ClickHouse/src/Common/memcmpSmall.h
Robert Schulze f72a337074
Remove cruft from build
No need to check compiler flags, clang >= 15 supports all of them.
2023-03-17 13:44:04 +00:00

809 lines
21 KiB
C++

#pragma once
#include <algorithm>
#include <bit>
#include <cstdint>
#include <Core/Defines.h>
namespace detail
{
template <typename T>
inline int cmp(T a, T b)
{
if (a < b)
return -1;
if (a > b)
return 1;
return 0;
}
}
/// We can process uninitialized memory in the functions below.
/// Results don't depend on the values inside uninitialized memory but Memory Sanitizer cannot see it.
/// Disable optimized functions if compile with Memory Sanitizer.
#if defined(__AVX512BW__) && defined(__AVX512VL__) && !defined(MEMORY_SANITIZER)
# include <immintrin.h>
/** All functions works under the following assumptions:
* - it's possible to read up to 15 excessive bytes after end of 'a' and 'b' region;
* - memory regions are relatively small and extra loop unrolling is not worth to do.
*/
/** Variant when memory regions may have different sizes.
*/
template <typename Char>
inline int memcmpSmallAllowOverflow15(const Char * a, size_t a_size, const Char * b, size_t b_size)
{
size_t min_size = std::min(a_size, b_size);
for (size_t offset = 0; offset < min_size; offset += 16)
{
uint16_t mask = _mm_cmp_epi8_mask(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(a + offset)),
_mm_loadu_si128(reinterpret_cast<const __m128i *>(b + offset)),
_MM_CMPINT_NE);
if (mask)
{
offset += std::countr_zero(mask);
if (offset >= min_size)
break;
return detail::cmp(a[offset], b[offset]);
}
}
return detail::cmp(a_size, b_size);
}
/** Variant when memory regions may have different sizes.
* But compare the regions as the smaller one is padded with zero bytes up to the size of the larger.
* It's needed to hold that: toFixedString('abc', 5) = 'abc'
* for compatibility with SQL standard.
*/
template <typename Char>
inline int memcmpSmallLikeZeroPaddedAllowOverflow15(const Char * a, size_t a_size, const Char * b, size_t b_size)
{
size_t min_size = std::min(a_size, b_size);
for (size_t offset = 0; offset < min_size; offset += 16)
{
uint16_t mask = _mm_cmp_epi8_mask(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(a + offset)),
_mm_loadu_si128(reinterpret_cast<const __m128i *>(b + offset)),
_MM_CMPINT_NE);
if (mask)
{
offset += std::countr_zero(mask);
if (offset >= min_size)
break;
return detail::cmp(a[offset], b[offset]);
}
}
/// The strings are equal up to min_size.
/// If the rest of the larger string is zero bytes then the strings are considered equal.
size_t max_size;
const Char * longest;
int cmp;
if (a_size == b_size)
{
return 0;
}
else if (a_size > b_size)
{
max_size = a_size;
longest = a;
cmp = 1;
}
else
{
max_size = b_size;
longest = b;
cmp = -1;
}
const __m128i zero16 = _mm_setzero_si128();
for (size_t offset = min_size; offset < max_size; offset += 16)
{
uint16_t mask = _mm_cmpneq_epi8_mask(_mm_loadu_si128(reinterpret_cast<const __m128i *>(longest + offset)), zero16);
if (mask)
{
offset += std::countr_zero(mask);
if (offset >= max_size)
return 0;
return cmp;
}
}
return 0;
}
/** Variant when memory regions have same size.
* TODO Check if the compiler can optimize previous function when the caller pass identical sizes.
*/
template <typename Char>
inline int memcmpSmallAllowOverflow15(const Char * a, const Char * b, size_t size)
{
for (size_t offset = 0; offset < size; offset += 16)
{
uint16_t mask = _mm_cmp_epi8_mask(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(a + offset)),
_mm_loadu_si128(reinterpret_cast<const __m128i *>(b + offset)),
_MM_CMPINT_NE);
if (mask)
{
offset += std::countr_zero(mask);
if (offset >= size)
return 0;
return detail::cmp(a[offset], b[offset]);
}
}
return 0;
}
/** Compare memory regions for equality.
*/
template <typename Char>
inline bool memequalSmallAllowOverflow15(const Char * a, size_t a_size, const Char * b, size_t b_size)
{
if (a_size != b_size)
return false;
for (size_t offset = 0; offset < a_size; offset += 16)
{
uint16_t mask = _mm_cmp_epi8_mask(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(a + offset)),
_mm_loadu_si128(reinterpret_cast<const __m128i *>(b + offset)),
_MM_CMPINT_NE);
if (mask)
{
offset += std::countr_zero(mask);
return offset >= a_size;
}
}
return true;
}
/** Variant when the caller know in advance that the size is a multiple of 16.
*/
template <typename Char>
inline int memcmpSmallMultipleOf16(const Char * a, const Char * b, size_t size)
{
for (size_t offset = 0; offset < size; offset += 16)
{
uint16_t mask = _mm_cmp_epi8_mask(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(a + offset)),
_mm_loadu_si128(reinterpret_cast<const __m128i *>(b + offset)),
_MM_CMPINT_NE);
if (mask)
{
offset += std::countr_zero(mask);
return detail::cmp(a[offset], b[offset]);
}
}
return 0;
}
/** Variant when the size is 16 exactly.
*/
template <typename Char>
inline int memcmp16(const Char * a, const Char * b)
{
uint16_t mask = _mm_cmp_epi8_mask(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(a)), _mm_loadu_si128(reinterpret_cast<const __m128i *>(b)), _MM_CMPINT_NE);
if (mask)
{
auto offset = std::countr_zero(mask);
return detail::cmp(a[offset], b[offset]);
}
return 0;
}
/** Variant when the size is 16 exactly.
*/
inline bool memequal16(const void * a, const void * b)
{
return 0xFFFF
== _mm_cmp_epi8_mask(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(a)), _mm_loadu_si128(reinterpret_cast<const __m128i *>(b)), _MM_CMPINT_EQ);
}
/** Compare memory region to zero */
inline bool memoryIsZeroSmallAllowOverflow15(const void * data, size_t size)
{
const __m128i zero16 = _mm_setzero_si128();
for (size_t offset = 0; offset < size; offset += 16)
{
uint16_t mask = _mm_cmp_epi8_mask(
zero16, _mm_loadu_si128(reinterpret_cast<const __m128i *>(reinterpret_cast<const char *>(data) + offset)), _MM_CMPINT_NE);
if (mask)
{
offset += std::countr_zero(mask);
return offset >= size;
}
}
return true;
}
#elif defined(__SSE2__) && !defined(MEMORY_SANITIZER)
# include <emmintrin.h>
/** All functions works under the following assumptions:
* - it's possible to read up to 15 excessive bytes after end of 'a' and 'b' region;
* - memory regions are relatively small and extra loop unrolling is not worth to do.
*/
/** Variant when memory regions may have different sizes.
*/
template <typename Char>
inline int memcmpSmallAllowOverflow15(const Char * a, size_t a_size, const Char * b, size_t b_size)
{
size_t min_size = std::min(a_size, b_size);
for (size_t offset = 0; offset < min_size; offset += 16)
{
uint16_t mask = _mm_movemask_epi8(_mm_cmpeq_epi8(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(a + offset)),
_mm_loadu_si128(reinterpret_cast<const __m128i *>(b + offset))));
mask = ~mask;
if (mask)
{
offset += std::countr_zero(mask);
if (offset >= min_size)
break;
return detail::cmp(a[offset], b[offset]);
}
}
return detail::cmp(a_size, b_size);
}
/** Variant when memory regions may have different sizes.
* But compare the regions as the smaller one is padded with zero bytes up to the size of the larger.
* It's needed to hold that: toFixedString('abc', 5) = 'abc'
* for compatibility with SQL standard.
*/
template <typename Char>
inline int memcmpSmallLikeZeroPaddedAllowOverflow15(const Char * a, size_t a_size, const Char * b, size_t b_size)
{
size_t min_size = std::min(a_size, b_size);
for (size_t offset = 0; offset < min_size; offset += 16)
{
uint16_t mask = _mm_movemask_epi8(_mm_cmpeq_epi8(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(a + offset)),
_mm_loadu_si128(reinterpret_cast<const __m128i *>(b + offset))));
mask = ~mask;
if (mask)
{
offset += std::countr_zero(mask);
if (offset >= min_size)
break;
return detail::cmp(a[offset], b[offset]);
}
}
/// The strings are equal up to min_size.
/// If the rest of the larger string is zero bytes then the strings are considered equal.
size_t max_size;
const Char * longest;
int cmp;
if (a_size == b_size)
{
return 0;
}
else if (a_size > b_size)
{
max_size = a_size;
longest = a;
cmp = 1;
}
else
{
max_size = b_size;
longest = b;
cmp = -1;
}
const __m128i zero16 = _mm_setzero_si128();
for (size_t offset = min_size; offset < max_size; offset += 16)
{
uint16_t mask = _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(longest + offset)), zero16));
mask = ~mask;
if (mask)
{
offset += std::countr_zero(mask);
if (offset >= max_size)
return 0;
return cmp;
}
}
return 0;
}
/** Variant when memory regions have same size.
* TODO Check if the compiler can optimize previous function when the caller pass identical sizes.
*/
template <typename Char>
inline int memcmpSmallAllowOverflow15(const Char * a, const Char * b, size_t size)
{
for (size_t offset = 0; offset < size; offset += 16)
{
uint16_t mask = _mm_movemask_epi8(_mm_cmpeq_epi8(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(a + offset)),
_mm_loadu_si128(reinterpret_cast<const __m128i *>(b + offset))));
mask = ~mask;
if (mask)
{
offset += std::countr_zero(mask);
if (offset >= size)
return 0;
return detail::cmp(a[offset], b[offset]);
}
}
return 0;
}
/** Compare memory regions for equality.
*/
template <typename Char>
inline bool memequalSmallAllowOverflow15(const Char * a, size_t a_size, const Char * b, size_t b_size)
{
if (a_size != b_size)
return false;
for (size_t offset = 0; offset < a_size; offset += 16)
{
uint16_t mask = _mm_movemask_epi8(_mm_cmpeq_epi8(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(a + offset)),
_mm_loadu_si128(reinterpret_cast<const __m128i *>(b + offset))));
mask = ~mask;
if (mask)
{
offset += std::countr_zero(mask);
return offset >= a_size;
}
}
return true;
}
/** Variant when the caller know in advance that the size is a multiple of 16.
*/
template <typename Char>
inline int memcmpSmallMultipleOf16(const Char * a, const Char * b, size_t size)
{
for (size_t offset = 0; offset < size; offset += 16)
{
uint16_t mask = _mm_movemask_epi8(_mm_cmpeq_epi8(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(a + offset)),
_mm_loadu_si128(reinterpret_cast<const __m128i *>(b + offset))));
mask = ~mask;
if (mask)
{
offset += std::countr_zero(mask);
return detail::cmp(a[offset], b[offset]);
}
}
return 0;
}
/** Variant when the size is 16 exactly.
*/
template <typename Char>
inline int memcmp16(const Char * a, const Char * b)
{
uint16_t mask = _mm_movemask_epi8(
_mm_cmpeq_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(a)), _mm_loadu_si128(reinterpret_cast<const __m128i *>(b))));
mask = ~mask;
if (mask)
{
auto offset = std::countr_zero(mask);
return detail::cmp(a[offset], b[offset]);
}
return 0;
}
/** Variant when the size is 16 exactly.
*/
inline bool memequal16(const void * a, const void * b)
{
return 0xFFFF
== _mm_movemask_epi8(_mm_cmpeq_epi8(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(a)), _mm_loadu_si128(reinterpret_cast<const __m128i *>(b))));
}
/** Compare memory region to zero */
inline bool memoryIsZeroSmallAllowOverflow15(const void * data, size_t size)
{
const __m128i zero16 = _mm_setzero_si128();
for (size_t offset = 0; offset < size; offset += 16)
{
uint16_t mask = _mm_movemask_epi8(
_mm_cmpeq_epi8(zero16, _mm_loadu_si128(reinterpret_cast<const __m128i *>(reinterpret_cast<const char *>(data) + offset))));
mask = ~mask;
if (mask)
{
offset += std::countr_zero(mask);
return offset >= size;
}
}
return true;
}
#elif defined(__aarch64__) && defined(__ARM_NEON)
# include <arm_neon.h>
# pragma clang diagnostic ignored "-Wreserved-identifier"
inline uint64_t getNibbleMask(uint8x16_t res)
{
return vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(vreinterpretq_u16_u8(res), 4)), 0);
}
template <typename Char>
inline int memcmpSmallAllowOverflow15(const Char * a, size_t a_size, const Char * b, size_t b_size)
{
size_t min_size = std::min(a_size, b_size);
for (size_t offset = 0; offset < min_size; offset += 16)
{
uint64_t mask = getNibbleMask(vceqq_u8(
vld1q_u8(reinterpret_cast<const unsigned char *>(a + offset)), vld1q_u8(reinterpret_cast<const unsigned char *>(b + offset))));
mask = ~mask;
if (mask)
{
offset += std::countr_zero(mask) >> 2;
if (offset >= min_size)
break;
return detail::cmp(a[offset], b[offset]);
}
}
return detail::cmp(a_size, b_size);
}
template <typename Char>
inline int memcmpSmallLikeZeroPaddedAllowOverflow15(const Char * a, size_t a_size, const Char * b, size_t b_size)
{
size_t min_size = std::min(a_size, b_size);
for (size_t offset = 0; offset < min_size; offset += 16)
{
uint64_t mask = getNibbleMask(vceqq_u8(
vld1q_u8(reinterpret_cast<const unsigned char *>(a + offset)), vld1q_u8(reinterpret_cast<const unsigned char *>(b + offset))));
mask = ~mask;
if (mask)
{
offset += std::countr_zero(mask) >> 2;
if (offset >= min_size)
break;
return detail::cmp(a[offset], b[offset]);
}
}
/// The strings are equal up to min_size.
/// If the rest of the larger string is zero bytes then the strings are
/// considered equal.
size_t max_size;
const Char * longest;
int cmp;
if (a_size == b_size)
{
return 0;
}
else if (a_size > b_size)
{
max_size = a_size;
longest = a;
cmp = 1;
}
else
{
max_size = b_size;
longest = b;
cmp = -1;
}
for (size_t offset = min_size; offset < max_size; offset += 16)
{
uint64_t mask = getNibbleMask(vceqzq_u8(vld1q_u8(reinterpret_cast<const unsigned char *>(longest + offset))));
mask = ~mask;
if (mask)
{
offset += std::countr_zero(mask) >> 2;
if (offset >= max_size)
return 0;
return cmp;
}
}
return 0;
}
template <typename Char>
inline int memcmpSmallAllowOverflow15(const Char * a, const Char * b, size_t size)
{
for (size_t offset = 0; offset < size; offset += 16)
{
uint64_t mask = getNibbleMask(vceqq_u8(
vld1q_u8(reinterpret_cast<const unsigned char *>(a + offset)), vld1q_u8(reinterpret_cast<const unsigned char *>(b + offset))));
mask = ~mask;
if (mask)
{
offset += std::countr_zero(mask) >> 2;
if (offset >= size)
return 0;
return detail::cmp(a[offset], b[offset]);
}
}
return 0;
}
template <typename Char>
inline bool memequalSmallAllowOverflow15(const Char * a, size_t a_size, const Char * b, size_t b_size)
{
if (a_size != b_size)
return false;
for (size_t offset = 0; offset < a_size; offset += 16)
{
uint64_t mask = getNibbleMask(vceqq_u8(
vld1q_u8(reinterpret_cast<const unsigned char *>(a + offset)), vld1q_u8(reinterpret_cast<const unsigned char *>(b + offset))));
mask = ~mask;
if (mask)
{
offset += std::countr_zero(mask) >> 2;
return offset >= a_size;
}
}
return true;
}
template <typename Char>
inline int memcmpSmallMultipleOf16(const Char * a, const Char * b, size_t size)
{
for (size_t offset = 0; offset < size; offset += 16)
{
uint64_t mask = getNibbleMask(vceqq_u8(
vld1q_u8(reinterpret_cast<const unsigned char *>(a + offset)), vld1q_u8(reinterpret_cast<const unsigned char *>(b + offset))));
mask = ~mask;
if (mask)
{
offset += std::countr_zero(mask) >> 2;
return detail::cmp(a[offset], b[offset]);
}
}
return 0;
}
template <typename Char>
inline int memcmp16(const Char * a, const Char * b)
{
uint64_t mask = getNibbleMask(
vceqq_u8(vld1q_u8(reinterpret_cast<const unsigned char *>(a)), vld1q_u8(reinterpret_cast<const unsigned char *>(b))));
mask = ~mask;
if (mask)
{
auto offset = std::countr_zero(mask) >> 2;
return detail::cmp(a[offset], b[offset]);
}
return 0;
}
inline bool memequal16(const void * a, const void * b)
{
return 0xFFFFFFFFFFFFFFFFull
== getNibbleMask(
vceqq_u8(vld1q_u8(reinterpret_cast<const unsigned char *>(a)), vld1q_u8(reinterpret_cast<const unsigned char *>(b))));
}
inline bool memoryIsZeroSmallAllowOverflow15(const void * data, size_t size)
{
for (size_t offset = 0; offset < size; offset += 16)
{
uint64_t mask = getNibbleMask(vceqzq_u8(vld1q_u8(reinterpret_cast<const unsigned char *>(data) + offset)));
mask = ~mask;
if (mask)
{
offset += std::countr_zero(mask) >> 2;
return offset >= size;
}
}
return true;
}
#else
#include <cstring>
template <typename Char>
inline int memcmpSmallAllowOverflow15(const Char * a, size_t a_size, const Char * b, size_t b_size)
{
if (auto res = memcmp(a, b, std::min(a_size, b_size)))
return res;
else
return detail::cmp(a_size, b_size);
}
template <typename Char>
inline int memcmpSmallLikeZeroPaddedAllowOverflow15(const Char * a, size_t a_size, const Char * b, size_t b_size)
{
size_t min_size;
size_t max_size;
const Char * longest;
int size_cmp;
if (a_size == b_size)
{
min_size = a_size;
max_size = a_size;
longest = a;
size_cmp = 0;
}
else if (a_size > b_size)
{
min_size = b_size;
max_size = a_size;
longest = a;
size_cmp = 1;
}
else
{
min_size = a_size;
max_size = b_size;
longest = b;
size_cmp = -1;
}
if (auto res = memcmp(a, b, min_size))
return res;
for (size_t i = min_size; i < max_size; ++i)
if (longest[i] != 0)
return size_cmp;
return 0;
}
template <typename Char>
inline int memcmpSmallAllowOverflow15(const Char * a, const Char * b, size_t size)
{
return memcmp(a, b, size);
}
template <typename Char>
inline bool memequalSmallAllowOverflow15(const Char * a, size_t a_size, const Char * b, size_t b_size)
{
return a_size == b_size && 0 == memcmp(a, b, a_size);
}
template <typename Char>
inline int memcmpSmallMultipleOf16(const Char * a, const Char * b, size_t size)
{
return memcmp(a, b, size);
}
template <typename Char>
inline int memcmp16(const Char * a, const Char * b)
{
return memcmp(a, b, 16);
}
inline bool memequal16(const void * a, const void * b)
{
return 0 == memcmp(a, b, 16);
}
inline bool memoryIsZeroSmallAllowOverflow15(const void * data, size_t size)
{
const char * pos = reinterpret_cast<const char *>(data);
const char * end = pos + size;
for (; pos < end; ++pos)
if (*pos)
return false;
return true;
}
#endif
/** Compare memory regions for equality.
* But if the sizes are different, compare the regions as the smaller one is padded with zero bytes up to the size of the larger.
*/
template <typename Char>
inline bool memequalSmallLikeZeroPaddedAllowOverflow15(const Char * a, size_t a_size, const Char * b, size_t b_size)
{
return 0 == memcmpSmallLikeZeroPaddedAllowOverflow15(a, a_size, b, b_size);
}