ClickHouse/src/Functions/array/range.cpp
2021-08-09 18:01:08 +03:00

464 lines
19 KiB
C++

#include <Functions/IFunction.h>
#include <Functions/FunctionFactory.h>
#include <Functions/FunctionHelpers.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/getLeastSupertype.h>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnVector.h>
#include <Interpreters/castColumn.h>
#include <Interpreters/Context.h>
#include <numeric>
namespace DB
{
namespace ErrorCodes
{
extern const int ARGUMENT_OUT_OF_BOUND;
extern const int ILLEGAL_COLUMN;
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
}
/** Generates array
* range(size): [0, size)
* range(start, end): [start, end)
* range(start, end, step): [start, end) with step increments.
*/
class FunctionRange : public IFunction
{
public:
static constexpr auto name = "range";
const size_t max_elements;
static FunctionPtr create(ContextPtr context_) { return std::make_shared<FunctionRange>(std::move(context_)); }
explicit FunctionRange(ContextPtr context) : max_elements(context->getSettingsRef().function_range_max_elements_in_block) {}
private:
String getName() const override { return name; }
size_t getNumberOfArguments() const override { return 0; }
bool isVariadic() const override { return true; }
bool useDefaultImplementationForConstants() const override { return true; }
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return true; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
if (arguments.size() > 3 || arguments.empty())
{
throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH,
"Function {} needs 1..3 arguments; passed {}.",
getName(), arguments.size());
}
for (const auto & arg : arguments)
{
if (!isUnsignedInteger(arg))
throw Exception{"Illegal type " + arg->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
}
DataTypePtr common_type = getLeastSupertype(arguments);
return std::make_shared<DataTypeArray>(common_type);
}
template <typename T>
ColumnPtr executeInternal(const IColumn * arg) const
{
if (const auto in = checkAndGetColumn<ColumnVector<T>>(arg))
{
const auto & in_data = in->getData();
const auto total_values = std::accumulate(std::begin(in_data), std::end(in_data), size_t{},
[this] (const size_t lhs, const size_t rhs)
{
const auto sum = lhs + rhs;
if (sum < lhs)
throw Exception{"A call to function " + getName() + " overflows, investigate the values of arguments you are passing",
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
return sum;
});
if (total_values > max_elements)
throw Exception{"A call to function " + getName() + " would produce " + std::to_string(total_values) +
" array elements, which is greater than the allowed maximum of " + std::to_string(max_elements),
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
auto data_col = ColumnVector<T>::create(total_values);
auto offsets_col = ColumnArray::ColumnOffsets::create(in->size());
auto & out_data = data_col->getData();
auto & out_offsets = offsets_col->getData();
IColumn::Offset offset{};
for (size_t row_idx = 0, rows = in->size(); row_idx < rows; ++row_idx)
{
for (size_t elem_idx = 0, elems = in_data[row_idx]; elem_idx < elems; ++elem_idx)
out_data[offset + elem_idx] = elem_idx;
offset += in_data[row_idx];
out_offsets[row_idx] = offset;
}
return ColumnArray::create(std::move(data_col), std::move(offsets_col));
}
else
return nullptr;
}
template <typename T>
ColumnPtr executeConstStartStep(
const IColumn * end_arg, const T start, const T step, const size_t input_rows_count) const
{
auto end_column = checkAndGetColumn<ColumnVector<T>>(end_arg);
if (!end_column)
return nullptr;
const auto & end_data = end_column->getData();
size_t total_values = 0;
size_t pre_values = 0;
for (size_t row_idx = 0; row_idx < input_rows_count; ++row_idx)
{
if (start < end_data[row_idx] && step == 0)
throw Exception{"A call to function " + getName() + " overflows, the 3rd argument step can't be zero",
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
pre_values += start >= end_data[row_idx] ? 0
: (end_data[row_idx] - start - 1) / step + 1;
if (pre_values < total_values)
throw Exception{"A call to function " + getName() + " overflows, investigate the values of arguments you are passing",
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
total_values = pre_values;
if (total_values > max_elements)
throw Exception{"A call to function " + getName() + " would produce " + std::to_string(total_values) +
" array elements, which is greater than the allowed maximum of " + std::to_string(max_elements),
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
}
auto data_col = ColumnVector<T>::create(total_values);
auto offsets_col = ColumnArray::ColumnOffsets::create(end_column->size());
auto & out_data = data_col->getData();
auto & out_offsets = offsets_col->getData();
IColumn::Offset offset{};
for (size_t row_idx = 0; row_idx < input_rows_count; ++row_idx)
{
for (size_t st = start, ed = end_data[row_idx]; st < ed; st += step)
{
out_data[offset++] = st;
if (st > st + step)
throw Exception{"A call to function " + getName() + " overflows, investigate the values of arguments you are passing",
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
}
out_offsets[row_idx] = offset;
}
return ColumnArray::create(std::move(data_col), std::move(offsets_col));
}
template <typename T>
ColumnPtr executeConstStep(
const IColumn * start_arg, const IColumn * end_arg, const T step, const size_t input_rows_count) const
{
auto start_column = checkAndGetColumn<ColumnVector<T>>(start_arg);
auto end_column = checkAndGetColumn<ColumnVector<T>>(end_arg);
if (!end_column || !start_column)
return nullptr;
const auto & start_data = start_column->getData();
const auto & end_data = end_column->getData();
size_t total_values = 0;
size_t pre_values = 0;
for (size_t row_idx = 0; row_idx < input_rows_count; ++row_idx)
{
if (start_data[row_idx] < end_data[row_idx] && step == 0)
throw Exception{"A call to function " + getName() + " overflows, the 3rd argument step can't be zero",
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
pre_values += start_data[row_idx] >= end_data[row_idx] ? 0
: (end_data[row_idx] - start_data[row_idx] - 1) / step + 1;
if (pre_values < total_values)
throw Exception{"A call to function " + getName() + " overflows, investigate the values of arguments you are passing",
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
total_values = pre_values;
if (total_values > max_elements)
throw Exception{"A call to function " + getName() + " would produce " + std::to_string(total_values) +
" array elements, which is greater than the allowed maximum of " + std::to_string(max_elements),
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
}
auto data_col = ColumnVector<T>::create(total_values);
auto offsets_col = ColumnArray::ColumnOffsets::create(end_column->size());
auto & out_data = data_col->getData();
auto & out_offsets = offsets_col->getData();
IColumn::Offset offset{};
for (size_t row_idx = 0; row_idx < input_rows_count; ++row_idx)
{
for (size_t st = start_data[row_idx], ed = end_data[row_idx]; st < ed; st += step)
{
out_data[offset++] = st;
if (st > st + step)
throw Exception{"A call to function " + getName() + " overflows, investigate the values of arguments you are passing",
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
}
out_offsets[row_idx] = offset;
}
return ColumnArray::create(std::move(data_col), std::move(offsets_col));
}
template <typename T>
ColumnPtr executeConstStart(
const IColumn * end_arg, const IColumn * step_arg, const T start, const size_t input_rows_count) const
{
auto end_column = checkAndGetColumn<ColumnVector<T>>(end_arg);
auto step_column = checkAndGetColumn<ColumnVector<T>>(step_arg);
if (!end_column || !step_column)
return nullptr;
const auto & end_data = end_column->getData();
const auto & step_data = step_column->getData();
size_t total_values = 0;
size_t pre_values = 0;
for (size_t row_idx = 0; row_idx < input_rows_count; ++row_idx)
{
if (start < end_data[row_idx] && step_data[row_idx] == 0)
throw Exception{"A call to function " + getName() + " overflows, the 3rd argument step can't be zero",
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
pre_values += start >= end_data[row_idx] ? 0
: (end_data[row_idx] - start - 1) / step_data[row_idx] + 1;
if (pre_values < total_values)
throw Exception{"A call to function " + getName() + " overflows, investigate the values of arguments you are passing",
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
total_values = pre_values;
if (total_values > max_elements)
throw Exception{"A call to function " + getName() + " would produce " + std::to_string(total_values) +
" array elements, which is greater than the allowed maximum of " + std::to_string(max_elements),
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
}
auto data_col = ColumnVector<T>::create(total_values);
auto offsets_col = ColumnArray::ColumnOffsets::create(end_column->size());
auto & out_data = data_col->getData();
auto & out_offsets = offsets_col->getData();
IColumn::Offset offset{};
for (size_t row_idx = 0; row_idx < input_rows_count; ++row_idx)
{
for (size_t st = start, ed = end_data[row_idx]; st < ed; st += step_data[row_idx])
{
out_data[offset++] = st;
if (st > st + step_data[row_idx])
throw Exception{"A call to function " + getName() + " overflows, investigate the values of arguments you are passing",
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
}
out_offsets[row_idx] = offset;
}
return ColumnArray::create(std::move(data_col), std::move(offsets_col));
}
template <typename T>
ColumnPtr executeGeneric(
const IColumn * start_col, const IColumn * end_col, const IColumn * step_col, const size_t input_rows_count) const
{
auto start_column = checkAndGetColumn<ColumnVector<T>>(start_col);
auto end_column = checkAndGetColumn<ColumnVector<T>>(end_col);
auto step_column = checkAndGetColumn<ColumnVector<T>>(step_col);
if (!start_column || !end_column || !step_column)
return nullptr;
const auto & start_data = start_column->getData();
const auto & end_start = end_column->getData();
const auto & step_data = step_column->getData();
size_t total_values = 0;
size_t pre_values = 0;
for (size_t row_idx = 0; row_idx < input_rows_count; ++row_idx)
{
if (start_data[row_idx] < end_start[row_idx] && step_data[row_idx] == 0)
throw Exception{"A call to function " + getName() + " overflows, the 3rd argument step can't be zero",
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
pre_values += start_data[row_idx] >= end_start[row_idx] ? 0
: (end_start[row_idx] -start_data[row_idx] - 1) / (step_data[row_idx]) + 1;
if (pre_values < total_values)
throw Exception{"A call to function " + getName() + " overflows, investigate the values of arguments you are passing",
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
total_values = pre_values;
if (total_values > max_elements)
throw Exception{"A call to function " + getName() + " would produce " + std::to_string(total_values) +
" array elements, which is greater than the allowed maximum of " + std::to_string(max_elements),
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
}
auto data_col = ColumnVector<T>::create(total_values);
auto offsets_col = ColumnArray::ColumnOffsets::create(end_column->size());
auto & out_data = data_col->getData();
auto & out_offsets = offsets_col->getData();
IColumn::Offset offset{};
for (size_t row_idx = 0; row_idx < input_rows_count; ++row_idx)
{
for (size_t st = start_data[row_idx], ed = end_start[row_idx]; st < ed; st += step_data[row_idx])
{
out_data[offset++] = st;
if (st > st + step_data[row_idx])
throw Exception{"A call to function " + getName() + " overflows, investigate the values of arguments you are passing",
ErrorCodes::ARGUMENT_OUT_OF_BOUND};
}
out_offsets[row_idx] = offset;
}
return ColumnArray::create(std::move(data_col), std::move(offsets_col));
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const override
{
DataTypePtr elem_type = checkAndGetDataType<DataTypeArray>(result_type.get())->getNestedType();
WhichDataType which(elem_type);
if (!which.isUInt8()
&& !which.isUInt16()
&& !which.isUInt32()
&& !which.isUInt64())
{
throw Exception{"Illegal columns of arguments of function " + getName()
+ ", the function only implemented for unsigned integers up to 64 bit", ErrorCodes::ILLEGAL_COLUMN};
}
ColumnPtr res;
if (arguments.size() == 1)
{
const auto * col = arguments[0].column.get();
if (!((res = executeInternal<UInt8>(col))
|| (res = executeInternal<UInt16>(col))
|| (res = executeInternal<UInt32>(col))
|| (res = executeInternal<UInt64>(col))))
{
throw Exception{"Illegal column " + col->getName() + " of argument of function " + getName(), ErrorCodes::ILLEGAL_COLUMN};
}
return res;
}
Columns columns_holder(3);
ColumnRawPtrs column_ptrs(3);
for (size_t i = 0; i < arguments.size(); ++i)
{
if (i == 1)
columns_holder[i] = castColumn(arguments[i], elem_type)->convertToFullColumnIfConst();
else
columns_holder[i] = castColumn(arguments[i], elem_type);
column_ptrs[i] = columns_holder[i].get();
}
/// Step is one by default.
if (arguments.size() == 2)
{
/// Convert a column with constant 1 to the result type.
columns_holder[2] = castColumn(
{DataTypeUInt8().createColumnConst(input_rows_count, 1), std::make_shared<DataTypeUInt8>(), {}},
elem_type);
column_ptrs[2] = columns_holder[2].get();
}
bool is_start_const = isColumnConst(*column_ptrs[0]);
bool is_step_const = isColumnConst(*column_ptrs[2]);
if (is_start_const && is_step_const)
{
UInt64 start = assert_cast<const ColumnConst &>(*column_ptrs[0]).getUInt(0);
UInt64 step = assert_cast<const ColumnConst &>(*column_ptrs[2]).getUInt(0);
if ((res = executeConstStartStep<UInt8>(column_ptrs[1], start, step, input_rows_count)) ||
(res = executeConstStartStep<UInt16>(column_ptrs[1], start, step, input_rows_count)) ||
(res = executeConstStartStep<UInt32>(column_ptrs[1], start, step, input_rows_count)) ||
(res = executeConstStartStep<UInt64>(column_ptrs[1], start, step, input_rows_count)))
{
}
}
else if (is_start_const && !is_step_const)
{
UInt64 start = assert_cast<const ColumnConst &>(*column_ptrs[0]).getUInt(0);
if ((res = executeConstStart<UInt8>(column_ptrs[1], column_ptrs[2], start, input_rows_count)) ||
(res = executeConstStart<UInt16>(column_ptrs[1], column_ptrs[2], start, input_rows_count)) ||
(res = executeConstStart<UInt32>(column_ptrs[1], column_ptrs[2], start, input_rows_count)) ||
(res = executeConstStart<UInt64>(column_ptrs[1], column_ptrs[2], start, input_rows_count)))
{
}
}
else if (!is_start_const && is_step_const)
{
UInt64 step = assert_cast<const ColumnConst &>(*column_ptrs[2]).getUInt(0);
if ((res = executeConstStep<UInt8>(column_ptrs[0], column_ptrs[1], step, input_rows_count)) ||
(res = executeConstStep<UInt16>(column_ptrs[0], column_ptrs[1], step, input_rows_count)) ||
(res = executeConstStep<UInt32>(column_ptrs[0], column_ptrs[1], step, input_rows_count)) ||
(res = executeConstStep<UInt64>(column_ptrs[0], column_ptrs[1], step, input_rows_count)))
{
}
}
else
{
if ((res = executeGeneric<UInt8>(column_ptrs[0], column_ptrs[1], column_ptrs[2], input_rows_count)) ||
(res = executeGeneric<UInt16>(column_ptrs[0], column_ptrs[1], column_ptrs[2], input_rows_count)) ||
(res = executeGeneric<UInt32>(column_ptrs[0], column_ptrs[1], column_ptrs[2], input_rows_count)) ||
(res = executeGeneric<UInt64>(column_ptrs[0], column_ptrs[1], column_ptrs[2], input_rows_count)))
{
}
}
if (!res)
{
throw Exception{"Illegal columns " + column_ptrs[0]->getName() + " of argument of function " + getName(), ErrorCodes::ILLEGAL_COLUMN};
}
return res;
}
};
void registerFunctionRange(FunctionFactory & factory)
{
factory.registerFunction<FunctionRange>();
}
}