown numeric column x of type: {}", demangle(typeid(x).name()));
}
};
/// Types of all of the arguments are guaranteed to be non-nullable here
template <class Op>
ColumnPtr basicExecuteImpl(ColumnRawPtrs arguments, size_t input_rows_count)
{
/// Combine all constant columns into a single constant value.
UInt8 const_val = 0;
bool has_consts = extractConstColumnsAsBool<Op>(arguments, const_val);
/// If the constant value uniquely determines the result, return it.
if (has_consts && (arguments.empty() || Op::apply(const_val, 0) == Op::apply(const_val, 1)))
{
if (!arguments.empty())
const_val = Op::apply(const_val, 0);
return DataTypeUInt8().createColumnConst(input_rows_count, toField(const_val));
}
/// If the constant value is a neutral element, let's forget about it.
if (has_consts && Op::apply(const_val, 0) == 0 && Op::apply(const_val, 1) == 1)
has_consts = false;
auto col_res = has_consts ?
ColumnUInt8::create(input_rows_count, const_val) : ColumnUInt8::create(input_rows_count);
/// FastPath detection goes in here
if (arguments.size() == (has_consts ? 1 : 2))
{
if (has_consts)
FastApplierImpl<Op>::apply(*arguments[0], *col_res, col_res->getData());
else
FastApplierImpl<Op>::apply(*arguments[0], *arguments[1], col_res->getData());
return col_res;
}
/// Convert all columns to UInt8
UInt8ColumnPtrs uint8_args;
Columns converted_columns_holder;
for (const IColumn * column : arguments)
{
if (const auto * uint8_column = checkAndGetColumn<ColumnUInt8>(column))
{
uint8_args.push_back(uint8_column);
}
else
{
auto converted_column = ColumnUInt8::create(input_rows_count);
convertAnyColumnToBool(column, converted_column->getData());
uint8_args.push_back(converted_column.get());
converted_columns_holder.emplace_back(std::move(converted_column));
}
}
OperationApplier<Op, AssociativeApplierImpl>::apply(uint8_args, col_res->getData(), has_consts);
return col_res;
}
}
template <typename Impl, typename Name>
DataTypePtr FunctionAnyArityLogical<Impl, Name>::getReturnTypeImpl(const DataTypes & arguments) const
{
if (arguments.size() < 2)
throw Exception(ErrorCodes::TOO_FEW_ARGUMENTS_FOR_FUNCTION,
"Number of arguments for function \"{}\" should be at least 2: passed {}",
getName(), arguments.size());
bool has_nullable_arguments = false;
bool has_bool_arguments = false;
for (size_t i = 0; i < arguments.size(); ++i)
{
const auto & arg_type = arguments[i];
if (isBool(arg_type))
has_bool_arguments = true;
if (!has_nullable_arguments)
{
has_nullable_arguments = arg_type->isNullable();
if (has_nullable_arguments && !Impl::specialImplementationForNulls())
throw Exception(ErrorCodes::LOGICAL_ERROR, "Logical error: Unexpected type of argument for function \"{}\": "
" argument {} is of type {}", getName(), i + 1, arg_type->getName());
}
if (!(isNativeNumber(arg_type)
|| (Impl::specialImplementationForNulls() && (arg_type->onlyNull() || isNativeNumber(removeNullable(arg_type))))))
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type ({}) of {} argument of function {}",
arg_type->getName(), i + 1, getName());
}
auto result_type = has_bool_arguments ? DataTypeFactory::instance().get("Bool") : std::make_shared<DataTypeUInt8>();
return has_nullable_arguments
? makeNullable(result_type)
: result_type;
}
template <bool inverted>
static void applyTernaryLogicImpl(const IColumn::Filter & mask, IColumn::Filter & null_bytemap)
{
for (size_t i = 0; i != mask.size(); ++i)
{
UInt8 value = mask[i];
if constexpr (inverted)
value = !value;
if (null_bytemap[i] && value)
null_bytemap[i] = 0;
}
}
template <typename Name>
static void applyTernaryLogic(const IColumn::Filter & mask, IColumn::Filter & null_bytemap)
{
if (Name::name == NameAnd::name)
applyTernaryLogicImpl<true>(mask, null_bytemap);
else if (Name::name == NameOr::name)
applyTernaryLogicImpl<false>(mask, null_bytemap);
}
template <typename Impl, typename Name>
ColumnPtr FunctionAnyArityLogical<Impl, Name>::executeShortCircuit(ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type) const
{
if (Name::name != NameAnd::name && Name::name != NameOr::name)
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Function {} doesn't support short circuit execution", getName());
executeColumnIfNeeded(arguments[0]);
/// Let's denote x_i' = maskedExecute(x_i, mask).
/// 1) AND(x_0, x_1, x_2, ..., x_n)
/// We will support mask_i = x_0 & x_1 & ... & x_i.
/// Base:
/// mask_0 is 1 everywhere, x_0' = x_0.
/// Iteration:
/// mask_i = extractMask(mask_{i - 1}, x_{i - 1}')
/// x_i' = maskedExecute(x_i, mask)
/// Also we will treat NULL as 1 if x_i' is Nullable
/// to support ternary logic.
/// The result is mask_n.
///
/// 1) OR(x_0, x_1, x_2, ..., x_n)
/// We will support mask_i = !x_0 & !x_1 & ... & !x_i.
/// mask_0 is 1 everywhere, x_0' = x_0.
/// mask = extractMask(mask, !x_{i - 1}')
/// x_i' = maskedExecute(x_i, mask)
/// Also we will treat NULL as 0 if x_i' is Nullable
/// to support ternary logic.
/// The result is !mask_n.
bool inverted = Name::name != NameAnd::name;
UInt8 null_value = static_cast<UInt8>(Name::name == NameAnd::name);
IColumn::Filter mask(arguments[0].column->size(), 1);
/// If result is nullable, we need to create null bytemap of the resulting column.
/// We will fill it while extracting mask from arguments.
std::unique_ptr<IColumn::Filter> nulls;
if (result_type->isNullable())
nulls = std::make_unique<IColumn::Filter>(arguments[0].column->size(), 0);
MaskInfo mask_info;
for (size_t i = 1; i <= arguments.size(); ++i)
{
if (inverted)
mask_info = extractInvertedMask(mask, arguments[i - 1].column, nulls.get(), null_value);
else
mask_info = extractMask(mask, arguments[i - 1].column, nulls.get(), null_value);
/// If mask doesn't have ones, we don't need to execute the rest arguments,
/// because the result won't change.
if (!mask_info.has_ones || i == arguments.size())
break;
maskedExecute(arguments[i], mask, mask_info);
}
/// For OR function we need to inverse mask to get the resulting column.
if (inverted)
inverseMask(mask, mask_info);
if (nulls)
applyTernaryLogic<Name>(mask, *nulls);
auto res = ColumnUInt8::create();
res->getData() = std::move(mask);
if (!nulls)
return res;
auto bytemap = ColumnUInt8::create();
bytemap->getData() = std::move(*nulls);
return ColumnNullable::create(std::move(res), std::move(bytemap));
}
template <typename Impl, typename Name>
ColumnPtr FunctionAnyArityLogical<Impl, Name>::executeImpl(
const ColumnsWithTypeAndName & args, const DataTypePtr & result_type, size_t input_rows_count) const
{
ColumnsWithTypeAndName arguments = args;
/// Special implementation for short-circuit arguments.
if (checkShortCircuitArguments(arguments) != -1)
return executeShortCircuit(arguments, result_type);
ColumnRawPtrs args_in;
for (const auto & arg_index : arguments)
args_in.push_back(arg_index.column.get());
if (result_type->isNullable())
return executeForTernaryLogicImpl<Impl>(std::move(args_in), result_type, input_rows_count);
else
return basicExecuteImpl<Impl>(std::move(args_in), input_rows_count);
}
template <typename Impl, typename Name>
ColumnPtr FunctionAnyArityLogical<Impl, Name>::getConstantResultForNonConstArguments(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type) const
{
/** Try to perform optimization for saturable functions (AndFunction, OrFunction) in case some arguments are
* constants.
* If function is not saturable (XorFunction) we cannot perform such optimization.
* If function is AndFunction and in arguments there is constant false, result is false.
* If function is OrFunction and in arguments there is constant true, result is true.
*/
if constexpr (!Impl::isSaturable())
return nullptr;
bool has_true_constant = false;
bool has_false_constant = false;
for (const auto & argument : arguments)
{
ColumnPtr column = argument.column;
if (!column || !isColumnConst(*column))
continue;
DataTypePtr non_nullable_type = removeNullable(argument.type);
TypeIndex data_type_index = non_nullable_type->getTypeId();
if (!isNativeNumber(data_type_index))
continue;
const ColumnConst * const_column = static_cast<const ColumnConst *>(column.get());
Field constant_field_value = const_column->getField();
if (constant_field_value.isNull())
continue;
auto field_type = constant_field_value.getType();
bool constant_value_bool = false;
if (field_type == Field::Types::Float64)
constant_value_bool = static_cast<bool>(constant_field_value.get<Float64>());
else if (field_type == Field::Types::Int64)
constant_value_bool = static_cast<bool>(constant_field_value.get<Int64>());
else if (field_type == Field::Types::UInt64)
constant_value_bool = static_cast<bool>(constant_field_value.get<UInt64>());
has_true_constant = has_true_constant || constant_value_bool;
has_false_constant = has_false_constant || !constant_value_bool;
}
ColumnPtr result_column;
if constexpr (std::is_same_v<Impl, AndImpl>)
{
if (has_false_constant)
result_column = result_type->createColumnConst(0, static_cast<UInt8>(false));
}
else if constexpr (std::is_same_v<Impl, OrImpl>)
{
if (has_true_constant)
result_column = result_type->createColumnConst(0, static_cast<UInt8>(true));
}
return result_column;
}
template <template <typename> class Impl, typename Name>
DataTypePtr FunctionUnaryLogical<Impl, Name>::getReturnTypeImpl(const DataTypes & arguments) const
{
if (!isNativeNumber(arguments[0]))
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
"Illegal type ({}) of argument of function {}",
arguments[0]->getName(),
getName());
return isBool(arguments[0]) ? DataTypeFactory::instance().get("Bool") : std::make_shared<DataTypeUInt8>();
}
template <template <typename> class Impl, typename T>
ColumnPtr functionUnaryExecuteType(const ColumnsWithTypeAndName & arguments)
{
if (auto col = checkAndGetColumn<ColumnVector<T>>(arguments[0].column.get()))
{
auto col_res = ColumnUInt8::create(col->getData().size());
auto & vec_res = col_res->getData();
UnaryOperationImpl<T, Impl<T>>::vector(col->getData(), vec_res);
return col_res;
}
return nullptr;
}
template <template <typename> class Impl, typename Name>
ColumnPtr FunctionUnaryLogical<Impl, Name>::executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t /*input_rows_count*/) const
{
ColumnPtr res;
if (!((res = functionUnaryExecuteType<Impl, UInt8>(arguments))
|| (res = functionUnaryExecuteType<Impl, UInt16>(arguments))
|| (res = functionUnaryExecuteType<Impl, UInt32>(arguments))
|| (res = functionUnaryExecuteType<Impl, UInt64>(arguments))
|| (res = functionUnaryExecuteType<Impl, Int8>(arguments))
|| (res = functionUnaryExecuteType<Impl, Int16>(arguments))
|| (res = functionUnaryExecuteType<Impl, Int32>(arguments))
|| (res = functionUnaryExecuteType<Impl, Int64>(arguments))
|| (res = functionUnaryExecuteType<Impl, Float32>(arguments))
|| (res = functionUnaryExecuteType<Impl, Float64>(arguments))))
throw Exception(ErrorCodes::ILLEGAL_COLUMN,
"Illegal column {} of argument of function {}",
arguments[0].column->getName(),
getName());
return res;
}
}