ClickHouse/src/Formats/ProtobufSerializer.cpp
2022-04-29 10:01:51 +02:00

3546 lines
158 KiB
C++

#include <Formats/ProtobufSerializer.h>
#if USE_PROTOBUF
# include <Columns/ColumnAggregateFunction.h>
# include <Columns/ColumnArray.h>
# include <Columns/ColumnDecimal.h>
# include <Columns/ColumnLowCardinality.h>
# include <Columns/ColumnMap.h>
# include <Columns/ColumnNullable.h>
# include <Columns/ColumnFixedString.h>
# include <Columns/ColumnString.h>
# include <Columns/ColumnTuple.h>
# include <Columns/ColumnVector.h>
# include <Common/PODArray.h>
# include <Common/quoteString.h>
# include <Core/DecimalComparison.h>
# include <DataTypes/DataTypeAggregateFunction.h>
# include <DataTypes/DataTypeArray.h>
# include <DataTypes/DataTypesDecimal.h>
# include <DataTypes/DataTypeDateTime64.h>
# include <DataTypes/DataTypeEnum.h>
# include <DataTypes/DataTypeFixedString.h>
# include <DataTypes/DataTypeLowCardinality.h>
# include <DataTypes/DataTypeMap.h>
# include <DataTypes/DataTypeNullable.h>
# include <DataTypes/DataTypeTuple.h>
# include <DataTypes/DataTypeString.h>
# include <DataTypes/Serializations/SerializationDecimal.h>
# include <DataTypes/Serializations/SerializationFixedString.h>
# include <Formats/ProtobufReader.h>
# include <Formats/ProtobufWriter.h>
# include <Formats/RowInputMissingColumnsFiller.h>
# include <IO/Operators.h>
# include <IO/ReadBufferFromString.h>
# include <IO/ReadHelpers.h>
# include <IO/WriteBufferFromString.h>
# include <IO/WriteHelpers.h>
# include <base/range.h>
# include <base/sort.h>
# include <google/protobuf/descriptor.h>
# include <google/protobuf/descriptor.pb.h>
# include <boost/algorithm/string.hpp>
# include <boost/container/flat_map.hpp>
# include <boost/container/flat_set.hpp>
# include <boost/numeric/conversion/cast.hpp>
# include <boost/range/algorithm.hpp>
# include <boost/range/algorithm_ext/erase.hpp>
# include <base/logger_useful.h>
namespace DB
{
namespace ErrorCodes
{
extern const int NO_COLUMNS_SERIALIZED_TO_PROTOBUF_FIELDS;
extern const int MULTIPLE_COLUMNS_SERIALIZED_TO_SAME_PROTOBUF_FIELD;
extern const int NO_COLUMN_SERIALIZED_TO_REQUIRED_PROTOBUF_FIELD;
extern const int DATA_TYPE_INCOMPATIBLE_WITH_PROTOBUF_FIELD;
extern const int PROTOBUF_FIELD_NOT_REPEATED;
extern const int PROTOBUF_BAD_CAST;
extern const int LOGICAL_ERROR;
extern const int BAD_ARGUMENTS;
}
namespace
{
using FieldDescriptor = google::protobuf::FieldDescriptor;
using MessageDescriptor = google::protobuf::Descriptor;
using FieldTypeId = google::protobuf::FieldDescriptor::Type;
/// Compares column's name with protobuf field's name.
/// This comparison is case-insensitive and ignores the difference between '.' and '_'
struct ColumnNameWithProtobufFieldNameComparator
{
static bool equals(char c1, char c2)
{
return convertChar(c1) == convertChar(c2);
}
static bool equals(const std::string_view & s1, const std::string_view & s2)
{
return (s1.length() == s2.length())
&& std::equal(s1.begin(), s1.end(), s2.begin(), [](char c1, char c2) { return convertChar(c1) == convertChar(c2); });
}
static bool less(const std::string_view & s1, const std::string_view & s2)
{
return std::lexicographical_compare(s1.begin(), s1.end(), s2.begin(), s2.end(), [](char c1, char c2) { return convertChar(c1) < convertChar(c2); });
}
static bool startsWith(const std::string_view & s1, const std::string_view & s2)
{
return (s1.length() >= s2.length()) && equals(s1.substr(0, s2.length()), s2);
}
static char convertChar(char c)
{
c = tolower(c);
if (c == '.')
c = '_';
return c;
}
};
bool isGoogleWrapperMessage(const MessageDescriptor & message_descriptor)
{
auto message_type = message_descriptor.well_known_type();
return (message_type >= google::protobuf::Descriptor::WELLKNOWNTYPE_DOUBLEVALUE)
&& (message_type <= google::protobuf::Descriptor::WELLKNOWNTYPE_BOOLVALUE);
}
bool isGoogleWrapperField(const FieldDescriptor & field_descriptor)
{
const auto * message_descriptor = field_descriptor.message_type();
if (message_descriptor == nullptr)
return false;
return isGoogleWrapperMessage(*message_descriptor);
}
bool isGoogleWrapperField(const FieldDescriptor * field_descriptor)
{
if (field_descriptor == nullptr)
return false;
return isGoogleWrapperField(*field_descriptor);
}
std::string_view googleWrapperColumnName(const FieldDescriptor & field_descriptor)
{
assert(isGoogleWrapperField(field_descriptor));
return field_descriptor.message_type()->field(0)->name();
}
// Should we omit null values (zero for numbers / empty string for strings) while storing them.
bool shouldSkipZeroOrEmpty(const FieldDescriptor & field_descriptor, bool google_wrappers_special_treatment = false)
{
if (!field_descriptor.is_optional())
return false;
if (field_descriptor.containing_type()->options().map_entry())
return false;
if (google_wrappers_special_treatment && isGoogleWrapperField(field_descriptor))
return false;
return field_descriptor.message_type() || (field_descriptor.file()->syntax() == google::protobuf::FileDescriptor::SYNTAX_PROTO3);
}
// Should we pack repeated values while storing them.
bool shouldPackRepeated(const FieldDescriptor & field_descriptor)
{
if (!field_descriptor.is_repeated())
return false;
switch (field_descriptor.type())
{
case FieldTypeId::TYPE_INT32:
case FieldTypeId::TYPE_UINT32:
case FieldTypeId::TYPE_SINT32:
case FieldTypeId::TYPE_INT64:
case FieldTypeId::TYPE_UINT64:
case FieldTypeId::TYPE_SINT64:
case FieldTypeId::TYPE_FIXED32:
case FieldTypeId::TYPE_SFIXED32:
case FieldTypeId::TYPE_FIXED64:
case FieldTypeId::TYPE_SFIXED64:
case FieldTypeId::TYPE_FLOAT:
case FieldTypeId::TYPE_DOUBLE:
case FieldTypeId::TYPE_BOOL:
case FieldTypeId::TYPE_ENUM:
break;
default:
return false;
}
if (field_descriptor.options().has_packed())
return field_descriptor.options().packed();
return field_descriptor.file()->syntax() == google::protobuf::FileDescriptor::SYNTAX_PROTO3;
}
WriteBuffer & writeIndent(WriteBuffer & out, size_t size) { return out << String(size * 4, ' '); }
[[noreturn]] void wrongNumberOfColumns(size_t number_of_columns, const String & expected)
{
throw Exception(ErrorCodes::LOGICAL_ERROR, "Wrong number of columns: expected {}, specified {}", expected, number_of_columns);
}
struct ProtobufReaderOrWriter
{
ProtobufReaderOrWriter(ProtobufReader & reader_) : reader(&reader_) {} // NOLINT(google-explicit-constructor)
ProtobufReaderOrWriter(ProtobufWriter & writer_) : writer(&writer_) {} // NOLINT(google-explicit-constructor)
ProtobufReader * const reader = nullptr;
ProtobufWriter * const writer = nullptr;
};
/// Base class for all serializers which serialize a single value.
class ProtobufSerializerSingleValue : public ProtobufSerializer
{
protected:
ProtobufSerializerSingleValue(
const std::string_view & column_name_,
const FieldDescriptor & field_descriptor_,
const ProtobufReaderOrWriter & reader_or_writer_)
: column_name(column_name_)
, field_descriptor(field_descriptor_)
, field_typeid(field_descriptor_.type())
, field_tag(field_descriptor.number())
, reader(reader_or_writer_.reader)
, writer(reader_or_writer_.writer)
, skip_zero_or_empty(shouldSkipZeroOrEmpty(field_descriptor))
{
}
void setColumns(const ColumnPtr * columns, [[maybe_unused]] size_t num_columns) override
{
if (num_columns != 1)
wrongNumberOfColumns(num_columns, "1");
column = columns[0];
}
void setColumns(const MutableColumnPtr * columns, [[maybe_unused]] size_t num_columns) override
{
if (num_columns != 1)
wrongNumberOfColumns(num_columns, "1");
column = columns[0]->getPtr();
}
template <typename NumberType>
void writeInt(NumberType value)
{
auto casted = castNumber<Int64>(value);
if (casted || !skip_zero_or_empty)
writer->writeInt(field_tag, casted);
}
template <typename NumberType>
void writeSInt(NumberType value)
{
auto casted = castNumber<Int64>(value);
if (casted || !skip_zero_or_empty)
writer->writeSInt(field_tag, casted);
}
template <typename NumberType>
void writeUInt(NumberType value)
{
auto casted = castNumber<UInt64>(value);
if (casted || !skip_zero_or_empty)
writer->writeUInt(field_tag, casted);
}
template <typename FieldType, typename NumberType>
void writeFixed(NumberType value)
{
auto casted = castNumber<FieldType>(value);
if (casted || !skip_zero_or_empty)
writer->writeFixed(field_tag, casted);
}
Int64 readInt() { return reader->readInt(); }
Int64 readSInt() { return reader->readSInt(); }
UInt64 readUInt() { return reader->readUInt(); }
template <typename FieldType>
FieldType readFixed()
{
return reader->readFixed<FieldType>();
}
void writeStr(const std::string_view & str)
{
if (!str.empty() || !skip_zero_or_empty)
writer->writeString(field_tag, str);
}
void readStr(String & str) { reader->readString(str); }
void readStrAndAppend(PaddedPODArray<UInt8> & str) { reader->readStringAndAppend(str); }
template <typename DestType>
DestType parseFromStr(const std::string_view & str) const
{
try
{
DestType result;
ReadBufferFromMemory buf(str.data(), str.length());
readText(result, buf);
return result;
}
catch (...)
{
cannotConvertValue(str, "String", TypeName<DestType>);
}
}
template <typename DestType, typename SrcType>
DestType castNumber(SrcType value) const
{
if constexpr (std::is_same_v<DestType, SrcType>)
return value;
DestType result;
try
{
/// TODO: use accurate::convertNumeric() maybe?
result = boost::numeric_cast<DestType>(value);
}
catch (boost::numeric::bad_numeric_cast &)
{
cannotConvertValue(toString(value), TypeName<SrcType>, TypeName<DestType>);
}
return result;
}
[[noreturn]] void incompatibleColumnType(const std::string_view & column_type) const
{
throw Exception(
ErrorCodes::DATA_TYPE_INCOMPATIBLE_WITH_PROTOBUF_FIELD,
"The column {} ({}) cannot be serialized to the field {} ({}) due to their types are not compatible",
quoteString(column_name),
column_type,
quoteString(field_descriptor.full_name()),
field_descriptor.type_name());
}
[[noreturn]] void cannotConvertValue(const std::string_view & src_value, const std::string_view & src_type_name, const std::string_view & dest_type_name) const
{
throw Exception(
"Could not convert value '" + String{src_value} + "' from type " + String{src_type_name} + " to type "
+ String{dest_type_name} + " while " + (reader ? "reading" : "writing") + " field "
+ quoteString(field_descriptor.name()) + " " + (reader ? "for inserting into" : "extracted from") + " column "
+ quoteString(column_name),
ErrorCodes::PROTOBUF_BAD_CAST);
}
const String column_name;
const FieldDescriptor & field_descriptor;
const FieldTypeId field_typeid;
const int field_tag;
ProtobufReader * const reader;
ProtobufWriter * const writer;
ColumnPtr column;
private:
const bool skip_zero_or_empty;
};
/// Serializes any ColumnVector<NumberType> to a field of any type except TYPE_MESSAGE, TYPE_GROUP.
/// NumberType must be one of the following types: Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64,
/// Int128, UInt128, Int256, UInt256, Float32, Float64.
/// And the field's type cannot be TYPE_ENUM if NumberType is Float32 or Float64.
template <typename NumberType>
class ProtobufSerializerNumber : public ProtobufSerializerSingleValue
{
public:
using ColumnType = ColumnVector<NumberType>;
ProtobufSerializerNumber(const std::string_view & column_name_, const FieldDescriptor & field_descriptor_, const ProtobufReaderOrWriter & reader_or_writer_)
: ProtobufSerializerSingleValue(column_name_, field_descriptor_, reader_or_writer_)
{
setFunctions();
}
void writeRow(size_t row_num) override
{
const auto & column_vector = assert_cast<const ColumnType &>(*column);
write_function(column_vector.getElement(row_num));
}
void readRow(size_t row_num) override
{
NumberType value = read_function();
auto & column_vector = assert_cast<ColumnType &>(column->assumeMutableRef());
if (row_num < column_vector.size())
column_vector.getElement(row_num) = value;
else
column_vector.insertValue(value);
}
void insertDefaults(size_t row_num) override
{
auto & column_vector = assert_cast<ColumnType &>(column->assumeMutableRef());
if (row_num < column_vector.size())
return;
column_vector.insertValue(getDefaultNumber());
}
void describeTree(WriteBuffer & out, size_t indent) const override
{
writeIndent(out, indent) << "ProtobufSerializerNumber<" << TypeName<NumberType> << ">: column " << quoteString(column_name)
<< " -> field " << quoteString(field_descriptor.full_name()) << " (" << field_descriptor.type_name()
<< ")\n";
}
private:
void setFunctions()
{
switch (field_typeid)
{
case FieldTypeId::TYPE_INT32:
{
write_function = [this](NumberType value) { writeInt(value); };
read_function = [this]() -> NumberType { return castNumber<NumberType>(readInt()); };
default_function = [this]() -> NumberType { return castNumber<NumberType>(field_descriptor.default_value_int32()); };
break;
}
case FieldTypeId::TYPE_SINT32:
{
write_function = [this](NumberType value) { writeSInt(value); };
read_function = [this]() -> NumberType { return castNumber<NumberType>(readSInt()); };
default_function = [this]() -> NumberType { return castNumber<NumberType>(field_descriptor.default_value_int32()); };
break;
}
case FieldTypeId::TYPE_UINT32:
{
write_function = [this](NumberType value) { writeUInt(value); };
read_function = [this]() -> NumberType { return castNumber<NumberType>(readUInt()); };
default_function = [this]() -> NumberType { return castNumber<NumberType>(field_descriptor.default_value_uint32()); };
break;
}
case FieldTypeId::TYPE_INT64:
{
write_function = [this](NumberType value) { writeInt(value); };
read_function = [this]() -> NumberType { return castNumber<NumberType>(readInt()); };
default_function = [this]() -> NumberType { return castNumber<NumberType>(field_descriptor.default_value_int64()); };
break;
}
case FieldTypeId::TYPE_SINT64:
{
write_function = [this](NumberType value) { writeSInt(value); };
read_function = [this]() -> NumberType { return castNumber<NumberType>(readSInt()); };
default_function = [this]() -> NumberType { return castNumber<NumberType>(field_descriptor.default_value_int64()); };
break;
}
case FieldTypeId::TYPE_UINT64:
{
write_function = [this](NumberType value) { writeUInt(value); };
read_function = [this]() -> NumberType { return castNumber<NumberType>(readUInt()); };
default_function = [this]() -> NumberType { return castNumber<NumberType>(field_descriptor.default_value_uint64()); };
break;
}
case FieldTypeId::TYPE_FIXED32:
{
write_function = [this](NumberType value) { writeFixed<UInt32>(value); };
read_function = [this]() -> NumberType { return castNumber<NumberType>(readFixed<UInt32>()); };
default_function = [this]() -> NumberType { return castNumber<NumberType>(field_descriptor.default_value_uint32()); };
break;
}
case FieldTypeId::TYPE_SFIXED32:
{
write_function = [this](NumberType value) { writeFixed<Int32>(value); };
read_function = [this]() -> NumberType { return castNumber<NumberType>(readFixed<Int32>()); };
default_function = [this]() -> NumberType { return castNumber<NumberType>(field_descriptor.default_value_int32()); };
break;
}
case FieldTypeId::TYPE_FIXED64:
{
write_function = [this](NumberType value) { writeFixed<UInt64>(value); };
read_function = [this]() -> NumberType { return castNumber<NumberType>(readFixed<UInt64>()); };
default_function = [this]() -> NumberType { return castNumber<NumberType>(field_descriptor.default_value_uint64()); };
break;
}
case FieldTypeId::TYPE_SFIXED64:
{
write_function = [this](NumberType value) { writeFixed<Int64>(value); };
read_function = [this]() -> NumberType { return castNumber<NumberType>(readFixed<Int64>()); };
default_function = [this]() -> NumberType { return castNumber<NumberType>(field_descriptor.default_value_int64()); };
break;
}
case FieldTypeId::TYPE_FLOAT:
{
write_function = [this](NumberType value) { writeFixed<Float32>(value); };
read_function = [this]() -> NumberType { return castNumber<NumberType>(readFixed<Float32>()); };
default_function = [this]() -> NumberType { return castNumber<NumberType>(field_descriptor.default_value_float()); };
break;
}
case FieldTypeId::TYPE_DOUBLE:
{
write_function = [this](NumberType value) { writeFixed<Float64>(value); };
read_function = [this]() -> NumberType { return castNumber<NumberType>(readFixed<Float64>()); };
default_function = [this]() -> NumberType { return castNumber<NumberType>(field_descriptor.default_value_double()); };
break;
}
case FieldTypeId::TYPE_BOOL:
{
write_function = [this](NumberType value)
{
if (value == 0)
writeUInt(0);
else if (value == 1)
writeUInt(1);
else
cannotConvertValue(toString(value), TypeName<NumberType>, field_descriptor.type_name());
};
read_function = [this]() -> NumberType
{
UInt64 u64 = readUInt();
if (u64 < 2)
return static_cast<NumberType>(u64);
else
cannotConvertValue(toString(u64), field_descriptor.type_name(), TypeName<NumberType>);
};
default_function = [this]() -> NumberType { return static_cast<NumberType>(field_descriptor.default_value_bool()); };
break;
}
case FieldTypeId::TYPE_STRING:
case FieldTypeId::TYPE_BYTES:
{
write_function = [this](NumberType value)
{
WriteBufferFromString buf{text_buffer};
writeText(value, buf);
buf.finalize();
writeStr(text_buffer);
};
read_function = [this]() -> NumberType
{
readStr(text_buffer);
return parseFromStr<NumberType>(text_buffer);
};
default_function = [this]() -> NumberType { return parseFromStr<NumberType>(field_descriptor.default_value_string()); };
break;
}
case FieldTypeId::TYPE_ENUM:
{
if (std::is_floating_point_v<NumberType>)
incompatibleColumnType(TypeName<NumberType>);
write_function = [this](NumberType value)
{
int number = castNumber<int>(value);
checkProtobufEnumValue(number);
writeInt(number);
};
read_function = [this]() -> NumberType { return castNumber<NumberType>(readInt()); };
default_function = [this]() -> NumberType { return castNumber<NumberType>(field_descriptor.default_value_enum()->number()); };
break;
}
default:
incompatibleColumnType(TypeName<NumberType>);
}
}
NumberType getDefaultNumber()
{
if (!default_number)
default_number = default_function();
return *default_number;
}
void checkProtobufEnumValue(int value) const
{
const auto * enum_value_descriptor = field_descriptor.enum_type()->FindValueByNumber(value);
if (!enum_value_descriptor)
cannotConvertValue(toString(value), TypeName<NumberType>, field_descriptor.type_name());
}
protected:
std::function<void(NumberType)> write_function;
std::function<NumberType()> read_function;
std::function<NumberType()> default_function;
String text_buffer;
private:
std::optional<NumberType> default_number;
};
/// Serializes ColumnString or ColumnFixedString to a field of any type except TYPE_MESSAGE, TYPE_GROUP.
template <bool is_fixed_string>
class ProtobufSerializerString : public ProtobufSerializerSingleValue
{
public:
using ColumnType = std::conditional_t<is_fixed_string, ColumnFixedString, ColumnString>;
ProtobufSerializerString(
const std::string_view & column_name_,
const std::shared_ptr<const DataTypeFixedString> & fixed_string_data_type_,
const google::protobuf::FieldDescriptor & field_descriptor_,
const ProtobufReaderOrWriter & reader_or_writer_)
: ProtobufSerializerSingleValue(column_name_, field_descriptor_, reader_or_writer_)
, fixed_string_data_type(fixed_string_data_type_)
, n(fixed_string_data_type->getN())
{
static_assert(is_fixed_string, "This constructor for FixedString only");
setFunctions();
prepareEnumMapping();
}
ProtobufSerializerString(
const std::string_view & column_name_,
const google::protobuf::FieldDescriptor & field_descriptor_,
const ProtobufReaderOrWriter & reader_or_writer_)
: ProtobufSerializerSingleValue(column_name_, field_descriptor_, reader_or_writer_)
{
static_assert(!is_fixed_string, "This constructor for String only");
setFunctions();
prepareEnumMapping();
}
void writeRow(size_t row_num) override
{
const auto & column_string = assert_cast<const ColumnType &>(*column);
write_function(std::string_view{column_string.getDataAt(row_num)});
}
void readRow(size_t row_num) override
{
auto & column_string = assert_cast<ColumnType &>(column->assumeMutableRef());
const size_t old_size = column_string.size();
typename ColumnType::Chars & data = column_string.getChars();
const size_t old_data_size = data.size();
if (row_num < old_size)
{
text_buffer.clear();
read_function(text_buffer);
}
else
{
try
{
read_function(data);
}
catch (...)
{
data.resize_assume_reserved(old_data_size);
throw;
}
}
if constexpr (is_fixed_string)
{
if (row_num < old_size)
{
SerializationFixedString::alignStringLength(n, text_buffer, 0);
memcpy(data.data() + row_num * n, text_buffer.data(), n);
}
else
SerializationFixedString::alignStringLength(n, data, old_data_size);
}
else
{
if (row_num < old_size)
{
if (row_num != old_size - 1)
throw Exception("Cannot replace a string in the middle of ColumnString", ErrorCodes::LOGICAL_ERROR);
column_string.popBack(1);
}
try
{
data.push_back(0 /* terminating zero */);
column_string.getOffsets().push_back(data.size());
}
catch (...)
{
data.resize_assume_reserved(old_data_size);
column_string.getOffsets().resize_assume_reserved(old_size);
throw;
}
}
}
void insertDefaults(size_t row_num) override
{
auto & column_string = assert_cast<ColumnType &>(column->assumeMutableRef());
const size_t old_size = column_string.size();
if (row_num < old_size)
return;
const auto & default_str = getDefaultString();
typename ColumnType::Chars & data = column_string.getChars();
const size_t old_data_size = data.size();
try
{
data.insert(default_str.data(), default_str.data() + default_str.size());
}
catch (...)
{
data.resize_assume_reserved(old_data_size);
throw;
}
if constexpr (!is_fixed_string)
{
try
{
data.push_back(0 /* terminating zero */);
column_string.getOffsets().push_back(data.size());
}
catch (...)
{
data.resize_assume_reserved(old_data_size);
column_string.getOffsets().resize_assume_reserved(old_size);
throw;
}
}
}
void describeTree(WriteBuffer & out, size_t indent) const override
{
writeIndent(out, indent) << "ProtobufSerializerString<" << (is_fixed_string ? "fixed" : "") << ">: column "
<< quoteString(column_name) << " -> field " << quoteString(field_descriptor.full_name()) << " ("
<< field_descriptor.type_name() << ")\n";
}
private:
void setFunctions()
{
switch (field_typeid)
{
case FieldTypeId::TYPE_INT32:
{
write_function = [this](const std::string_view & str) { writeInt(parseFromStr<Int32>(str)); };
read_function = [this](PaddedPODArray<UInt8> & str) { toStringAppend(readInt(), str); };
default_function = [this]() -> String { return toString(field_descriptor.default_value_int32()); };
break;
}
case FieldTypeId::TYPE_SINT32:
{
write_function = [this](const std::string_view & str) { writeSInt(parseFromStr<Int32>(str)); };
read_function = [this](PaddedPODArray<UInt8> & str) { toStringAppend(readSInt(), str); };
default_function = [this]() -> String { return toString(field_descriptor.default_value_int32()); };
break;
}
case FieldTypeId::TYPE_UINT32:
{
write_function = [this](const std::string_view & str) { writeUInt(parseFromStr<UInt32>(str)); };
read_function = [this](PaddedPODArray<UInt8> & str) { toStringAppend(readUInt(), str); };
default_function = [this]() -> String { return toString(field_descriptor.default_value_uint32()); };
break;
}
case FieldTypeId::TYPE_INT64:
{
write_function = [this](const std::string_view & str) { writeInt(parseFromStr<Int64>(str)); };
read_function = [this](PaddedPODArray<UInt8> & str) { toStringAppend(readInt(), str); };
default_function = [this]() -> String { return toString(field_descriptor.default_value_int64()); };
break;
}
case FieldTypeId::TYPE_SINT64:
{
write_function = [this](const std::string_view & str) { writeSInt(parseFromStr<Int64>(str)); };
read_function = [this](PaddedPODArray<UInt8> & str) { toStringAppend(readSInt(), str); };
default_function = [this]() -> String { return toString(field_descriptor.default_value_int64()); };
break;
}
case FieldTypeId::TYPE_UINT64:
{
write_function = [this](const std::string_view & str) { writeUInt(parseFromStr<UInt64>(str)); };
read_function = [this](PaddedPODArray<UInt8> & str) { toStringAppend(readUInt(), str); };
default_function = [this]() -> String { return toString(field_descriptor.default_value_uint64()); };
break;
}
case FieldTypeId::TYPE_FIXED32:
{
write_function = [this](const std::string_view & str) { writeFixed<UInt32>(parseFromStr<UInt32>(str)); };
read_function = [this](PaddedPODArray<UInt8> & str) { toStringAppend(readFixed<UInt32>(), str); };
default_function = [this]() -> String { return toString(field_descriptor.default_value_uint32()); };
break;
}
case FieldTypeId::TYPE_SFIXED32:
{
write_function = [this](const std::string_view & str) { writeFixed<Int32>(parseFromStr<Int32>(str)); };
read_function = [this](PaddedPODArray<UInt8> & str) { toStringAppend(readFixed<Int32>(), str); };
default_function = [this]() -> String { return toString(field_descriptor.default_value_int32()); };
break;
}
case FieldTypeId::TYPE_FIXED64:
{
write_function = [this](const std::string_view & str) { writeFixed<UInt64>(parseFromStr<UInt64>(str)); };
read_function = [this](PaddedPODArray<UInt8> & str) { toStringAppend(readFixed<UInt64>(), str); };
default_function = [this]() -> String { return toString(field_descriptor.default_value_uint64()); };
break;
}
case FieldTypeId::TYPE_SFIXED64:
{
write_function = [this](const std::string_view & str) { writeFixed<Int64>(parseFromStr<Int64>(str)); };
read_function = [this](PaddedPODArray<UInt8> & str) { toStringAppend(readFixed<Int64>(), str); };
default_function = [this]() -> String { return toString(field_descriptor.default_value_int64()); };
break;
}
case FieldTypeId::TYPE_FLOAT:
{
write_function = [this](const std::string_view & str) { writeFixed<Float32>(parseFromStr<Float32>(str)); };
read_function = [this](PaddedPODArray<UInt8> & str) { toStringAppend(readFixed<Float32>(), str); };
default_function = [this]() -> String { return toString(field_descriptor.default_value_float()); };
break;
}
case FieldTypeId::TYPE_DOUBLE:
{
write_function = [this](const std::string_view & str) { writeFixed<Float64>(parseFromStr<Float64>(str)); };
read_function = [this](PaddedPODArray<UInt8> & str) { toStringAppend(readFixed<Float64>(), str); };
default_function = [this]() -> String { return toString(field_descriptor.default_value_double()); };
break;
}
case FieldTypeId::TYPE_BOOL:
{
write_function = [this](const std::string_view & str)
{
if (str == "true")
writeUInt(1);
else if (str == "false")
writeUInt(0);
else
cannotConvertValue(str, "String", field_descriptor.type_name());
};
read_function = [this](PaddedPODArray<UInt8> & str)
{
UInt64 u64 = readUInt();
if (u64 < 2)
{
std::string_view ref(u64 ? "true" : "false");
str.insert(ref.data(), ref.data() + ref.length());
}
else
cannotConvertValue(toString(u64), field_descriptor.type_name(), "String");
};
default_function = [this]() -> String
{
return field_descriptor.default_value_bool() ? "true" : "false";
};
break;
}
case FieldTypeId::TYPE_STRING:
case FieldTypeId::TYPE_BYTES:
{
write_function = [this](const std::string_view & str) { writeStr(str); };
read_function = [this](PaddedPODArray<UInt8> & str) { readStrAndAppend(str); };
default_function = [this]() -> String { return field_descriptor.default_value_string(); };
break;
}
case FieldTypeId::TYPE_ENUM:
{
write_function = [this](const std::string_view & str) { writeInt(stringToProtobufEnumValue(str)); };
read_function = [this](PaddedPODArray<UInt8> & str) { protobufEnumValueToStringAppend(readInt(), str); };
default_function = [this]() -> String { return field_descriptor.default_value_enum()->name(); };
break;
}
default:
this->incompatibleColumnType(is_fixed_string ? "FixedString" : "String");
}
}
const PaddedPODArray<UInt8> & getDefaultString()
{
if (!default_string)
{
PaddedPODArray<UInt8> arr;
auto str = default_function();
arr.insert(str.data(), str.data() + str.size());
if constexpr (is_fixed_string)
SerializationFixedString::alignStringLength(n, arr, 0);
default_string = std::move(arr);
}
return *default_string;
}
template <typename NumberType>
void toStringAppend(NumberType value, PaddedPODArray<UInt8> & str)
{
WriteBufferFromVector buf{str, AppendModeTag{}};
writeText(value, buf);
}
void prepareEnumMapping()
{
if ((field_typeid == google::protobuf::FieldDescriptor::TYPE_ENUM) && writer)
{
const auto & enum_descriptor = *field_descriptor.enum_type();
for (int i = 0; i != enum_descriptor.value_count(); ++i)
{
const auto & enum_value_descriptor = *enum_descriptor.value(i);
string_to_protobuf_enum_value_map.emplace(enum_value_descriptor.name(), enum_value_descriptor.number());
}
}
}
int stringToProtobufEnumValue(const std::string_view & str) const
{
auto it = string_to_protobuf_enum_value_map.find(str);
if (it == string_to_protobuf_enum_value_map.end())
cannotConvertValue(str, "String", field_descriptor.type_name());
return it->second;
}
std::string_view protobufEnumValueToString(int value) const
{
const auto * enum_value_descriptor = field_descriptor.enum_type()->FindValueByNumber(value);
if (!enum_value_descriptor)
cannotConvertValue(toString(value), field_descriptor.type_name(), "String");
return enum_value_descriptor->name();
}
void protobufEnumValueToStringAppend(int value, PaddedPODArray<UInt8> & str) const
{
auto name = protobufEnumValueToString(value);
str.insert(name.data(), name.data() + name.length());
}
const std::shared_ptr<const DataTypeFixedString> fixed_string_data_type;
const size_t n = 0;
std::function<void(const std::string_view &)> write_function;
std::function<void(PaddedPODArray<UInt8> &)> read_function;
std::function<String()> default_function;
std::unordered_map<std::string_view, int> string_to_protobuf_enum_value_map;
PaddedPODArray<UInt8> text_buffer;
std::optional<PaddedPODArray<UInt8>> default_string;
};
/// Serializes ColumnVector<NumberType> containing enum values to a field of any type
/// except TYPE_MESSAGE, TYPE_GROUP, TYPE_FLOAT, TYPE_DOUBLE, TYPE_BOOL.
/// NumberType can be either Int8 or Int16.
template <typename NumberType>
class ProtobufSerializerEnum : public ProtobufSerializerNumber<NumberType>
{
public:
using ColumnType = ColumnVector<NumberType>;
using EnumDataType = DataTypeEnum<NumberType>;
using BaseClass = ProtobufSerializerNumber<NumberType>;
ProtobufSerializerEnum(
const std::string_view & column_name_,
const std::shared_ptr<const EnumDataType> & enum_data_type_,
const FieldDescriptor & field_descriptor_,
const ProtobufReaderOrWriter & reader_or_writer_)
: BaseClass(column_name_, field_descriptor_, reader_or_writer_), enum_data_type(enum_data_type_)
{
assert(enum_data_type);
setFunctions();
prepareEnumMapping();
}
void describeTree(WriteBuffer & out, size_t indent) const override
{
writeIndent(out, indent) << "ProtobufSerializerEnum<" << TypeName<NumberType> << ">: column " << quoteString(this->column_name)
<< " -> field " << quoteString(this->field_descriptor.full_name()) << " ("
<< this->field_descriptor.type_name() << ")\n";
}
private:
void setFunctions()
{
switch (this->field_typeid)
{
case FieldTypeId::TYPE_INT32:
case FieldTypeId::TYPE_SINT32:
case FieldTypeId::TYPE_UINT32:
case FieldTypeId::TYPE_INT64:
case FieldTypeId::TYPE_SINT64:
case FieldTypeId::TYPE_UINT64:
case FieldTypeId::TYPE_FIXED32:
case FieldTypeId::TYPE_SFIXED32:
case FieldTypeId::TYPE_FIXED64:
case FieldTypeId::TYPE_SFIXED64:
{
auto base_read_function = this->read_function;
this->read_function = [this, base_read_function]() -> NumberType
{
NumberType value = base_read_function();
checkEnumDataTypeValue(value);
return value;
};
auto base_default_function = this->default_function;
this->default_function = [this, base_default_function]() -> NumberType
{
auto value = base_default_function();
checkEnumDataTypeValue(value);
return value;
};
break;
}
case FieldTypeId::TYPE_STRING:
case FieldTypeId::TYPE_BYTES:
{
this->write_function = [this](NumberType value)
{
writeStr(enumDataTypeValueToString(value));
};
this->read_function = [this]() -> NumberType
{
readStr(this->text_buffer);
return stringToEnumDataTypeValue(this->text_buffer);
};
this->default_function = [this]() -> NumberType
{
return stringToEnumDataTypeValue(this->field_descriptor.default_value_string());
};
break;
}
case FieldTypeId::TYPE_ENUM:
{
this->write_function = [this](NumberType value) { writeInt(enumDataTypeValueToProtobufEnumValue(value)); };
this->read_function = [this]() -> NumberType { return protobufEnumValueToEnumDataTypeValue(readInt()); };
this->default_function = [this]() -> NumberType { return protobufEnumValueToEnumDataTypeValue(this->field_descriptor.default_value_enum()->number()); };
break;
}
default:
this->incompatibleColumnType(enum_data_type->getName());
}
}
void checkEnumDataTypeValue(NumberType value)
{
enum_data_type->findByValue(value); /// Throws an exception if the value isn't defined in the DataTypeEnum.
}
std::string_view enumDataTypeValueToString(NumberType value) const { return std::string_view{enum_data_type->getNameForValue(value)}; }
NumberType stringToEnumDataTypeValue(const String & str) const { return enum_data_type->getValue(str); }
void prepareEnumMapping()
{
if (this->field_typeid != FieldTypeId::TYPE_ENUM)
return;
const auto & enum_descriptor = *this->field_descriptor.enum_type();
/// We have two mappings:
/// enum_data_type: "string->NumberType" and protobuf_enum: string->int".
/// And here we want to make from those two mapping a new mapping "NumberType->int" (if we're writing protobuf data),
/// or "int->NumberType" (if we're reading protobuf data).
auto add_to_mapping = [&](NumberType enum_data_type_value, int protobuf_enum_value)
{
if (this->writer)
enum_data_type_value_to_protobuf_enum_value_map.emplace(enum_data_type_value, protobuf_enum_value);
else
protobuf_enum_value_to_enum_data_type_value_map.emplace(protobuf_enum_value, enum_data_type_value);
};
auto iless = [](const std::string_view & s1, const std::string_view & s2) { return ColumnNameWithProtobufFieldNameComparator::less(s1, s2); };
boost::container::flat_map<std::string_view, int, decltype(iless)> string_to_protobuf_enum_value_map;
typename decltype(string_to_protobuf_enum_value_map)::sequence_type string_to_protobuf_enum_value_seq;
for (int i : collections::range(enum_descriptor.value_count()))
string_to_protobuf_enum_value_seq.emplace_back(enum_descriptor.value(i)->name(), enum_descriptor.value(i)->number());
string_to_protobuf_enum_value_map.adopt_sequence(std::move(string_to_protobuf_enum_value_seq));
std::vector<NumberType> not_found_by_name_values;
not_found_by_name_values.reserve(enum_data_type->getValues().size());
/// Find mapping between enum_data_type and protobuf_enum by name (case insensitively),
/// i.e. we add to the mapping
/// NumberType(enum_data_type) -> "NAME"(enum_data_type) ->
/// -> "NAME"(protobuf_enum, same name) -> int(protobuf_enum)
for (const auto & [name, value] : enum_data_type->getValues())
{
auto it = string_to_protobuf_enum_value_map.find(name);
if (it != string_to_protobuf_enum_value_map.end())
add_to_mapping(value, it->second);
else
not_found_by_name_values.push_back(value);
}
if (!not_found_by_name_values.empty())
{
/// Find mapping between two enum_data_type and protobuf_enum by value.
/// If the same value has different names in enum_data_type and protobuf_enum
/// we can still add it to our mapping, i.e. we add to the mapping
/// NumberType(enum_data_type) -> int(protobuf_enum, same value)
for (NumberType value : not_found_by_name_values)
{
if (enum_descriptor.FindValueByNumber(value))
add_to_mapping(value, value);
}
}
size_t num_mapped_values = this->writer ? enum_data_type_value_to_protobuf_enum_value_map.size()
: protobuf_enum_value_to_enum_data_type_value_map.size();
if (!num_mapped_values && !enum_data_type->getValues().empty() && enum_descriptor.value_count())
{
throw Exception(
"Couldn't find mapping between data type " + enum_data_type->getName() + " and the enum " + quoteString(enum_descriptor.full_name())
+ " in the protobuf schema",
ErrorCodes::DATA_TYPE_INCOMPATIBLE_WITH_PROTOBUF_FIELD);
}
}
int enumDataTypeValueToProtobufEnumValue(NumberType value) const
{
auto it = enum_data_type_value_to_protobuf_enum_value_map.find(value);
if (it == enum_data_type_value_to_protobuf_enum_value_map.end())
cannotConvertValue(toString(value), enum_data_type->getName(), this->field_descriptor.type_name());
return it->second;
}
NumberType protobufEnumValueToEnumDataTypeValue(int value) const
{
auto it = protobuf_enum_value_to_enum_data_type_value_map.find(value);
if (it == protobuf_enum_value_to_enum_data_type_value_map.end())
cannotConvertValue(toString(value), this->field_descriptor.type_name(), enum_data_type->getName());
return it->second;
}
Int64 readInt() { return ProtobufSerializerSingleValue::readInt(); }
void writeInt(Int64 value) { ProtobufSerializerSingleValue::writeInt(value); }
void writeStr(const std::string_view & str) { ProtobufSerializerSingleValue::writeStr(str); }
void readStr(String & str) { ProtobufSerializerSingleValue::readStr(str); }
[[noreturn]] void cannotConvertValue(const std::string_view & src_value, const std::string_view & src_type_name, const std::string_view & dest_type_name) const { ProtobufSerializerSingleValue::cannotConvertValue(src_value, src_type_name, dest_type_name); }
const std::shared_ptr<const EnumDataType> enum_data_type;
std::unordered_map<NumberType, int> enum_data_type_value_to_protobuf_enum_value_map;
std::unordered_map<int, NumberType> protobuf_enum_value_to_enum_data_type_value_map;
};
/// Serializes a ColumnDecimal<DecimalType> to any field except TYPE_MESSAGE, TYPE_GROUP, TYPE_ENUM.
/// DecimalType must be one of the following types: Decimal32, Decimal64, Decimal128, Decimal256, DateTime64.
template <typename DecimalType>
class ProtobufSerializerDecimal : public ProtobufSerializerSingleValue
{
public:
using ColumnType = ColumnDecimal<DecimalType>;
ProtobufSerializerDecimal(
const std::string_view & column_name_,
const DataTypeDecimalBase<DecimalType> & decimal_data_type_,
const FieldDescriptor & field_descriptor_,
const ProtobufReaderOrWriter & reader_or_writer_)
: ProtobufSerializerSingleValue(column_name_, field_descriptor_, reader_or_writer_)
, precision(decimal_data_type_.getPrecision())
, scale(decimal_data_type_.getScale())
{
setFunctions();
}
void writeRow(size_t row_num) override
{
const auto & column_decimal = assert_cast<const ColumnType &>(*column);
write_function(column_decimal.getElement(row_num));
}
void readRow(size_t row_num) override
{
DecimalType decimal = read_function();
auto & column_decimal = assert_cast<ColumnType &>(column->assumeMutableRef());
if (row_num < column_decimal.size())
column_decimal.getElement(row_num) = decimal;
else
column_decimal.insertValue(decimal);
}
void insertDefaults(size_t row_num) override
{
auto & column_decimal = assert_cast<ColumnType &>(column->assumeMutableRef());
if (row_num < column_decimal.size())
return;
column_decimal.insertValue(getDefaultDecimal());
}
void describeTree(WriteBuffer & out, size_t indent) const override
{
writeIndent(out, indent) << "ProtobufSerializerDecimal<" << TypeName<DecimalType> << ">: column " << quoteString(column_name)
<< " -> field " << quoteString(field_descriptor.full_name()) << " (" << field_descriptor.type_name()
<< ")\n";
}
private:
void setFunctions()
{
switch (field_typeid)
{
case FieldTypeId::TYPE_INT32:
{
write_function = [this](const DecimalType & decimal) { writeInt(decimalToNumber<Int32>(decimal)); };
read_function = [this]() -> DecimalType { return numberToDecimal(readInt()); };
default_function = [this]() -> DecimalType { return numberToDecimal(field_descriptor.default_value_int32()); };
break;
}
case FieldTypeId::TYPE_SINT32:
{
write_function = [this](const DecimalType & decimal) { writeSInt(decimalToNumber<Int32>(decimal)); };
read_function = [this]() -> DecimalType { return numberToDecimal(readSInt()); };
default_function = [this]() -> DecimalType { return numberToDecimal(field_descriptor.default_value_int32()); };
break;
}
case FieldTypeId::TYPE_UINT32:
{
write_function = [this](const DecimalType & decimal) { writeUInt(decimalToNumber<UInt32>(decimal)); };
read_function = [this]() -> DecimalType { return numberToDecimal(readUInt()); };
default_function = [this]() -> DecimalType { return numberToDecimal(field_descriptor.default_value_uint32()); };
break;
}
case FieldTypeId::TYPE_INT64:
{
write_function = [this](const DecimalType & decimal) { writeInt(decimalToNumber<Int64>(decimal)); };
read_function = [this]() -> DecimalType { return numberToDecimal(readInt()); };
default_function = [this]() -> DecimalType { return numberToDecimal(field_descriptor.default_value_int64()); };
break;
}
case FieldTypeId::TYPE_SINT64:
{
write_function = [this](const DecimalType & decimal) { writeSInt(decimalToNumber<Int64>(decimal)); };
read_function = [this]() -> DecimalType { return numberToDecimal(readSInt()); };
default_function = [this]() -> DecimalType { return numberToDecimal(field_descriptor.default_value_int64()); };
break;
}
case FieldTypeId::TYPE_UINT64:
{
write_function = [this](const DecimalType & decimal) { writeUInt(decimalToNumber<UInt64>(decimal)); };
read_function = [this]() -> DecimalType { return numberToDecimal(readUInt()); };
default_function = [this]() -> DecimalType { return numberToDecimal(field_descriptor.default_value_uint64()); };
break;
}
case FieldTypeId::TYPE_FIXED32:
{
write_function = [this](const DecimalType & decimal) { writeFixed<UInt32>(decimalToNumber<UInt32>(decimal)); };
read_function = [this]() -> DecimalType { return numberToDecimal(readFixed<UInt32>()); };
default_function = [this]() -> DecimalType { return numberToDecimal(field_descriptor.default_value_uint32()); };
break;
}
case FieldTypeId::TYPE_SFIXED32:
{
write_function = [this](const DecimalType & decimal) { writeFixed<Int32>(decimalToNumber<Int32>(decimal)); };
read_function = [this]() -> DecimalType { return numberToDecimal(readFixed<Int32>()); };
default_function = [this]() -> DecimalType { return numberToDecimal(field_descriptor.default_value_int32()); };
break;
}
case FieldTypeId::TYPE_FIXED64:
{
write_function = [this](const DecimalType & decimal) { writeFixed<UInt64>(decimalToNumber<UInt64>(decimal)); };
read_function = [this]() -> DecimalType { return numberToDecimal(readFixed<UInt64>()); };
default_function = [this]() -> DecimalType { return numberToDecimal(field_descriptor.default_value_uint64()); };
break;
}
case FieldTypeId::TYPE_SFIXED64:
{
write_function = [this](const DecimalType & decimal) { writeFixed<Int64>(decimalToNumber<Int64>(decimal)); };
read_function = [this]() -> DecimalType { return numberToDecimal(readFixed<Int64>()); };
default_function = [this]() -> DecimalType { return numberToDecimal(field_descriptor.default_value_int64()); };
break;
}
case FieldTypeId::TYPE_FLOAT:
{
write_function = [this](const DecimalType & decimal) { writeFixed<Float32>(decimalToNumber<Float32>(decimal)); };
read_function = [this]() -> DecimalType { return numberToDecimal(readFixed<Float32>()); };
default_function = [this]() -> DecimalType { return numberToDecimal(field_descriptor.default_value_float()); };
break;
}
case FieldTypeId::TYPE_DOUBLE:
{
write_function = [this](const DecimalType & decimal) { writeFixed<Float64>(decimalToNumber<Float64>(decimal)); };
read_function = [this]() -> DecimalType { return numberToDecimal(readFixed<Float64>()); };
default_function = [this]() -> DecimalType { return numberToDecimal(field_descriptor.default_value_double()); };
break;
}
case FieldTypeId::TYPE_BOOL:
{
if (std::is_same_v<DecimalType, DateTime64>)
incompatibleColumnType(TypeName<DecimalType>);
else
{
write_function = [this](const DecimalType & decimal)
{
if (decimal.value == 0)
writeInt(0);
else if (DecimalComparison<DecimalType, int, EqualsOp>::compare(decimal, 1, scale, 0))
writeInt(1);
else
{
WriteBufferFromOwnString buf;
writeText(decimal, scale, buf, false);
cannotConvertValue(buf.str(), TypeName<DecimalType>, field_descriptor.type_name());
}
};
read_function = [this]() -> DecimalType
{
UInt64 u64 = readUInt();
if (u64 < 2)
return numberToDecimal(static_cast<UInt64>(u64 != 0));
else
cannotConvertValue(toString(u64), field_descriptor.type_name(), TypeName<DecimalType>);
};
default_function = [this]() -> DecimalType
{
return numberToDecimal(static_cast<Int64>(field_descriptor.default_value_bool()));
};
}
break;
}
case FieldTypeId::TYPE_STRING:
case FieldTypeId::TYPE_BYTES:
{
write_function = [this](const DecimalType & decimal)
{
decimalToString(decimal, text_buffer);
writeStr(text_buffer);
};
read_function = [this]() -> DecimalType
{
readStr(text_buffer);
return stringToDecimal(text_buffer);
};
default_function = [this]() -> DecimalType { return stringToDecimal(field_descriptor.default_value_string()); };
break;
}
default:
incompatibleColumnType(TypeName<DecimalType>);
}
}
DecimalType getDefaultDecimal()
{
if (!default_decimal)
default_decimal = default_function();
return *default_decimal;
}
template <typename NumberType>
DecimalType numberToDecimal(NumberType value) const
{
return convertToDecimal<DataTypeNumber<NumberType>, DataTypeDecimal<DecimalType>>(value, scale);
}
template <typename NumberType>
NumberType decimalToNumber(const DecimalType & decimal) const
{
return DecimalUtils::convertTo<NumberType>(decimal, scale);
}
void decimalToString(const DecimalType & decimal, String & str) const
{
WriteBufferFromString buf{str};
if constexpr (std::is_same_v<DecimalType, DateTime64>)
writeDateTimeText(decimal, scale, buf);
else
writeText(decimal, scale, buf, false);
}
DecimalType stringToDecimal(const String & str) const
{
ReadBufferFromString buf(str);
DecimalType decimal{0};
if constexpr (std::is_same_v<DecimalType, DateTime64>)
readDateTime64Text(decimal, scale, buf);
else
SerializationDecimal<DecimalType>::readText(decimal, buf, precision, scale);
return decimal;
}
const UInt32 precision;
const UInt32 scale;
std::function<void(const DecimalType &)> write_function;
std::function<DecimalType()> read_function;
std::function<DecimalType()> default_function;
std::optional<DecimalType> default_decimal;
String text_buffer;
};
using ProtobufSerializerDateTime64 = ProtobufSerializerDecimal<DateTime64>;
/// Serializes a ColumnVector<UInt16> containing dates to a field of any type except TYPE_MESSAGE, TYPE_GROUP, TYPE_BOOL, TYPE_ENUM.
class ProtobufSerializerDate : public ProtobufSerializerNumber<UInt16>
{
public:
ProtobufSerializerDate(
const std::string_view & column_name_,
const FieldDescriptor & field_descriptor_,
const ProtobufReaderOrWriter & reader_or_writer_)
: ProtobufSerializerNumber<UInt16>(column_name_, field_descriptor_, reader_or_writer_)
{
setFunctions();
}
void describeTree(WriteBuffer & out, size_t indent) const override
{
writeIndent(out, indent) << "ProtobufSerializerDate: column " << quoteString(column_name) << " -> field "
<< quoteString(field_descriptor.full_name()) << " (" << field_descriptor.type_name() << ")\n";
}
private:
void setFunctions()
{
switch (field_typeid)
{
case FieldTypeId::TYPE_INT32:
case FieldTypeId::TYPE_SINT32:
case FieldTypeId::TYPE_UINT32:
case FieldTypeId::TYPE_INT64:
case FieldTypeId::TYPE_SINT64:
case FieldTypeId::TYPE_UINT64:
case FieldTypeId::TYPE_FIXED32:
case FieldTypeId::TYPE_SFIXED32:
case FieldTypeId::TYPE_FIXED64:
case FieldTypeId::TYPE_SFIXED64:
case FieldTypeId::TYPE_FLOAT:
case FieldTypeId::TYPE_DOUBLE:
break; /// already set in ProtobufSerializerNumber<UInt16>::setFunctions().
case FieldTypeId::TYPE_STRING:
case FieldTypeId::TYPE_BYTES:
{
write_function = [this](UInt16 value)
{
dateToString(static_cast<DayNum>(value), text_buffer);
writeStr(text_buffer);
};
read_function = [this]() -> UInt16
{
readStr(text_buffer);
return stringToDate(text_buffer);
};
default_function = [this]() -> UInt16 { return stringToDate(field_descriptor.default_value_string()); };
break;
}
default:
incompatibleColumnType("Date");
}
}
static void dateToString(DayNum date, String & str)
{
WriteBufferFromString buf{str};
writeText(date, buf);
}
static DayNum stringToDate(const String & str)
{
DayNum date;
ReadBufferFromString buf{str};
readDateText(date, buf);
return date;
}
};
/// Serializes a ColumnVector<UInt32> containing datetimes to a field of any type except TYPE_MESSAGE, TYPE_GROUP, TYPE_BOOL, TYPE_ENUM.
class ProtobufSerializerDateTime : public ProtobufSerializerNumber<UInt32>
{
public:
ProtobufSerializerDateTime(
const std::string_view & column_name_,
const DataTypeDateTime & type,
const FieldDescriptor & field_descriptor_,
const ProtobufReaderOrWriter & reader_or_writer_)
: ProtobufSerializerNumber<UInt32>(column_name_, field_descriptor_, reader_or_writer_),
date_lut(type.getTimeZone())
{
setFunctions();
}
void describeTree(WriteBuffer & out, size_t indent) const override
{
writeIndent(out, indent) << "ProtobufSerializerDateTime: column " << quoteString(column_name) << " -> field "
<< quoteString(field_descriptor.full_name()) << " (" << field_descriptor.type_name() << ")\n";
}
protected:
const DateLUTImpl & date_lut;
void setFunctions()
{
switch (field_typeid)
{
case FieldTypeId::TYPE_INT32:
case FieldTypeId::TYPE_SINT32:
case FieldTypeId::TYPE_UINT32:
case FieldTypeId::TYPE_INT64:
case FieldTypeId::TYPE_SINT64:
case FieldTypeId::TYPE_UINT64:
case FieldTypeId::TYPE_FIXED32:
case FieldTypeId::TYPE_SFIXED32:
case FieldTypeId::TYPE_FIXED64:
case FieldTypeId::TYPE_SFIXED64:
case FieldTypeId::TYPE_FLOAT:
case FieldTypeId::TYPE_DOUBLE:
break; /// already set in ProtobufSerializerNumber<UInt32>::setFunctions().
case FieldTypeId::TYPE_STRING:
case FieldTypeId::TYPE_BYTES:
{
write_function = [this](UInt32 value)
{
dateTimeToString(value, text_buffer, date_lut);
writeStr(text_buffer);
};
read_function = [this]() -> UInt32
{
readStr(text_buffer);
return stringToDateTime(text_buffer, date_lut);
};
default_function = [this]() -> UInt32 { return stringToDateTime(field_descriptor.default_value_string(), date_lut); };
break;
}
default:
incompatibleColumnType("DateTime");
}
}
static void dateTimeToString(time_t tm, String & str, const DateLUTImpl & lut)
{
WriteBufferFromString buf{str};
writeDateTimeText(tm, buf, lut);
}
static time_t stringToDateTime(const String & str, const DateLUTImpl & lut)
{
ReadBufferFromString buf{str};
time_t tm = 0;
readDateTimeText(tm, buf, lut);
if (tm < 0)
tm = 0;
return tm;
}
};
/// Serializes a ColumnVector<UUID> containing UUIDs to a field of type TYPE_STRING or TYPE_BYTES.
class ProtobufSerializerUUID : public ProtobufSerializerSingleValue
{
public:
ProtobufSerializerUUID(
const std::string_view & column_name_,
const google::protobuf::FieldDescriptor & field_descriptor_,
const ProtobufReaderOrWriter & reader_or_writer_)
: ProtobufSerializerSingleValue(column_name_, field_descriptor_, reader_or_writer_)
{
setFunctions();
}
void writeRow(size_t row_num) override
{
const auto & column_vector = assert_cast<const ColumnVector<UUID> &>(*column);
write_function(column_vector.getElement(row_num));
}
void readRow(size_t row_num) override
{
UUID value = read_function();
auto & column_vector = assert_cast<ColumnVector<UUID> &>(column->assumeMutableRef());
if (row_num < column_vector.size())
column_vector.getElement(row_num) = value;
else
column_vector.insertValue(value);
}
void insertDefaults(size_t row_num) override
{
auto & column_vector = assert_cast<ColumnVector<UUID> &>(column->assumeMutableRef());
if (row_num < column_vector.size())
return;
column_vector.insertDefault();
}
void describeTree(WriteBuffer & out, size_t indent) const override
{
writeIndent(out, indent) << "ProtobufSerializerUUID: column " << quoteString(column_name) << " -> field "
<< quoteString(field_descriptor.full_name()) << " (" << field_descriptor.type_name() << ")\n";
}
private:
void setFunctions()
{
if ((field_typeid != FieldTypeId::TYPE_STRING) && (field_typeid != FieldTypeId::TYPE_BYTES))
incompatibleColumnType("UUID");
write_function = [this](UUID value)
{
uuidToString(value, text_buffer);
writeStr(text_buffer);
};
read_function = [this]() -> UUID
{
readStr(text_buffer);
return parse<UUID>(text_buffer);
};
default_function = [this]() -> UUID { return parse<UUID>(field_descriptor.default_value_string()); };
}
static void uuidToString(const UUID & uuid, String & str)
{
WriteBufferFromString buf{str};
writeText(uuid, buf);
}
std::function<void(UUID)> write_function;
std::function<UUID()> read_function;
std::function<UUID()> default_function;
String text_buffer;
};
using ProtobufSerializerInterval = ProtobufSerializerNumber<Int64>;
/// Serializes a ColumnAggregateFunction to a field of type TYPE_STRING or TYPE_BYTES.
class ProtobufSerializerAggregateFunction : public ProtobufSerializerSingleValue
{
public:
ProtobufSerializerAggregateFunction(
const std::string_view & column_name_,
const std::shared_ptr<const DataTypeAggregateFunction> & aggregate_function_data_type_,
const google::protobuf::FieldDescriptor & field_descriptor_,
const ProtobufReaderOrWriter & reader_or_writer_)
: ProtobufSerializerSingleValue(column_name_, field_descriptor_, reader_or_writer_)
, aggregate_function_data_type(aggregate_function_data_type_)
, aggregate_function(aggregate_function_data_type->getFunction())
{
if ((field_typeid != FieldTypeId::TYPE_STRING) && (field_typeid != FieldTypeId::TYPE_BYTES))
incompatibleColumnType(aggregate_function_data_type->getName());
}
void writeRow(size_t row_num) override
{
const auto & column_af = assert_cast<const ColumnAggregateFunction &>(*column);
dataToString(column_af.getData()[row_num], text_buffer);
writeStr(text_buffer);
}
void readRow(size_t row_num) override
{
auto & column_af = assert_cast<ColumnAggregateFunction &>(column->assumeMutableRef());
Arena & arena = column_af.createOrGetArena();
AggregateDataPtr data;
readStr(text_buffer);
data = stringToData(text_buffer, arena);
if (row_num < column_af.size())
{
auto * old_data = std::exchange(column_af.getData()[row_num], data);
aggregate_function->destroy(old_data);
}
else
column_af.getData().push_back(data);
}
void insertDefaults(size_t row_num) override
{
auto & column_af = assert_cast<ColumnAggregateFunction &>(column->assumeMutableRef());
if (row_num < column_af.size())
return;
Arena & arena = column_af.createOrGetArena();
AggregateDataPtr data = stringToData(field_descriptor.default_value_string(), arena);
column_af.getData().push_back(data);
}
void describeTree(WriteBuffer & out, size_t indent) const override
{
writeIndent(out, indent) << "ProtobufSerializerAggregateFunction: column " << quoteString(column_name) << " -> field "
<< quoteString(field_descriptor.full_name()) << " (" << field_descriptor.type_name() << ")\n";
}
private:
void dataToString(ConstAggregateDataPtr data, String & str) const
{
WriteBufferFromString buf{str};
aggregate_function->serialize(data, buf);
}
AggregateDataPtr stringToData(const String & str, Arena & arena) const
{
size_t size_of_state = aggregate_function->sizeOfData();
AggregateDataPtr data = arena.alignedAlloc(size_of_state, aggregate_function->alignOfData());
try
{
aggregate_function->create(data);
ReadBufferFromMemory buf(str.data(), str.length());
aggregate_function->deserialize(data, buf, std::nullopt, &arena);
return data;
}
catch (...)
{
aggregate_function->destroy(data);
throw;
}
}
const std::shared_ptr<const DataTypeAggregateFunction> aggregate_function_data_type;
const AggregateFunctionPtr aggregate_function;
String text_buffer;
};
/// Serializes a ColumnNullable.
class ProtobufSerializerNullable : public ProtobufSerializer
{
public:
explicit ProtobufSerializerNullable(std::unique_ptr<ProtobufSerializer> nested_serializer_)
: nested_serializer(std::move(nested_serializer_))
{
}
void setColumns(const ColumnPtr * columns, [[maybe_unused]] size_t num_columns) override
{
if (num_columns != 1)
wrongNumberOfColumns(num_columns, "1");
column = columns[0];
const auto & column_nullable = assert_cast<const ColumnNullable &>(*column);
ColumnPtr nested_column = column_nullable.getNestedColumnPtr();
nested_serializer->setColumns(&nested_column, 1);
}
void setColumns(const MutableColumnPtr * columns, [[maybe_unused]] size_t num_columns) override
{
if (num_columns != 1)
wrongNumberOfColumns(num_columns, "1");
ColumnPtr column0 = columns[0]->getPtr();
setColumns(&column0, 1);
}
void writeRow(size_t row_num) override
{
const auto & column_nullable = assert_cast<const ColumnNullable &>(*column);
const auto & null_map = column_nullable.getNullMapData();
if (!null_map[row_num])
nested_serializer->writeRow(row_num);
}
void readRow(size_t row_num) override
{
auto & column_nullable = assert_cast<ColumnNullable &>(column->assumeMutableRef());
auto & nested_column = column_nullable.getNestedColumn();
auto & null_map = column_nullable.getNullMapData();
size_t old_size = null_map.size();
nested_serializer->readRow(row_num);
if (row_num < old_size)
{
null_map[row_num] = false;
}
else
{
size_t new_size = nested_column.size();
if (new_size != old_size + 1)
throw Exception("Size of ColumnNullable is unexpected", ErrorCodes::LOGICAL_ERROR);
try
{
null_map.push_back(false);
}
catch (...)
{
nested_column.popBack(1);
throw;
}
}
}
void insertDefaults(size_t row_num) override
{
auto & column_nullable = assert_cast<ColumnNullable &>(column->assumeMutableRef());
if (row_num < column_nullable.size())
return;
column_nullable.insertDefault();
}
void insertNestedDefaults(size_t row_num)
{
auto & column_nullable = assert_cast<ColumnNullable &>(column->assumeMutableRef());
if (row_num < column_nullable.size())
return;
column_nullable.getNestedColumn().insertDefault();
column_nullable.getNullMapData().push_back(0);
}
void describeTree(WriteBuffer & out, size_t indent) const override
{
writeIndent(out, indent) << "ProtobufSerializerNullable ->\n";
nested_serializer->describeTree(out, indent + 1);
}
private:
const std::unique_ptr<ProtobufSerializer> nested_serializer;
ColumnPtr column;
};
/// Serializes a ColumnMap.
class ProtobufSerializerMap : public ProtobufSerializer
{
public:
explicit ProtobufSerializerMap(std::unique_ptr<ProtobufSerializer> nested_serializer_)
: nested_serializer(std::move(nested_serializer_))
{
}
void setColumns(const ColumnPtr * columns, [[maybe_unused]] size_t num_columns) override
{
if (num_columns != 1)
wrongNumberOfColumns(num_columns, "1");
const auto & column_map = assert_cast<const ColumnMap &>(*columns[0]);
ColumnPtr nested_column = column_map.getNestedColumnPtr();
nested_serializer->setColumns(&nested_column, 1);
}
void setColumns(const MutableColumnPtr * columns, [[maybe_unused]] size_t num_columns) override
{
if (num_columns != 1)
wrongNumberOfColumns(num_columns, "1");
ColumnPtr column0 = columns[0]->getPtr();
setColumns(&column0, 1);
}
void writeRow(size_t row_num) override { nested_serializer->writeRow(row_num); }
void readRow(size_t row_num) override { nested_serializer->readRow(row_num); }
void insertDefaults(size_t row_num) override { nested_serializer->insertDefaults(row_num); }
void describeTree(WriteBuffer & out, size_t indent) const override
{
writeIndent(out, indent) << "ProtobufSerializerMap ->\n";
nested_serializer->describeTree(out, indent + 1);
}
private:
const std::unique_ptr<ProtobufSerializer> nested_serializer;
};
/// Serializes a ColumnLowCardinality.
class ProtobufSerializerLowCardinality : public ProtobufSerializer
{
public:
explicit ProtobufSerializerLowCardinality(std::unique_ptr<ProtobufSerializer> nested_serializer_)
: nested_serializer(std::move(nested_serializer_))
{
}
void setColumns(const ColumnPtr * columns, [[maybe_unused]] size_t num_columns) override
{
if (num_columns != 1)
wrongNumberOfColumns(num_columns, "1");
column = columns[0];
const auto & column_lc = assert_cast<const ColumnLowCardinality &>(*column);
ColumnPtr nested_column = column_lc.getDictionary().getNestedColumn();
nested_serializer->setColumns(&nested_column, 1);
read_value_column_set = false;
}
void setColumns(const MutableColumnPtr * columns, [[maybe_unused]] size_t num_columns) override
{
if (num_columns != 1)
wrongNumberOfColumns(num_columns, "1");
ColumnPtr column0 = columns[0]->getPtr();
setColumns(&column0, 1);
}
void writeRow(size_t row_num) override
{
const auto & column_lc = assert_cast<const ColumnLowCardinality &>(*column);
size_t unique_row_number = column_lc.getIndexes().getUInt(row_num);
nested_serializer->writeRow(unique_row_number);
}
void readRow(size_t row_num) override
{
auto & column_lc = assert_cast<ColumnLowCardinality &>(column->assumeMutableRef());
if (!read_value_column_set)
{
if (!read_value_column)
{
ColumnPtr nested_column = column_lc.getDictionary().getNestedColumn();
read_value_column = nested_column->cloneEmpty();
}
nested_serializer->setColumns(&read_value_column, 1);
read_value_column_set = true;
}
read_value_column->popBack(read_value_column->size());
nested_serializer->readRow(0);
if (row_num < column_lc.size())
{
if (row_num != column_lc.size() - 1)
throw Exception("Cannot replace an element in the middle of ColumnLowCardinality", ErrorCodes::LOGICAL_ERROR);
column_lc.popBack(1);
}
column_lc.insertFromFullColumn(*read_value_column, 0);
}
void insertDefaults(size_t row_num) override
{
auto & column_lc = assert_cast<ColumnLowCardinality &>(column->assumeMutableRef());
if (row_num < column_lc.size())
return;
if (!default_value_column)
{
ColumnPtr nested_column = column_lc.getDictionary().getNestedColumn();
default_value_column = nested_column->cloneEmpty();
nested_serializer->setColumns(&default_value_column, 1);
nested_serializer->insertDefaults(0);
read_value_column_set = false;
}
column_lc.insertFromFullColumn(*default_value_column, 0);
}
void describeTree(WriteBuffer & out, size_t indent) const override
{
writeIndent(out, indent) << "ProtobufSerializerLowCardinality ->\n";
nested_serializer->describeTree(out, indent + 1);
}
private:
const std::unique_ptr<ProtobufSerializer> nested_serializer;
ColumnPtr column;
MutableColumnPtr read_value_column;
bool read_value_column_set = false;
MutableColumnPtr default_value_column;
};
/// Serializes a ColumnArray to a repeated field.
class ProtobufSerializerArray : public ProtobufSerializer
{
public:
explicit ProtobufSerializerArray(std::unique_ptr<ProtobufSerializer> element_serializer_)
: element_serializer(std::move(element_serializer_))
{
}
void setColumns(const ColumnPtr * columns, [[maybe_unused]] size_t num_columns) override
{
if (num_columns != 1)
wrongNumberOfColumns(num_columns, "1");
column = columns[0];
const auto & column_array = assert_cast<const ColumnArray &>(*column);
ColumnPtr data_column = column_array.getDataPtr();
element_serializer->setColumns(&data_column, 1);
}
void setColumns(const MutableColumnPtr * columns, [[maybe_unused]] size_t num_columns) override
{
if (num_columns != 1)
wrongNumberOfColumns(num_columns, "1");
ColumnPtr column0 = columns[0]->getPtr();
setColumns(&column0, 1);
}
void writeRow(size_t row_num) override
{
const auto & column_array = assert_cast<const ColumnArray &>(*column);
const auto & offsets = column_array.getOffsets();
for (size_t i : collections::range(offsets[row_num - 1], offsets[row_num]))
element_serializer->writeRow(i);
}
void readRow(size_t row_num) override
{
auto & column_array = assert_cast<ColumnArray &>(column->assumeMutableRef());
auto & offsets = column_array.getOffsets();
size_t old_size = offsets.size();
if (row_num + 1 < old_size)
throw Exception("Cannot replace an element in the middle of ColumnArray", ErrorCodes::LOGICAL_ERROR);
auto data_column = column_array.getDataPtr();
size_t old_data_size = data_column->size();
try
{
element_serializer->readRow(old_data_size);
size_t data_size = data_column->size();
if (data_size != old_data_size + 1)
throw Exception("Size of ColumnArray is unexpected", ErrorCodes::LOGICAL_ERROR);
if (row_num < old_size)
offsets.back() = data_size;
else
offsets.push_back(data_size);
}
catch (...)
{
if (data_column->size() > old_data_size)
data_column->assumeMutableRef().popBack(data_column->size() - old_data_size);
if (offsets.size() > old_size)
column_array.getOffsetsColumn().popBack(offsets.size() - old_size);
throw;
}
}
void insertDefaults(size_t row_num) override
{
auto & column_array = assert_cast<ColumnArray &>(column->assumeMutableRef());
if (row_num < column_array.size())
return;
column_array.insertDefault();
}
void describeTree(WriteBuffer & out, size_t indent) const override
{
writeIndent(out, indent) << "ProtobufSerializerArray ->\n";
element_serializer->describeTree(out, indent + 1);
}
private:
const std::unique_ptr<ProtobufSerializer> element_serializer;
ColumnPtr column;
};
/// Serializes a ColumnTuple as a repeated field (just like we serialize arrays).
class ProtobufSerializerTupleAsArray : public ProtobufSerializer
{
public:
ProtobufSerializerTupleAsArray(
const std::string_view & column_name_,
const std::shared_ptr<const DataTypeTuple> & tuple_data_type_,
const FieldDescriptor & field_descriptor_,
std::vector<std::unique_ptr<ProtobufSerializer>> element_serializers_)
: column_name(column_name_)
, tuple_data_type(tuple_data_type_)
, tuple_size(tuple_data_type->getElements().size())
, field_descriptor(field_descriptor_)
, element_serializers(std::move(element_serializers_))
{
assert(tuple_size);
assert(tuple_size == element_serializers.size());
}
void setColumns(const ColumnPtr * columns, [[maybe_unused]] size_t num_columns) override
{
if (num_columns != 1)
wrongNumberOfColumns(num_columns, "1");
column = columns[0];
const auto & column_tuple = assert_cast<const ColumnTuple &>(*column);
for (size_t i : collections::range(tuple_size))
{
auto element_column = column_tuple.getColumnPtr(i);
element_serializers[i]->setColumns(&element_column, 1);
}
current_element_index = 0;
}
void setColumns(const MutableColumnPtr * columns, [[maybe_unused]] size_t num_columns) override
{
if (num_columns != 1)
wrongNumberOfColumns(num_columns, "1");
ColumnPtr column0 = columns[0]->getPtr();
setColumns(&column0, 1);
}
void writeRow(size_t row_num) override
{
for (size_t i : collections::range(tuple_size))
element_serializers[i]->writeRow(row_num);
}
void readRow(size_t row_num) override
{
auto & column_tuple = assert_cast<ColumnTuple &>(column->assumeMutableRef());
size_t old_size = column_tuple.size();
if (row_num >= old_size)
current_element_index = 0;
insertDefaults(row_num);
if (current_element_index >= tuple_size)
{
throw Exception(
ErrorCodes::PROTOBUF_BAD_CAST,
"Column {}: More than {} elements was read from the field {} to fit in the data type {}",
quoteString(column_name),
tuple_size,
quoteString(field_descriptor.full_name()),
tuple_data_type->getName());
}
element_serializers[current_element_index]->readRow(row_num);
++current_element_index;
}
void insertDefaults(size_t row_num) override
{
auto & column_tuple = assert_cast<ColumnTuple &>(column->assumeMutableRef());
size_t old_size = column_tuple.size();
if (row_num > old_size)
return;
try
{
for (size_t i : collections::range(tuple_size))
element_serializers[i]->insertDefaults(row_num);
}
catch (...)
{
for (size_t i : collections::range(tuple_size))
{
auto element_column = column_tuple.getColumnPtr(i)->assumeMutable();
if (element_column->size() > old_size)
element_column->popBack(element_column->size() - old_size);
}
throw;
}
}
void describeTree(WriteBuffer & out, size_t indent) const override
{
writeIndent(out, indent) << "ProtobufSerializerTupleAsArray: column " << quoteString(column_name) << " ("
<< tuple_data_type->getName() << ") -> field " << quoteString(field_descriptor.full_name()) << " ("
<< field_descriptor.type_name() << ") ->\n";
for (const auto & element_serializer : element_serializers)
element_serializer->describeTree(out, indent + 1);
}
private:
const String column_name;
const std::shared_ptr<const DataTypeTuple> tuple_data_type;
const size_t tuple_size;
const FieldDescriptor & field_descriptor;
const std::vector<std::unique_ptr<ProtobufSerializer>> element_serializers;
ColumnPtr column;
size_t current_element_index = 0;
};
/// Serializes a message (root or nested) in the protobuf schema.
class ProtobufSerializerMessage : public ProtobufSerializer
{
public:
struct FieldDesc
{
std::vector<size_t> column_indices;
const FieldDescriptor * field_descriptor;
std::unique_ptr<ProtobufSerializer> field_serializer;
};
ProtobufSerializerMessage(
std::vector<FieldDesc> && field_descs_,
const FieldDescriptor * parent_field_descriptor_,
bool with_length_delimiter_,
bool google_wrappers_special_treatment_,
std::unique_ptr<RowInputMissingColumnsFiller> missing_columns_filler_,
const ProtobufReaderOrWriter & reader_or_writer_)
: parent_field_descriptor(parent_field_descriptor_)
, with_length_delimiter(with_length_delimiter_)
, google_wrappers_special_treatment(google_wrappers_special_treatment_)
, missing_columns_filler(std::move(missing_columns_filler_))
, should_skip_if_empty(parent_field_descriptor
? shouldSkipZeroOrEmpty(*parent_field_descriptor, google_wrappers_special_treatment_) : false)
, reader(reader_or_writer_.reader)
, writer(reader_or_writer_.writer)
{
field_infos.reserve(field_descs_.size());
for (auto & desc : field_descs_)
field_infos.emplace_back(std::move(desc.column_indices), *desc.field_descriptor, std::move(desc.field_serializer));
::sort(field_infos.begin(), field_infos.end(),
[](const FieldInfo & lhs, const FieldInfo & rhs) { return lhs.field_tag < rhs.field_tag; });
for (size_t i : collections::range(field_infos.size()))
field_index_by_field_tag.emplace(field_infos[i].field_tag, i);
}
void setHasEnvelopeAsParent()
{
has_envelope_as_parent = true;
}
void setColumns(const ColumnPtr * columns_, size_t num_columns_) override
{
if (!num_columns_)
wrongNumberOfColumns(num_columns_, ">0");
std::vector<ColumnPtr> field_columns;
for (const FieldInfo & info : field_infos)
{
field_columns.clear();
field_columns.reserve(info.column_indices.size());
for (size_t column_index : info.column_indices)
{
if (column_index >= num_columns_)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Wrong column index {}, expected column indices <{}", column_index, num_columns_);
field_columns.emplace_back(columns_[column_index]);
}
info.field_serializer->setColumns(field_columns.data(), field_columns.size());
}
if (reader || (google_wrappers_special_treatment && isGoogleWrapperField(parent_field_descriptor)))
{
mutable_columns.resize(num_columns_);
for (size_t i : collections::range(num_columns_))
mutable_columns[i] = columns_[i]->assumeMutable();
std::vector<UInt8> column_is_missing;
column_is_missing.resize(num_columns_, true);
for (const FieldInfo & info : field_infos)
for (size_t i : info.column_indices)
column_is_missing[i] = false;
has_missing_columns = (std::find(column_is_missing.begin(), column_is_missing.end(), true) != column_is_missing.end());
}
}
void setColumns(const MutableColumnPtr * columns_, size_t num_columns_) override
{
Columns cols;
cols.reserve(num_columns_);
for (size_t i : collections::range(num_columns_))
cols.push_back(columns_[i]->getPtr());
setColumns(cols.data(), cols.size());
}
void writeRow(size_t row_num) override
{
if (parent_field_descriptor || has_envelope_as_parent)
writer->startNestedMessage();
else
writer->startMessage();
for (const FieldInfo & info : field_infos)
{
if (info.should_pack_repeated)
writer->startRepeatedPack();
info.field_serializer->writeRow(row_num);
if (info.should_pack_repeated)
writer->endRepeatedPack(info.field_tag, true);
}
if (parent_field_descriptor)
{
bool is_group = (parent_field_descriptor->type() == FieldTypeId::TYPE_GROUP);
writer->endNestedMessage(parent_field_descriptor->number(), is_group,
should_skip_if_empty || (google_wrappers_special_treatment && nullGoogleWrapper(row_num)));
}
else if (has_envelope_as_parent)
{
writer->endNestedMessage(1, false, should_skip_if_empty);
}
else
writer->endMessage(with_length_delimiter);
}
void readRow(size_t row_num) override
{
if (parent_field_descriptor || has_envelope_as_parent)
reader->startNestedMessage();
else
reader->startMessage(with_length_delimiter);
if (!field_infos.empty())
{
last_field_index = 0;
last_field_tag = field_infos[0].field_tag;
size_t old_size = mutable_columns.empty() ? 0 : mutable_columns[0]->size();
try
{
int field_tag;
while (reader->readFieldNumber(field_tag))
{
size_t field_index = findFieldIndexByFieldTag(field_tag);
if (field_index == static_cast<size_t>(-1))
continue;
auto * field_serializer = field_infos[field_index].field_serializer.get();
field_serializer->readRow(row_num);
field_infos[field_index].field_read = true;
}
for (auto & info : field_infos)
{
if (info.field_read)
info.field_read = false;
else
{
if (google_wrappers_special_treatment && nullableGoogleWrapper())
{
auto * nullable_ser = reinterpret_cast<ProtobufSerializerNullable*>(info.field_serializer.get());
nullable_ser->insertNestedDefaults(row_num);
}
else
{
info.field_serializer->insertDefaults(row_num);
}
}
}
}
catch (...)
{
for (auto & column : mutable_columns)
{
if (column->size() > old_size)
column->popBack(column->size() - old_size);
}
throw;
}
}
if (parent_field_descriptor || has_envelope_as_parent)
reader->endNestedMessage();
else
reader->endMessage(false);
addDefaultsToMissingColumns(row_num);
}
void insertDefaults(size_t row_num) override
{
for (const FieldInfo & info : field_infos)
info.field_serializer->insertDefaults(row_num);
addDefaultsToMissingColumns(row_num);
}
void describeTree(WriteBuffer & out, size_t indent) const override
{
size_t num_columns = 0;
for (const auto & field_info : field_infos)
num_columns += field_info.column_indices.size();
writeIndent(out, indent) << "ProtobufSerializerMessage: " << num_columns << " columns ->";
if (parent_field_descriptor)
out << " field " << quoteString(parent_field_descriptor->full_name()) << " (" << parent_field_descriptor->type_name() << ")";
for (const auto & field_info : field_infos)
{
out << "\n";
writeIndent(out, indent + 1) << "Columns #";
for (size_t j = 0; j != field_info.column_indices.size(); ++j)
{
if (j)
out << ", ";
out << field_info.column_indices[j];
}
out << " ->\n";
field_info.field_serializer->describeTree(out, indent + 2);
}
}
private:
size_t findFieldIndexByFieldTag(int field_tag)
{
while (true)
{
if (field_tag == last_field_tag)
return last_field_index;
if (field_tag < last_field_tag)
break;
if (++last_field_index >= field_infos.size())
break;
last_field_tag = field_infos[last_field_index].field_tag;
}
last_field_tag = field_tag;
auto it = field_index_by_field_tag.find(field_tag);
if (it == field_index_by_field_tag.end())
last_field_index = static_cast<size_t>(-1);
else
last_field_index = it->second;
return last_field_index;
}
void addDefaultsToMissingColumns(size_t row_num)
{
if (has_missing_columns)
missing_columns_filler->addDefaults(mutable_columns, row_num);
}
bool nullGoogleWrapper(size_t row_num)
{
return isGoogleWrapperField(parent_field_descriptor) && mutable_columns[0].get()->isNullAt(row_num);
}
bool nullableGoogleWrapper()
{
return isGoogleWrapperField(parent_field_descriptor) && mutable_columns[0].get()->isNullable();
}
struct FieldInfo
{
FieldInfo(
std::vector<size_t> && column_indices_,
const FieldDescriptor & field_descriptor_,
std::unique_ptr<ProtobufSerializer> field_serializer_)
: column_indices(std::move(column_indices_))
, field_descriptor(&field_descriptor_)
, field_tag(field_descriptor_.number())
, should_pack_repeated(shouldPackRepeated(field_descriptor_))
, field_serializer(std::move(field_serializer_))
{
}
std::vector<size_t> column_indices;
const FieldDescriptor * field_descriptor;
int field_tag;
bool should_pack_repeated;
std::unique_ptr<ProtobufSerializer> field_serializer;
bool field_read = false;
};
const FieldDescriptor * const parent_field_descriptor;
bool has_envelope_as_parent = false;
const bool with_length_delimiter;
const bool google_wrappers_special_treatment;
const std::unique_ptr<RowInputMissingColumnsFiller> missing_columns_filler;
const bool should_skip_if_empty;
ProtobufReader * const reader;
ProtobufWriter * const writer;
std::vector<FieldInfo> field_infos;
std::unordered_map<int, size_t> field_index_by_field_tag;
MutableColumns mutable_columns;
bool has_missing_columns = false;
int last_field_tag = 0;
size_t last_field_index = static_cast<size_t>(-1);
};
/// Serializes a top-level envelope message in the protobuf schema.
/// "Envelope" means that the contained subtree of serializers is enclosed in a message just once,
/// i.e. only when the first and the last row read/write trigger a read/write of the msg header.
class ProtobufSerializerEnvelope : public ProtobufSerializer
{
public:
ProtobufSerializerEnvelope(
std::unique_ptr<ProtobufSerializerMessage>&& serializer_,
const ProtobufReaderOrWriter & reader_or_writer_)
: serializer(std::move(serializer_))
, reader(reader_or_writer_.reader)
, writer(reader_or_writer_.writer)
{
// The inner serializer has a backreference of type protobuf::FieldDescriptor * to it's parent
// serializer. If it is unset, it considers itself the top-level message, otherwise a nested
// message and accordingly it makes start/endMessage() vs. startEndNestedMessage() calls into
// Protobuf(Writer|Reader). There is no field descriptor because Envelopes merely forward calls
// but don't contain data to be serialized. We must still force the inner serializer to act
// as nested message.
serializer->setHasEnvelopeAsParent();
}
void setColumns(const ColumnPtr * columns_, size_t num_columns_) override
{
serializer->setColumns(columns_, num_columns_);
}
void setColumns(const MutableColumnPtr * columns_, size_t num_columns_) override
{
serializer->setColumns(columns_, num_columns_);
}
void writeRow(size_t row_num) override
{
if (first_call_of_write_row)
{
writer->startMessage();
first_call_of_write_row = false;
}
serializer->writeRow(row_num);
}
void finalizeWrite() override
{
writer->endMessage(/*with_length_delimiter = */ true);
}
void readRow(size_t row_num) override
{
if (first_call_of_read_row)
{
reader->startMessage(/*with_length_delimiter = */ true);
first_call_of_read_row = false;
}
int field_tag;
[[maybe_unused]] bool ret = reader->readFieldNumber(field_tag);
assert(ret);
serializer->readRow(row_num);
}
void insertDefaults(size_t row_num) override
{
serializer->insertDefaults(row_num);
}
void describeTree(WriteBuffer & out, size_t indent) const override
{
writeIndent(out, indent) << "ProtobufSerializerEnvelope ->\n";
serializer->describeTree(out, indent + 1);
}
std::unique_ptr<ProtobufSerializerMessage> serializer;
ProtobufReader * const reader;
ProtobufWriter * const writer;
bool first_call_of_write_row = true;
bool first_call_of_read_row = true;
};
/// Serializes a tuple with explicit names as a nested message.
class ProtobufSerializerTupleAsNestedMessage : public ProtobufSerializer
{
public:
explicit ProtobufSerializerTupleAsNestedMessage(std::unique_ptr<ProtobufSerializerMessage> message_serializer_)
: message_serializer(std::move(message_serializer_))
{
}
void setColumns(const ColumnPtr * columns, [[maybe_unused]] size_t num_columns) override
{
if (num_columns != 1)
wrongNumberOfColumns(num_columns, "1");
const auto & column_tuple = assert_cast<const ColumnTuple &>(*columns[0]);
size_t tuple_size = column_tuple.tupleSize();
assert(tuple_size);
Columns element_columns;
element_columns.reserve(tuple_size);
for (size_t i : collections::range(tuple_size))
element_columns.emplace_back(column_tuple.getColumnPtr(i));
message_serializer->setColumns(element_columns.data(), element_columns.size());
}
void setColumns(const MutableColumnPtr * columns, [[maybe_unused]] size_t num_columns) override
{
if (num_columns != 1)
wrongNumberOfColumns(num_columns, "1");
ColumnPtr column0 = columns[0]->getPtr();
setColumns(&column0, 1);
}
void writeRow(size_t row_num) override { message_serializer->writeRow(row_num); }
void readRow(size_t row_num) override { message_serializer->readRow(row_num); }
void insertDefaults(size_t row_num) override { message_serializer->insertDefaults(row_num); }
void describeTree(WriteBuffer & out, size_t indent) const override
{
writeIndent(out, indent) << "ProtobufSerializerTupleAsNestedMessage ->\n";
message_serializer->describeTree(out, indent + 1);
}
private:
const std::unique_ptr<ProtobufSerializerMessage> message_serializer;
};
/// Serializes a flattened Nested data type (an array of tuples with explicit names)
/// as a repeated nested message.
class ProtobufSerializerFlattenedNestedAsArrayOfNestedMessages : public ProtobufSerializer
{
public:
explicit ProtobufSerializerFlattenedNestedAsArrayOfNestedMessages(
const std::vector<std::string_view> & column_names_,
const FieldDescriptor * parent_field_descriptor_,
std::unique_ptr<ProtobufSerializerMessage> message_serializer_,
const std::function<String(size_t)> & get_root_desc_function_)
: parent_field_descriptor(parent_field_descriptor_)
, message_serializer(std::move(message_serializer_))
, get_root_desc_function(get_root_desc_function_)
{
column_names.reserve(column_names_.size());
for (const auto & column_name : column_names_)
column_names.emplace_back(column_name);
}
void setColumns(const ColumnPtr * columns, size_t num_columns) override
{
if (!num_columns)
wrongNumberOfColumns(num_columns, ">0");
data_columns.clear();
data_columns.reserve(num_columns);
offset_columns.clear();
offset_columns.reserve(num_columns);
for (size_t i : collections::range(num_columns))
{
const auto & column_array = assert_cast<const ColumnArray &>(*columns[i]);
data_columns.emplace_back(column_array.getDataPtr());
auto offset_column = column_array.getOffsetsPtr();
if (std::binary_search(offset_columns.begin(), offset_columns.end(), offset_column))
continue;
/// Keep `offset_columns` sorted.
offset_columns.insert(std::upper_bound(offset_columns.begin(), offset_columns.end(), offset_column), offset_column);
/// All the columns listed in `offset_columns` should have equal offsets.
if (i >= 1)
{
const auto & column_array0 = assert_cast<const ColumnArray &>(*columns[0]);
if (!column_array0.hasEqualOffsets(column_array))
{
throw Exception(ErrorCodes::PROTOBUF_BAD_CAST,
"Column #{} {} and column #{} {} are supposed to have equal offsets according to the following serialization tree:\n{}",
0, quoteString(column_names[0]), i, quoteString(column_names[i]), get_root_desc_function(0));
}
}
}
message_serializer->setColumns(data_columns.data(), data_columns.size());
}
void setColumns(const MutableColumnPtr * columns, size_t num_columns) override
{
Columns cols;
cols.reserve(num_columns);
for (size_t i : collections::range(num_columns))
cols.push_back(columns[i]->getPtr());
setColumns(cols.data(), cols.size());
}
void writeRow(size_t row_num) override
{
const auto & offset_column0 = assert_cast<const ColumnArray::ColumnOffsets &>(*offset_columns[0]);
size_t start_offset = offset_column0.getElement(row_num - 1);
size_t end_offset = offset_column0.getElement(row_num);
for (size_t i : collections::range(start_offset, end_offset))
message_serializer->writeRow(i);
}
void readRow(size_t row_num) override
{
size_t old_size = offset_columns[0]->size();
if (row_num + 1 < old_size)
throw Exception("Cannot replace an element in the middle of ColumnArray", ErrorCodes::LOGICAL_ERROR);
size_t old_data_size = data_columns[0]->size();
try
{
message_serializer->readRow(old_data_size);
size_t data_size = data_columns[0]->size();
if (data_size != old_data_size + 1)
throw Exception("Unexpected number of elements of ColumnArray has been read", ErrorCodes::LOGICAL_ERROR);
if (row_num < old_size)
{
for (auto & offset_column : offset_columns)
assert_cast<ColumnArray::ColumnOffsets &>(offset_column->assumeMutableRef()).getData().back() = data_size;
}
else
{
for (auto & offset_column : offset_columns)
assert_cast<ColumnArray::ColumnOffsets &>(offset_column->assumeMutableRef()).getData().push_back(data_size);
}
}
catch (...)
{
for (auto & data_column : data_columns)
{
if (data_column->size() > old_data_size)
data_column->assumeMutableRef().popBack(data_column->size() - old_data_size);
}
for (auto & offset_column : offset_columns)
{
if (offset_column->size() > old_size)
offset_column->assumeMutableRef().popBack(offset_column->size() - old_size);
}
throw;
}
}
void insertDefaults(size_t row_num) override
{
size_t old_size = offset_columns[0]->size();
if (row_num < old_size)
return;
try
{
size_t data_size = data_columns[0]->size();
for (auto & offset_column : offset_columns)
assert_cast<ColumnArray::ColumnOffsets &>(offset_column->assumeMutableRef()).getData().push_back(data_size);
}
catch (...)
{
for (auto & offset_column : offset_columns)
{
if (offset_column->size() > old_size)
offset_column->assumeMutableRef().popBack(offset_column->size() - old_size);
}
throw;
}
}
void describeTree(WriteBuffer & out, size_t indent) const override
{
writeIndent(out, indent) << "ProtobufSerializerFlattenedNestedAsArrayOfNestedMessages: columns ";
for (size_t i = 0; i != column_names.size(); ++i)
{
if (i)
out << ", ";
out << "#" << i << " " << quoteString(column_names[i]);
}
out << " ->";
if (parent_field_descriptor)
out << " field " << quoteString(parent_field_descriptor->full_name()) << " (" << parent_field_descriptor->type_name() << ") ->\n";
message_serializer->describeTree(out, indent + 1);
}
private:
Strings column_names;
const FieldDescriptor * parent_field_descriptor;
const std::unique_ptr<ProtobufSerializerMessage> message_serializer;
const std::function<String(size_t)> get_root_desc_function;
Columns data_columns;
Columns offset_columns;
};
/// Produces a tree of ProtobufSerializers which serializes a row as a protobuf message.
class ProtobufSerializerBuilder
{
public:
explicit ProtobufSerializerBuilder(const ProtobufReaderOrWriter & reader_or_writer_) : reader_or_writer(reader_or_writer_) {}
std::unique_ptr<ProtobufSerializer> buildMessageSerializer(
const Strings & column_names,
const DataTypes & data_types,
std::vector<size_t> & missing_column_indices,
const MessageDescriptor & message_descriptor,
bool with_length_delimiter,
bool with_envelope,
bool google_wrappers_special_treatment)
{
root_serializer_ptr = std::make_shared<ProtobufSerializer *>();
get_root_desc_function = [root_serializer_ptr = root_serializer_ptr](size_t indent) -> String
{
WriteBufferFromOwnString buf;
(*root_serializer_ptr)->describeTree(buf, indent);
return buf.str();
};
std::vector<size_t> used_column_indices;
auto message_serializer = buildMessageSerializerImpl(
/* num_columns = */ column_names.size(),
column_names.data(),
data_types.data(),
message_descriptor,
with_length_delimiter,
google_wrappers_special_treatment,
/* parent_field_descriptor = */ nullptr,
used_column_indices,
/* columns_are_reordered_outside = */ false,
/* check_nested_while_filling_missing_columns = */ true);
if (!message_serializer)
{
throw Exception(
"Not found matches between the names of the columns {" + boost::algorithm::join(column_names, ", ")
+ "} and the fields {" + boost::algorithm::join(getFieldNames(message_descriptor), ", ") + "} of the message "
+ quoteString(message_descriptor.full_name()) + " in the protobuf schema",
ErrorCodes::NO_COLUMNS_SERIALIZED_TO_PROTOBUF_FIELDS);
}
missing_column_indices.clear();
missing_column_indices.reserve(column_names.size() - used_column_indices.size());
auto used_column_indices_sorted = std::move(used_column_indices);
::sort(used_column_indices_sorted.begin(), used_column_indices_sorted.end());
boost::range::set_difference(collections::range(column_names.size()), used_column_indices_sorted,
std::back_inserter(missing_column_indices));
if (!with_envelope)
{
*root_serializer_ptr = message_serializer.get();
#if 0
LOG_INFO(&Poco::Logger::get("ProtobufSerializer"), "Serialization tree:\n{}", get_root_desc_function(0));
#endif
return message_serializer;
}
else
{
auto envelope_serializer = std::make_unique<ProtobufSerializerEnvelope>(std::move(message_serializer), reader_or_writer);
*root_serializer_ptr = envelope_serializer.get();
#if 0
LOG_INFO(&Poco::Logger::get("ProtobufSerializer"), "Serialization tree:\n{}", get_root_desc_function(0));
#endif
return envelope_serializer;
}
}
private:
/// Collects all field names from the message (used only to format error messages).
static Strings getFieldNames(const MessageDescriptor & message_descriptor)
{
Strings field_names;
field_names.reserve(message_descriptor.field_count());
for (int i : collections::range(message_descriptor.field_count()))
field_names.emplace_back(message_descriptor.field(i)->name());
return field_names;
}
static bool columnNameEqualsToFieldName(const std::string_view & column_name, const FieldDescriptor & field_descriptor)
{
std::string_view suffix;
return columnNameStartsWithFieldName(column_name, field_descriptor, suffix) && suffix.empty();
}
/// Checks if a passed column's name starts with a specified field's name.
/// The function also assigns `suffix` to the rest part of the column's name
/// which doesn't match to the field's name.
/// The function requires that rest part of the column's name to be started with a dot '.' or underline '_',
/// but doesn't include those '.' or '_' characters into `suffix`.
static bool columnNameStartsWithFieldName(const std::string_view & column_name, const FieldDescriptor & field_descriptor, std::string_view & suffix)
{
size_t matching_length = 0;
const MessageDescriptor & containing_type = *field_descriptor.containing_type();
if (containing_type.options().map_entry())
{
/// Special case. Elements of the data type Map are named as "keys" and "values",
/// but they're internally named as "key" and "value" in protobuf schema.
if (field_descriptor.number() == 1)
{
if (ColumnNameWithProtobufFieldNameComparator::startsWith(column_name, "keys"))
matching_length = strlen("keys");
else if (ColumnNameWithProtobufFieldNameComparator::startsWith(column_name, "key"))
matching_length = strlen("key");
}
else if (field_descriptor.number() == 2)
{
if (ColumnNameWithProtobufFieldNameComparator::startsWith(column_name, "values"))
matching_length = strlen("values");
else if (ColumnNameWithProtobufFieldNameComparator::startsWith(column_name, "value"))
matching_length = strlen("value");
}
}
if (!matching_length && ColumnNameWithProtobufFieldNameComparator::startsWith(column_name, field_descriptor.name()))
{
matching_length = field_descriptor.name().length();
}
if (column_name.length() == matching_length)
return true;
if ((column_name.length() < matching_length + 2) || !field_descriptor.message_type())
return false;
char first_char_after_matching = column_name[matching_length];
if (!ColumnNameWithProtobufFieldNameComparator::equals(first_char_after_matching, '.'))
return false;
suffix = column_name.substr(matching_length + 1);
return true;
}
/// Finds fields in the protobuf message which can be considered as matching
/// for a specified column's name. The found fields can be nested messages,
/// for that case suffixes are also returned.
/// This is only the first filter, buildMessageSerializerImpl() does other checks after calling this function.
static bool findFieldsByColumnName(
const std::string_view & column_name,
const MessageDescriptor & message_descriptor,
std::vector<std::pair<const FieldDescriptor *, std::string_view /* suffix */>> & out_field_descriptors_with_suffixes,
bool google_wrappers_special_treatment)
{
out_field_descriptors_with_suffixes.clear();
/// Find all fields which have the same name as column's name (case-insensitively); i.e. we're checking
/// field_name == column_name.
for (int i : collections::range(message_descriptor.field_count()))
{
const auto & field_descriptor = *message_descriptor.field(i);
if (columnNameEqualsToFieldName(column_name, field_descriptor))
{
std::string_view suffix =
google_wrappers_special_treatment && isGoogleWrapperField(field_descriptor)
? googleWrapperColumnName(field_descriptor)
: "";
out_field_descriptors_with_suffixes.emplace_back(&field_descriptor, suffix);
break;
}
}
if (!out_field_descriptors_with_suffixes.empty())
return true; /// We have an exact match, no need to compare prefixes.
/// Find all fields which name is used as prefix in column's name; i.e. we're checking
/// column_name == field_name + '.' + nested_message_field_name
for (int i : collections::range(message_descriptor.field_count()))
{
const auto & field_descriptor = *message_descriptor.field(i);
std::string_view suffix;
if (columnNameStartsWithFieldName(column_name, field_descriptor, suffix))
{
out_field_descriptors_with_suffixes.emplace_back(&field_descriptor, suffix);
}
}
/// Shorter suffixes first.
::sort(out_field_descriptors_with_suffixes.begin(), out_field_descriptors_with_suffixes.end(),
[](const std::pair<const FieldDescriptor *, std::string_view /* suffix */> & f1,
const std::pair<const FieldDescriptor *, std::string_view /* suffix */> & f2)
{
return f1.second.length() < f2.second.length();
});
return !out_field_descriptors_with_suffixes.empty();
}
/// Removes TypeIndex::Array from the specified vector of data types,
/// and also removes corresponding elements from two other vectors.
template <typename T1, typename T2>
static void removeNonArrayElements(DataTypes & data_types, std::vector<T1> & elements1, std::vector<T2> & elements2)
{
size_t initial_size = data_types.size();
assert(initial_size == elements1.size() && initial_size == elements2.size());
data_types.reserve(initial_size * 2);
elements1.reserve(initial_size * 2);
elements2.reserve(initial_size * 2);
for (size_t i : collections::range(initial_size))
{
if (data_types[i]->getTypeId() == TypeIndex::Array)
{
data_types.push_back(std::move(data_types[i]));
elements1.push_back(std::move(elements1[i]));
elements2.push_back(std::move(elements2[i]));
}
}
data_types.erase(data_types.begin(), data_types.begin() + initial_size);
elements1.erase(elements1.begin(), elements1.begin() + initial_size);
elements2.erase(elements2.begin(), elements2.begin() + initial_size);
}
/// Treats specified column indices as indices in another vector of column indices.
/// Useful for handling of nested messages.
static void transformColumnIndices(std::vector<size_t> & column_indices, const std::vector<size_t> & outer_indices)
{
for (size_t & idx : column_indices)
idx = outer_indices[idx];
}
/// Builds a serializer for a protobuf message (root or nested).
///
/// Some of the passed columns might be skipped, the function sets `used_column_indices` to
/// the list of those columns which match any fields in the protobuf message.
///
/// Normally `columns_are_reordered_outside` should be false - if it's false it means that
/// the used column indices will be passed to ProtobufSerializerMessage, which will write/read
/// only those columns and set the rest of columns by default.
/// Set `columns_are_reordered_outside` to true if you're going to reorder columns
/// according to `used_column_indices` returned and pass to
/// ProtobufSerializerMessage::setColumns() only the columns which are actually used.
std::unique_ptr<ProtobufSerializerMessage> buildMessageSerializerImpl(
size_t num_columns,
const String * column_names,
const DataTypePtr * data_types,
const MessageDescriptor & message_descriptor,
bool with_length_delimiter,
bool google_wrappers_special_treatment,
const FieldDescriptor * parent_field_descriptor,
std::vector<size_t> & used_column_indices,
bool columns_are_reordered_outside,
bool check_nested_while_filling_missing_columns)
{
std::vector<std::string_view> column_names_sv;
column_names_sv.reserve(num_columns);
for (size_t i = 0; i != num_columns; ++i)
column_names_sv.emplace_back(column_names[i]);
return buildMessageSerializerImpl(
num_columns,
column_names_sv.data(),
data_types,
message_descriptor,
with_length_delimiter,
google_wrappers_special_treatment,
parent_field_descriptor,
used_column_indices,
columns_are_reordered_outside,
check_nested_while_filling_missing_columns);
}
std::unique_ptr<ProtobufSerializerMessage> buildMessageSerializerImpl(
size_t num_columns,
const std::string_view * column_names,
const DataTypePtr * data_types,
const MessageDescriptor & message_descriptor,
bool with_length_delimiter,
bool google_wrappers_special_treatment,
const FieldDescriptor * parent_field_descriptor,
std::vector<size_t> & used_column_indices,
bool columns_are_reordered_outside,
bool check_nested_while_filling_missing_columns)
{
std::vector<ProtobufSerializerMessage::FieldDesc> field_descs;
boost::container::flat_map<const FieldDescriptor *, std::string_view> field_descriptors_in_use;
used_column_indices.clear();
used_column_indices.reserve(num_columns);
boost::container::flat_set<size_t> used_column_indices_sorted;
used_column_indices_sorted.reserve(num_columns);
size_t sequential_column_index = 0;
auto add_field_serializer = [&](const std::string_view & column_name_,
std::vector<size_t> && column_indices_,
const FieldDescriptor & field_descriptor_,
std::unique_ptr<ProtobufSerializer> field_serializer_)
{
auto it = field_descriptors_in_use.find(&field_descriptor_);
if (it != field_descriptors_in_use.end())
{
throw Exception(
"Multiple columns (" + backQuote(StringRef{it->second}) + ", "
+ backQuote(StringRef{column_name_}) + ") cannot be serialized to a single protobuf field "
+ quoteString(field_descriptor_.full_name()),
ErrorCodes::MULTIPLE_COLUMNS_SERIALIZED_TO_SAME_PROTOBUF_FIELD);
}
used_column_indices.insert(used_column_indices.end(), column_indices_.begin(), column_indices_.end());
used_column_indices_sorted.insert(column_indices_.begin(), column_indices_.end());
auto column_indices_to_pass_to_message_serializer = std::move(column_indices_);
if (columns_are_reordered_outside)
{
for (auto & index : column_indices_to_pass_to_message_serializer)
index = sequential_column_index++;
}
field_descs.push_back({std::move(column_indices_to_pass_to_message_serializer), &field_descriptor_, std::move(field_serializer_)});
field_descriptors_in_use.emplace(&field_descriptor_, column_name_);
};
std::vector<std::pair<const FieldDescriptor *, std::string_view>> field_descriptors_with_suffixes;
/// We're going through all the passed columns.
for (size_t column_idx : collections::range(num_columns))
{
if (used_column_indices_sorted.count(column_idx))
continue;
const auto & column_name = column_names[column_idx];
const auto & data_type = data_types[column_idx];
if (!findFieldsByColumnName(column_name, message_descriptor, field_descriptors_with_suffixes, google_wrappers_special_treatment))
continue;
if ((field_descriptors_with_suffixes.size() == 1) && field_descriptors_with_suffixes[0].second.empty())
{
/// Simple case: one column is serialized as one field.
const auto & field_descriptor = *field_descriptors_with_suffixes[0].first;
auto field_serializer = buildFieldSerializer(column_name, data_type, field_descriptor, field_descriptor.is_repeated());
if (field_serializer)
{
add_field_serializer(column_name, {column_idx}, field_descriptor, std::move(field_serializer));
continue;
}
}
for (const auto & [field_descriptor, suffix] : field_descriptors_with_suffixes)
{
if (!suffix.empty())
{
/// Complex case: one or more columns are serialized as a nested message.
std::vector<size_t> nested_column_indices;
std::vector<std::string_view> nested_column_names;
nested_column_indices.reserve(num_columns - used_column_indices.size());
nested_column_names.reserve(num_columns - used_column_indices.size());
nested_column_indices.push_back(column_idx);
nested_column_names.push_back(suffix);
for (size_t j : collections::range(column_idx + 1, num_columns))
{
if (used_column_indices_sorted.count(j))
continue;
std::string_view other_suffix;
if (!columnNameStartsWithFieldName(column_names[j], *field_descriptor, other_suffix))
continue;
nested_column_indices.push_back(j);
nested_column_names.push_back(other_suffix);
}
DataTypes nested_data_types;
nested_data_types.reserve(nested_column_indices.size());
for (size_t j : nested_column_indices)
nested_data_types.push_back(data_types[j]);
/// Now we have up to `nested_message_column_names.size()` columns
/// which can be serialized as a nested message.
/// We will try to serialize those columns as one nested message,
/// then, if failed, as an array of nested messages (on condition if those columns are array).
bool has_fallback_to_array_of_nested_messages = false;
if (field_descriptor->is_repeated())
{
bool has_arrays
= boost::range::find_if(
nested_data_types, [](const DataTypePtr & dt) { return (dt->getTypeId() == TypeIndex::Array); })
!= nested_data_types.end();
if (has_arrays)
has_fallback_to_array_of_nested_messages = true;
}
/// Try to serialize those columns as one nested message.
try
{
std::vector<size_t> used_column_indices_in_nested;
auto nested_message_serializer = buildMessageSerializerImpl(
nested_column_names.size(),
nested_column_names.data(),
nested_data_types.data(),
*field_descriptor->message_type(),
/* with_length_delimiter = */ false,
google_wrappers_special_treatment,
field_descriptor,
used_column_indices_in_nested,
/* columns_are_reordered_outside = */ true,
/* check_nested_while_filling_missing_columns = */ false);
/// `columns_are_reordered_outside` is true because column indices are
/// going to be transformed and then written to the outer message,
/// see add_field_serializer() below.
if (nested_message_serializer)
{
transformColumnIndices(used_column_indices_in_nested, nested_column_indices);
add_field_serializer(
column_name,
std::move(used_column_indices_in_nested),
*field_descriptor,
std::move(nested_message_serializer));
break;
}
}
catch (Exception & e)
{
if ((e.code() != ErrorCodes::PROTOBUF_FIELD_NOT_REPEATED) || !has_fallback_to_array_of_nested_messages)
throw;
}
if (has_fallback_to_array_of_nested_messages)
{
/// Try to serialize those columns as an array of nested messages.
removeNonArrayElements(nested_data_types, nested_column_names, nested_column_indices);
for (DataTypePtr & dt : nested_data_types)
dt = assert_cast<const DataTypeArray &>(*dt).getNestedType();
std::vector<size_t> used_column_indices_in_nested;
auto nested_message_serializer = buildMessageSerializerImpl(
nested_column_names.size(),
nested_column_names.data(),
nested_data_types.data(),
*field_descriptor->message_type(),
/* with_length_delimiter = */ false,
google_wrappers_special_treatment,
field_descriptor,
used_column_indices_in_nested,
/* columns_are_reordered_outside = */ true,
/* check_nested_while_filling_missing_columns = */ false);
/// `columns_are_reordered_outside` is true because column indices are
/// going to be transformed and then written to the outer message,
/// see add_field_serializer() below.
if (nested_message_serializer)
{
std::vector<std::string_view> column_names_used;
column_names_used.reserve(used_column_indices_in_nested.size());
for (size_t i : used_column_indices_in_nested)
column_names_used.emplace_back(nested_column_names[i]);
auto field_serializer = std::make_unique<ProtobufSerializerFlattenedNestedAsArrayOfNestedMessages>(
std::move(column_names_used), field_descriptor, std::move(nested_message_serializer), get_root_desc_function);
transformColumnIndices(used_column_indices_in_nested, nested_column_indices);
add_field_serializer(column_name, std::move(used_column_indices_in_nested), *field_descriptor, std::move(field_serializer));
break;
}
}
}
}
}
/// Check that we've found matching columns for all the required fields.
if ((message_descriptor.file()->syntax() == google::protobuf::FileDescriptor::SYNTAX_PROTO2)
&& reader_or_writer.writer)
{
for (int i : collections::range(message_descriptor.field_count()))
{
const auto & field_descriptor = *message_descriptor.field(i);
if (field_descriptor.is_required() && !field_descriptors_in_use.count(&field_descriptor))
throw Exception(
"Field " + quoteString(field_descriptor.full_name()) + " is required to be set",
ErrorCodes::NO_COLUMN_SERIALIZED_TO_REQUIRED_PROTOBUF_FIELD);
}
}
if (field_descs.empty())
return nullptr;
std::unique_ptr<RowInputMissingColumnsFiller> missing_columns_filler;
if (reader_or_writer.reader)
{
if (check_nested_while_filling_missing_columns)
missing_columns_filler = std::make_unique<RowInputMissingColumnsFiller>(num_columns, column_names, data_types);
else
missing_columns_filler = std::make_unique<RowInputMissingColumnsFiller>();
}
return std::make_unique<ProtobufSerializerMessage>(
std::move(field_descs), parent_field_descriptor, with_length_delimiter, google_wrappers_special_treatment,
std::move(missing_columns_filler), reader_or_writer);
}
/// Builds a serializer for one-to-one match:
/// one column is serialized as one field in the protobuf message.
std::unique_ptr<ProtobufSerializer> buildFieldSerializer(
const std::string_view & column_name,
const DataTypePtr & data_type,
const FieldDescriptor & field_descriptor,
bool allow_repeat)
{
auto data_type_id = data_type->getTypeId();
switch (data_type_id)
{
case TypeIndex::UInt8: return std::make_unique<ProtobufSerializerNumber<UInt8>>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::UInt16: return std::make_unique<ProtobufSerializerNumber<UInt16>>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::UInt32: return std::make_unique<ProtobufSerializerNumber<UInt32>>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::UInt64: return std::make_unique<ProtobufSerializerNumber<UInt64>>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::UInt128: return std::make_unique<ProtobufSerializerNumber<UInt128>>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::UInt256: return std::make_unique<ProtobufSerializerNumber<UInt256>>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::Int8: return std::make_unique<ProtobufSerializerNumber<Int8>>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::Int16: return std::make_unique<ProtobufSerializerNumber<Int16>>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::Int32: return std::make_unique<ProtobufSerializerNumber<Int32>>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::Int64: return std::make_unique<ProtobufSerializerNumber<Int64>>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::Int128: return std::make_unique<ProtobufSerializerNumber<Int128>>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::Int256: return std::make_unique<ProtobufSerializerNumber<Int256>>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::Float32: return std::make_unique<ProtobufSerializerNumber<Float32>>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::Float64: return std::make_unique<ProtobufSerializerNumber<Float64>>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::Date: return std::make_unique<ProtobufSerializerDate>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::DateTime: return std::make_unique<ProtobufSerializerDateTime>(column_name, assert_cast<const DataTypeDateTime &>(*data_type), field_descriptor, reader_or_writer);
case TypeIndex::DateTime64: return std::make_unique<ProtobufSerializerDateTime64>(column_name, assert_cast<const DataTypeDateTime64 &>(*data_type), field_descriptor, reader_or_writer);
case TypeIndex::String: return std::make_unique<ProtobufSerializerString<false>>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::FixedString: return std::make_unique<ProtobufSerializerString<true>>(column_name, typeid_cast<std::shared_ptr<const DataTypeFixedString>>(data_type), field_descriptor, reader_or_writer);
case TypeIndex::Enum8: return std::make_unique<ProtobufSerializerEnum<Int8>>(column_name, typeid_cast<std::shared_ptr<const DataTypeEnum8>>(data_type), field_descriptor, reader_or_writer);
case TypeIndex::Enum16: return std::make_unique<ProtobufSerializerEnum<Int16>>(column_name, typeid_cast<std::shared_ptr<const DataTypeEnum16>>(data_type), field_descriptor, reader_or_writer);
case TypeIndex::Decimal32: return std::make_unique<ProtobufSerializerDecimal<Decimal32>>(column_name, assert_cast<const DataTypeDecimal<Decimal32> &>(*data_type), field_descriptor, reader_or_writer);
case TypeIndex::Decimal64: return std::make_unique<ProtobufSerializerDecimal<Decimal64>>(column_name, assert_cast<const DataTypeDecimal<Decimal64> &>(*data_type), field_descriptor, reader_or_writer);
case TypeIndex::Decimal128: return std::make_unique<ProtobufSerializerDecimal<Decimal128>>(column_name, assert_cast<const DataTypeDecimal<Decimal128> &>(*data_type), field_descriptor, reader_or_writer);
case TypeIndex::Decimal256: return std::make_unique<ProtobufSerializerDecimal<Decimal256>>(column_name, assert_cast<const DataTypeDecimal<Decimal256> &>(*data_type), field_descriptor, reader_or_writer);
case TypeIndex::UUID: return std::make_unique<ProtobufSerializerUUID>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::Interval: return std::make_unique<ProtobufSerializerInterval>(column_name, field_descriptor, reader_or_writer);
case TypeIndex::AggregateFunction: return std::make_unique<ProtobufSerializerAggregateFunction>(column_name, typeid_cast<std::shared_ptr<const DataTypeAggregateFunction>>(data_type), field_descriptor, reader_or_writer);
case TypeIndex::Nullable:
{
const auto & nullable_data_type = assert_cast<const DataTypeNullable &>(*data_type);
auto nested_serializer = buildFieldSerializer(column_name, nullable_data_type.getNestedType(), field_descriptor, allow_repeat);
if (!nested_serializer)
return nullptr;
return std::make_unique<ProtobufSerializerNullable>(std::move(nested_serializer));
}
case TypeIndex::LowCardinality:
{
const auto & low_cardinality_data_type = assert_cast<const DataTypeLowCardinality &>(*data_type);
auto nested_serializer
= buildFieldSerializer(column_name, low_cardinality_data_type.getDictionaryType(), field_descriptor, allow_repeat);
if (!nested_serializer)
return nullptr;
return std::make_unique<ProtobufSerializerLowCardinality>(std::move(nested_serializer));
}
case TypeIndex::Map:
{
const auto & map_data_type = assert_cast<const DataTypeMap &>(*data_type);
auto nested_serializer = buildFieldSerializer(column_name, map_data_type.getNestedType(), field_descriptor, allow_repeat);
if (!nested_serializer)
return nullptr;
return std::make_unique<ProtobufSerializerMap>(std::move(nested_serializer));
}
case TypeIndex::Array:
{
/// Array is serialized as a repeated field.
const auto & array_data_type = assert_cast<const DataTypeArray &>(*data_type);
if (!allow_repeat)
throwFieldNotRepeated(field_descriptor, column_name);
auto nested_serializer = buildFieldSerializer(column_name, array_data_type.getNestedType(), field_descriptor,
/* allow_repeat = */ false); // We do our repeating now, so for nested type we forget about the repeating.
if (!nested_serializer)
return nullptr;
return std::make_unique<ProtobufSerializerArray>(std::move(nested_serializer));
}
case TypeIndex::Tuple:
{
/// Tuple is serialized in one of two ways:
/// 1) If the tuple has explicit names then it can be serialized as a nested message.
/// 2) Any tuple can be serialized as a repeated field, just like Array.
const auto & tuple_data_type = assert_cast<const DataTypeTuple &>(*data_type);
size_t size_of_tuple = tuple_data_type.getElements().size();
if (tuple_data_type.haveExplicitNames() && field_descriptor.message_type())
{
/// Try to serialize as a nested message.
std::vector<size_t> used_column_indices;
auto message_serializer = buildMessageSerializerImpl(
size_of_tuple,
tuple_data_type.getElementNames().data(),
tuple_data_type.getElements().data(),
*field_descriptor.message_type(),
/* with_length_delimiter = */ false,
google_wrappers_special_treatment,
&field_descriptor,
used_column_indices,
/* columns_are_reordered_outside = */ false,
/* check_nested_while_filling_missing_columns = */ false);
if (!message_serializer)
{
throw Exception(
"Not found matches between the names of the tuple's elements {"
+ boost::algorithm::join(tuple_data_type.getElementNames(), ", ") + "} and the fields {"
+ boost::algorithm::join(getFieldNames(*field_descriptor.message_type()), ", ") + "} of the message "
+ quoteString(field_descriptor.message_type()->full_name()) + " in the protobuf schema",
ErrorCodes::NO_COLUMNS_SERIALIZED_TO_PROTOBUF_FIELDS);
}
return std::make_unique<ProtobufSerializerTupleAsNestedMessage>(std::move(message_serializer));
}
/// Serialize as a repeated field.
if (!allow_repeat && (size_of_tuple > 1))
throwFieldNotRepeated(field_descriptor, column_name);
std::vector<std::unique_ptr<ProtobufSerializer>> nested_serializers;
for (const auto & nested_data_type : tuple_data_type.getElements())
{
auto nested_serializer = buildFieldSerializer(column_name, nested_data_type, field_descriptor,
/* allow_repeat = */ false); // We do our repeating now, so for nested type we forget about the repeating.
if (!nested_serializer)
break;
nested_serializers.push_back(std::move(nested_serializer));
}
if (nested_serializers.size() != size_of_tuple)
return nullptr;
return std::make_unique<ProtobufSerializerTupleAsArray>(
column_name,
typeid_cast<std::shared_ptr<const DataTypeTuple>>(data_type),
field_descriptor,
std::move(nested_serializers));
}
default:
throw Exception("Unknown data type: " + data_type->getName(), ErrorCodes::LOGICAL_ERROR);
}
}
[[noreturn]] static void throwFieldNotRepeated(const FieldDescriptor & field_descriptor, const std::string_view & column_name)
{
if (!field_descriptor.is_repeated())
throw Exception(
"The field " + quoteString(field_descriptor.full_name())
+ " must be repeated in the protobuf schema to match the column " + backQuote(StringRef{column_name}),
ErrorCodes::PROTOBUF_FIELD_NOT_REPEATED);
throw Exception(
"The field " + quoteString(field_descriptor.full_name())
+ " is repeated but the level of repeatedness is not enough to serialize a multidimensional array from the column "
+ backQuote(StringRef{column_name}) + ". It's recommended to make the parent field repeated as well.",
ErrorCodes::PROTOBUF_FIELD_NOT_REPEATED);
}
const ProtobufReaderOrWriter reader_or_writer;
std::function<String(size_t)> get_root_desc_function;
std::shared_ptr<ProtobufSerializer *> root_serializer_ptr;
};
template <typename Type>
DataTypePtr getEnumDataType(const google::protobuf::EnumDescriptor * enum_descriptor)
{
std::vector<std::pair<String, Type>> values;
for (int i = 0; i != enum_descriptor->value_count(); ++i)
{
const auto * enum_value_descriptor = enum_descriptor->value(i);
values.emplace_back(enum_value_descriptor->name(), enum_value_descriptor->number());
}
return std::make_shared<DataTypeEnum<Type>>(std::move(values));
}
NameAndTypePair getNameAndDataTypeFromField(const google::protobuf::FieldDescriptor * field_descriptor, bool allow_repeat = true)
{
if (allow_repeat && field_descriptor->is_map())
{
auto name_and_type = getNameAndDataTypeFromField(field_descriptor, false);
const auto * tuple_type = assert_cast<const DataTypeTuple *>(name_and_type.type.get());
return {name_and_type.name, std::make_shared<DataTypeMap>(tuple_type->getElements())};
}
if (allow_repeat && field_descriptor->is_repeated())
{
auto name_and_type = getNameAndDataTypeFromField(field_descriptor, false);
return {name_and_type.name, std::make_shared<DataTypeArray>(name_and_type.type)};
}
switch (field_descriptor->type())
{
case FieldTypeId::TYPE_SFIXED32: [[fallthrough]];
case FieldTypeId::TYPE_SINT32: [[fallthrough]];
case FieldTypeId::TYPE_INT32:
return {field_descriptor->name(), std::make_shared<DataTypeInt32>()};
case FieldTypeId::TYPE_SFIXED64: [[fallthrough]];
case FieldTypeId::TYPE_SINT64: [[fallthrough]];
case FieldTypeId::TYPE_INT64:
return {field_descriptor->name(), std::make_shared<DataTypeInt64>()};
case FieldTypeId::TYPE_BOOL:
return {field_descriptor->name(), std::make_shared<DataTypeUInt8>()};
case FieldTypeId::TYPE_FLOAT:
return {field_descriptor->name(), std::make_shared<DataTypeFloat32>()};
case FieldTypeId::TYPE_DOUBLE:
return {field_descriptor->name(), std::make_shared<DataTypeFloat64>()};
case FieldTypeId::TYPE_UINT32: [[fallthrough]];
case FieldTypeId::TYPE_FIXED32:
return {field_descriptor->name(), std::make_shared<DataTypeUInt32>()};
case FieldTypeId::TYPE_UINT64: [[fallthrough]];
case FieldTypeId::TYPE_FIXED64:
return {field_descriptor->name(), std::make_shared<DataTypeUInt64>()};
case FieldTypeId::TYPE_BYTES: [[fallthrough]];
case FieldTypeId::TYPE_STRING:
return {field_descriptor->name(), std::make_shared<DataTypeString>()};
case FieldTypeId::TYPE_ENUM:
{
const auto * enum_descriptor = field_descriptor->enum_type();
if (enum_descriptor->value_count() == 0)
throw Exception("Empty enum field", ErrorCodes::BAD_ARGUMENTS);
int max_abs = std::abs(enum_descriptor->value(0)->number());
for (int i = 1; i != enum_descriptor->value_count(); ++i)
{
if (std::abs(enum_descriptor->value(i)->number()) > max_abs)
max_abs = std::abs(enum_descriptor->value(i)->number());
}
if (max_abs < 128)
return {field_descriptor->name(), getEnumDataType<Int8>(enum_descriptor)};
else if (max_abs < 32768)
return {field_descriptor->name(), getEnumDataType<Int16>(enum_descriptor)};
else
throw Exception("ClickHouse supports only 8-bit and 16-bit enums", ErrorCodes::BAD_ARGUMENTS);
}
case FieldTypeId::TYPE_GROUP: [[fallthrough]];
case FieldTypeId::TYPE_MESSAGE:
{
const auto * message_descriptor = field_descriptor->message_type();
if (message_descriptor->field_count() == 1)
{
const auto * nested_field_descriptor = message_descriptor->field(0);
auto nested_name_and_type = getNameAndDataTypeFromField(nested_field_descriptor);
return {field_descriptor->name() + "_" + nested_name_and_type.name, nested_name_and_type.type};
}
else
{
DataTypes nested_types;
Strings nested_names;
for (int i = 0; i != message_descriptor->field_count(); ++i)
{
auto nested_name_and_type = getNameAndDataTypeFromField(message_descriptor->field(i));
nested_types.push_back(nested_name_and_type.type);
nested_names.push_back(nested_name_and_type.name);
}
return {field_descriptor->name(), std::make_shared<DataTypeTuple>(std::move(nested_types), std::move(nested_names))};
}
}
}
__builtin_unreachable();
}
}
std::unique_ptr<ProtobufSerializer> ProtobufSerializer::create(
const Strings & column_names,
const DataTypes & data_types,
std::vector<size_t> & missing_column_indices,
const google::protobuf::Descriptor & message_descriptor,
bool with_length_delimiter,
bool with_envelope,
bool google_wrappers_special_treatment,
ProtobufReader & reader)
{
return ProtobufSerializerBuilder(reader).buildMessageSerializer(column_names, data_types, missing_column_indices, message_descriptor, with_length_delimiter, with_envelope, google_wrappers_special_treatment);
}
std::unique_ptr<ProtobufSerializer> ProtobufSerializer::create(
const Strings & column_names,
const DataTypes & data_types,
const google::protobuf::Descriptor & message_descriptor,
bool with_length_delimiter,
bool with_envelope,
bool google_wrappers_special_treatment,
ProtobufWriter & writer)
{
std::vector<size_t> missing_column_indices;
return ProtobufSerializerBuilder(writer).buildMessageSerializer(column_names, data_types, missing_column_indices, message_descriptor, with_length_delimiter, with_envelope, google_wrappers_special_treatment);
}
NamesAndTypesList protobufSchemaToCHSchema(const google::protobuf::Descriptor * message_descriptor)
{
NamesAndTypesList schema;
for (int i = 0; i != message_descriptor->field_count(); ++i)
schema.push_back(getNameAndDataTypeFromField(message_descriptor->field(i)));
return schema;
}
}
#endif