mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-15 19:02:04 +00:00
3447 lines
136 KiB
C++
3447 lines
136 KiB
C++
#include <Poco/Util/Application.h>
|
|
#include <Poco/String.h>
|
|
|
|
#include <DataTypes/FieldToDataType.h>
|
|
|
|
#include <Parsers/ASTFunction.h>
|
|
#include <Parsers/ASTIdentifier.h>
|
|
#include <Parsers/ASTLiteral.h>
|
|
#include <Parsers/ASTAsterisk.h>
|
|
#include <Parsers/ASTQualifiedAsterisk.h>
|
|
#include <Parsers/ASTExpressionList.h>
|
|
#include <Parsers/ASTSelectQuery.h>
|
|
#include <Parsers/ASTSelectWithUnionQuery.h>
|
|
#include <Parsers/ASTSubquery.h>
|
|
#include <Parsers/ASTOrderByElement.h>
|
|
#include <Parsers/formatAST.h>
|
|
|
|
#include <DataTypes/DataTypeSet.h>
|
|
#include <DataTypes/DataTypeNullable.h>
|
|
#include <DataTypes/NestedUtils.h>
|
|
#include <DataTypes/DataTypesNumber.h>
|
|
|
|
#include <Columns/ColumnSet.h>
|
|
#include <Columns/ColumnConst.h>
|
|
|
|
#include <Interpreters/InterpreterSelectWithUnionQuery.h>
|
|
#include <Interpreters/ExpressionAnalyzer.h>
|
|
#include <Interpreters/ExpressionActions.h>
|
|
#include <Interpreters/InJoinSubqueriesPreprocessor.h>
|
|
#include <Interpreters/LogicalExpressionsOptimizer.h>
|
|
#include <Interpreters/PredicateExpressionsOptimizer.h>
|
|
#include <Interpreters/ExternalDictionaries.h>
|
|
#include <Interpreters/convertFieldToType.h>
|
|
#include <Interpreters/Set.h>
|
|
#include <Interpreters/Join.h>
|
|
#include <Interpreters/ProjectionManipulation.h>
|
|
#include <Interpreters/evaluateConstantExpression.h>
|
|
|
|
#include <AggregateFunctions/AggregateFunctionFactory.h>
|
|
#include <AggregateFunctions/parseAggregateFunctionParameters.h>
|
|
|
|
#include <Storages/StorageDistributed.h>
|
|
#include <Storages/StorageMemory.h>
|
|
#include <Storages/StorageSet.h>
|
|
#include <Storages/StorageJoin.h>
|
|
|
|
#include <DataStreams/LazyBlockInputStream.h>
|
|
#include <DataStreams/copyData.h>
|
|
|
|
#include <Dictionaries/IDictionary.h>
|
|
|
|
#include <Common/typeid_cast.h>
|
|
#include <Common/StringUtils/StringUtils.h>
|
|
|
|
#include <Parsers/formatAST.h>
|
|
|
|
#include <Functions/FunctionFactory.h>
|
|
#include <Functions/IFunction.h>
|
|
|
|
#include <ext/range.h>
|
|
#include <DataTypes/DataTypeFactory.h>
|
|
#include <DataTypes/DataTypeFunction.h>
|
|
#include <Functions/FunctionsMiscellaneous.h>
|
|
#include <DataTypes/DataTypeTuple.h>
|
|
#include <Parsers/queryToString.h>
|
|
#include <Parsers/ExpressionListParsers.h>
|
|
#include <Parsers/parseQuery.h>
|
|
#include <Parsers/queryToString.h>
|
|
#include <Interpreters/evaluateQualified.h>
|
|
|
|
|
|
namespace DB
|
|
{
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int BAD_ARGUMENTS;
|
|
extern const int MULTIPLE_EXPRESSIONS_FOR_ALIAS;
|
|
extern const int UNKNOWN_IDENTIFIER;
|
|
extern const int CYCLIC_ALIASES;
|
|
extern const int INCORRECT_RESULT_OF_SCALAR_SUBQUERY;
|
|
extern const int TOO_MANY_ROWS;
|
|
extern const int NOT_FOUND_COLUMN_IN_BLOCK;
|
|
extern const int INCORRECT_ELEMENT_OF_SET;
|
|
extern const int ALIAS_REQUIRED;
|
|
extern const int EMPTY_NESTED_TABLE;
|
|
extern const int NOT_AN_AGGREGATE;
|
|
extern const int UNEXPECTED_EXPRESSION;
|
|
extern const int DUPLICATE_COLUMN;
|
|
extern const int FUNCTION_CANNOT_HAVE_PARAMETERS;
|
|
extern const int ILLEGAL_AGGREGATION;
|
|
extern const int SUPPORT_IS_DISABLED;
|
|
extern const int TOO_DEEP_AST;
|
|
extern const int TOO_BIG_AST;
|
|
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
|
|
extern const int CONDITIONAL_TREE_PARENT_NOT_FOUND;
|
|
extern const int TYPE_MISMATCH;
|
|
extern const int INVALID_JOIN_ON_EXPRESSION;
|
|
extern const int EXPECTED_ALL_OR_ANY;
|
|
}
|
|
|
|
|
|
/** Calls to these functions in the GROUP BY statement would be
|
|
* replaced by their immediate argument.
|
|
*/
|
|
const std::unordered_set<String> injective_function_names
|
|
{
|
|
"negate",
|
|
"bitNot",
|
|
"reverse",
|
|
"reverseUTF8",
|
|
"toString",
|
|
"toFixedString",
|
|
"IPv4NumToString",
|
|
"IPv4StringToNum",
|
|
"hex",
|
|
"unhex",
|
|
"bitmaskToList",
|
|
"bitmaskToArray",
|
|
"tuple",
|
|
"regionToName",
|
|
"concatAssumeInjective",
|
|
};
|
|
|
|
const std::unordered_set<String> possibly_injective_function_names
|
|
{
|
|
"dictGetString",
|
|
"dictGetUInt8",
|
|
"dictGetUInt16",
|
|
"dictGetUInt32",
|
|
"dictGetUInt64",
|
|
"dictGetInt8",
|
|
"dictGetInt16",
|
|
"dictGetInt32",
|
|
"dictGetInt64",
|
|
"dictGetFloat32",
|
|
"dictGetFloat64",
|
|
"dictGetDate",
|
|
"dictGetDateTime"
|
|
};
|
|
|
|
namespace
|
|
{
|
|
|
|
bool functionIsInOperator(const String & name)
|
|
{
|
|
return name == "in" || name == "notIn";
|
|
}
|
|
|
|
bool functionIsInOrGlobalInOperator(const String & name)
|
|
{
|
|
return name == "in" || name == "notIn" || name == "globalIn" || name == "globalNotIn";
|
|
}
|
|
|
|
void removeDuplicateColumns(NamesAndTypesList & columns)
|
|
{
|
|
std::set<String> names;
|
|
for (auto it = columns.begin(); it != columns.end();)
|
|
{
|
|
if (names.emplace(it->name).second)
|
|
++it;
|
|
else
|
|
columns.erase(it++);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
ExpressionAnalyzer::ExpressionAnalyzer(
|
|
const ASTPtr & query_,
|
|
const Context & context_,
|
|
const StoragePtr & storage_,
|
|
const NamesAndTypesList & source_columns_,
|
|
const Names & required_result_columns_,
|
|
size_t subquery_depth_,
|
|
bool do_global_,
|
|
const SubqueriesForSets & subqueries_for_set_)
|
|
: query(query_), context(context_), settings(context.getSettings()),
|
|
subquery_depth(subquery_depth_),
|
|
source_columns(source_columns_), required_result_columns(required_result_columns_),
|
|
storage(storage_),
|
|
do_global(do_global_), subqueries_for_sets(subqueries_for_set_)
|
|
{
|
|
select_query = typeid_cast<ASTSelectQuery *>(query.get());
|
|
|
|
if (!storage && select_query)
|
|
{
|
|
auto select_database = select_query->database();
|
|
auto select_table = select_query->table();
|
|
|
|
if (select_table
|
|
&& !typeid_cast<const ASTSelectWithUnionQuery *>(select_table.get())
|
|
&& !typeid_cast<const ASTFunction *>(select_table.get()))
|
|
{
|
|
String database = select_database
|
|
? typeid_cast<const ASTIdentifier &>(*select_database).name
|
|
: "";
|
|
const String & table = typeid_cast<const ASTIdentifier &>(*select_table).name;
|
|
storage = context.tryGetTable(database, table);
|
|
}
|
|
}
|
|
|
|
if (storage && source_columns.empty())
|
|
{
|
|
auto physical_columns = storage->getColumns().getAllPhysical();
|
|
if (source_columns.empty())
|
|
source_columns.swap(physical_columns);
|
|
else
|
|
{
|
|
source_columns.insert(source_columns.end(), physical_columns.begin(), physical_columns.end());
|
|
removeDuplicateColumns(source_columns);
|
|
}
|
|
}
|
|
else
|
|
removeDuplicateColumns(source_columns);
|
|
|
|
addAliasColumns();
|
|
|
|
translateQualifiedNames();
|
|
|
|
/// Depending on the user's profile, check for the execution rights
|
|
/// distributed subqueries inside the IN or JOIN sections and process these subqueries.
|
|
InJoinSubqueriesPreprocessor(context).process(select_query);
|
|
|
|
/// Optimizes logical expressions.
|
|
LogicalExpressionsOptimizer(select_query, settings).perform();
|
|
|
|
/// Creates a dictionary `aliases`: alias -> ASTPtr
|
|
addASTAliases(query);
|
|
|
|
/// Common subexpression elimination. Rewrite rules.
|
|
normalizeTree();
|
|
|
|
/// Remove unneeded columns according to 'required_result_columns'.
|
|
/// Leave all selected columns in case of DISTINCT; columns that contain arrayJoin function inside.
|
|
/// Must be after 'normalizeTree' (after expanding aliases, for aliases not get lost)
|
|
/// and before 'executeScalarSubqueries', 'analyzeAggregation', etc. to avoid excessive calculations.
|
|
removeUnneededColumnsFromSelectClause();
|
|
|
|
/// Executing scalar subqueries - replacing them with constant values.
|
|
executeScalarSubqueries();
|
|
|
|
/// Optimize if with constant condition after constants was substituted instead of sclalar subqueries.
|
|
optimizeIfWithConstantCondition();
|
|
|
|
/// GROUP BY injective function elimination.
|
|
optimizeGroupBy();
|
|
|
|
/// Remove duplicate items from ORDER BY.
|
|
optimizeOrderBy();
|
|
|
|
// Remove duplicated elements from LIMIT BY clause.
|
|
optimizeLimitBy();
|
|
|
|
/// Remove duplicated columns from USING(...).
|
|
optimizeUsing();
|
|
|
|
/// array_join_alias_to_name, array_join_result_to_source.
|
|
getArrayJoinedColumns();
|
|
|
|
/// Push the predicate expression down to the subqueries.
|
|
rewrite_subqueries = PredicateExpressionsOptimizer(select_query, settings, context).optimize();
|
|
|
|
/// Delete the unnecessary from `source_columns` list. Create `unknown_required_source_columns`. Form `columns_added_by_join`.
|
|
collectUsedColumns();
|
|
|
|
/// external_tables, subqueries_for_sets for global subqueries.
|
|
/// Replaces global subqueries with the generated names of temporary tables that will be sent to remote servers.
|
|
initGlobalSubqueriesAndExternalTables();
|
|
|
|
/// has_aggregation, aggregation_keys, aggregate_descriptions, aggregated_columns.
|
|
/// This analysis should be performed after processing global subqueries, because otherwise,
|
|
/// if the aggregate function contains a global subquery, then `analyzeAggregation` method will save
|
|
/// in `aggregate_descriptions` the information about the parameters of this aggregate function, among which
|
|
/// global subquery. Then, when you call `initGlobalSubqueriesAndExternalTables` method, this
|
|
/// the global subquery will be replaced with a temporary table, resulting in aggregate_descriptions
|
|
/// will contain out-of-date information, which will lead to an error when the query is executed.
|
|
analyzeAggregation();
|
|
}
|
|
|
|
void ExpressionAnalyzer::translateQualifiedNames()
|
|
{
|
|
if (!select_query || !select_query->tables || select_query->tables->children.empty())
|
|
return;
|
|
|
|
auto & element = static_cast<ASTTablesInSelectQueryElement &>(*select_query->tables->children[0]);
|
|
|
|
if (!element.table_expression) /// This is ARRAY JOIN without a table at the left side.
|
|
return;
|
|
|
|
auto & table_expression = static_cast<ASTTableExpression &>(*element.table_expression);
|
|
auto * join = select_query->join();
|
|
|
|
std::vector<DatabaseAndTableWithAlias> tables = {getTableNameWithAliasFromTableExpression(table_expression, context)};
|
|
|
|
if (join)
|
|
{
|
|
const auto & join_table_expression = static_cast<const ASTTableExpression &>(*join->table_expression);
|
|
tables.emplace_back(getTableNameWithAliasFromTableExpression(join_table_expression, context));
|
|
}
|
|
|
|
translateQualifiedNamesImpl(query, tables);
|
|
}
|
|
|
|
void ExpressionAnalyzer::translateQualifiedNamesImpl(ASTPtr & ast, const std::vector<DatabaseAndTableWithAlias> & tables)
|
|
{
|
|
if (auto * identifier = typeid_cast<ASTIdentifier *>(ast.get()))
|
|
{
|
|
if (identifier->kind == ASTIdentifier::Column)
|
|
{
|
|
/// Select first table name with max number of qualifiers which can be stripped.
|
|
size_t max_num_qualifiers_to_strip = 0;
|
|
size_t best_table_pos = 0;
|
|
|
|
for (size_t table_pos = 0; table_pos < tables.size(); ++table_pos)
|
|
{
|
|
const auto & table = tables[table_pos];
|
|
auto num_qualifiers_to_strip = getNumComponentsToStripInOrderToTranslateQualifiedName(*identifier, table);
|
|
|
|
if (num_qualifiers_to_strip > max_num_qualifiers_to_strip)
|
|
{
|
|
max_num_qualifiers_to_strip = num_qualifiers_to_strip;
|
|
best_table_pos = table_pos;
|
|
}
|
|
}
|
|
|
|
stripIdentifier(ast, max_num_qualifiers_to_strip);
|
|
|
|
/// In case if column from the joined table are in source columns, change it's name to qualified.
|
|
if (best_table_pos && source_columns.contains(ast->getColumnName()))
|
|
tables[best_table_pos].makeQualifiedName(ast);
|
|
}
|
|
}
|
|
else if (typeid_cast<ASTQualifiedAsterisk *>(ast.get()))
|
|
{
|
|
if (ast->children.size() != 1)
|
|
throw Exception("Logical error: qualified asterisk must have exactly one child", ErrorCodes::LOGICAL_ERROR);
|
|
|
|
ASTIdentifier * ident = typeid_cast<ASTIdentifier *>(ast->children[0].get());
|
|
if (!ident)
|
|
throw Exception("Logical error: qualified asterisk must have identifier as its child", ErrorCodes::LOGICAL_ERROR);
|
|
|
|
size_t num_components = ident->children.size();
|
|
if (num_components > 2)
|
|
throw Exception("Qualified asterisk cannot have more than two qualifiers", ErrorCodes::UNKNOWN_ELEMENT_IN_AST);
|
|
|
|
for (const auto & table_names : tables)
|
|
{
|
|
/// database.table.*, table.* or alias.*
|
|
if ((num_components == 2
|
|
&& !table_names.database.empty()
|
|
&& static_cast<const ASTIdentifier &>(*ident->children[0]).name == table_names.database
|
|
&& static_cast<const ASTIdentifier &>(*ident->children[1]).name == table_names.table)
|
|
|| (num_components == 0
|
|
&& ((!table_names.table.empty() && ident->name == table_names.table)
|
|
|| (!table_names.alias.empty() && ident->name == table_names.alias))))
|
|
{
|
|
/// Replace to plain asterisk.
|
|
ast = std::make_shared<ASTAsterisk>();
|
|
}
|
|
}
|
|
}
|
|
else if (auto * join = typeid_cast<ASTTableJoin *>(ast.get()))
|
|
{
|
|
/// Don't translate on_expression here in order to resolve equation parts later.
|
|
if (join->using_expression_list)
|
|
translateQualifiedNamesImpl(join->using_expression_list, tables);
|
|
}
|
|
else
|
|
{
|
|
/// If the WHERE clause or HAVING consists of a single quailified column, the reference must be translated not only in children, but also in where_expression and having_expression.
|
|
if (ASTSelectQuery * select = typeid_cast<ASTSelectQuery *>(ast.get()))
|
|
{
|
|
if (select->prewhere_expression)
|
|
translateQualifiedNamesImpl(select->prewhere_expression, tables);
|
|
if (select->where_expression)
|
|
translateQualifiedNamesImpl(select->where_expression, tables);
|
|
if (select->having_expression)
|
|
translateQualifiedNamesImpl(select->having_expression, tables);
|
|
}
|
|
|
|
for (auto & child : ast->children)
|
|
{
|
|
/// Do not go to FROM, JOIN, subqueries.
|
|
if (!typeid_cast<const ASTTableExpression *>(child.get())
|
|
&& !typeid_cast<const ASTSelectWithUnionQuery *>(child.get()))
|
|
{
|
|
translateQualifiedNamesImpl(child, tables);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExpressionAnalyzer::optimizeIfWithConstantCondition()
|
|
{
|
|
optimizeIfWithConstantConditionImpl(query);
|
|
}
|
|
|
|
bool ExpressionAnalyzer::tryExtractConstValueFromCondition(const ASTPtr & condition, bool & value) const
|
|
{
|
|
/// numeric constant in condition
|
|
if (const ASTLiteral * literal = typeid_cast<ASTLiteral *>(condition.get()))
|
|
{
|
|
if (literal->value.getType() == Field::Types::Int64 ||
|
|
literal->value.getType() == Field::Types::UInt64)
|
|
{
|
|
value = literal->value.get<Int64>();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// cast of numeric constant in condition to UInt8
|
|
if (const ASTFunction * function = typeid_cast<ASTFunction * >(condition.get()))
|
|
{
|
|
if (function->name == "CAST")
|
|
{
|
|
if (ASTExpressionList * expr_list = typeid_cast<ASTExpressionList *>(function->arguments.get()))
|
|
{
|
|
const ASTPtr & type_ast = expr_list->children.at(1);
|
|
if (const ASTLiteral * type_literal = typeid_cast<ASTLiteral *>(type_ast.get()))
|
|
{
|
|
if (type_literal->value.getType() == Field::Types::String &&
|
|
type_literal->value.get<std::string>() == "UInt8")
|
|
return tryExtractConstValueFromCondition(expr_list->children.at(0), value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void ExpressionAnalyzer::optimizeIfWithConstantConditionImpl(ASTPtr & current_ast)
|
|
{
|
|
if (!current_ast)
|
|
return;
|
|
|
|
for (ASTPtr & child : current_ast->children)
|
|
{
|
|
ASTFunction * function_node = typeid_cast<ASTFunction *>(child.get());
|
|
if (!function_node || function_node->name != "if")
|
|
{
|
|
optimizeIfWithConstantConditionImpl(child);
|
|
continue;
|
|
}
|
|
|
|
optimizeIfWithConstantConditionImpl(function_node->arguments);
|
|
ASTExpressionList * args = typeid_cast<ASTExpressionList *>(function_node->arguments.get());
|
|
|
|
if (args->children.size() != 3)
|
|
throw Exception("Wrong number of arguments for function 'if' (" + toString(args->children.size()) + " instead of 3)",
|
|
ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
|
|
|
|
ASTPtr condition_expr = args->children[0];
|
|
ASTPtr then_expr = args->children[1];
|
|
ASTPtr else_expr = args->children[2];
|
|
|
|
bool condition;
|
|
if (tryExtractConstValueFromCondition(condition_expr, condition))
|
|
{
|
|
ASTPtr replace_ast = condition ? then_expr : else_expr;
|
|
ASTPtr child_copy = child;
|
|
String replace_alias = replace_ast->tryGetAlias();
|
|
String if_alias = child->tryGetAlias();
|
|
|
|
if (replace_alias.empty())
|
|
{
|
|
replace_ast->setAlias(if_alias);
|
|
child = replace_ast;
|
|
}
|
|
else
|
|
{
|
|
/// Only copy of one node is required here.
|
|
/// But IAST has only method for deep copy of subtree.
|
|
/// This can be a reason of performance degradation in case of deep queries.
|
|
ASTPtr replace_ast_deep_copy = replace_ast->clone();
|
|
replace_ast_deep_copy->setAlias(if_alias);
|
|
child = replace_ast_deep_copy;
|
|
}
|
|
|
|
if (!if_alias.empty())
|
|
{
|
|
auto alias_it = aliases.find(if_alias);
|
|
if (alias_it != aliases.end() && alias_it->second.get() == child_copy.get())
|
|
alias_it->second = child;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExpressionAnalyzer::analyzeAggregation()
|
|
{
|
|
/** Find aggregation keys (aggregation_keys), information about aggregate functions (aggregate_descriptions),
|
|
* as well as a set of columns obtained after the aggregation, if any,
|
|
* or after all the actions that are usually performed before aggregation (aggregated_columns).
|
|
*
|
|
* Everything below (compiling temporary ExpressionActions) - only for the purpose of query analysis (type output).
|
|
*/
|
|
|
|
if (select_query && (select_query->group_expression_list || select_query->having_expression))
|
|
has_aggregation = true;
|
|
|
|
ExpressionActionsPtr temp_actions = std::make_shared<ExpressionActions>(source_columns, context);
|
|
|
|
if (select_query && select_query->array_join_expression_list())
|
|
{
|
|
getRootActions(select_query->array_join_expression_list(), true, false, temp_actions);
|
|
addMultipleArrayJoinAction(temp_actions);
|
|
array_join_columns = temp_actions->getSampleBlock().getNamesAndTypesList();
|
|
}
|
|
|
|
if (select_query)
|
|
{
|
|
const ASTTablesInSelectQueryElement * join = select_query->join();
|
|
if (join)
|
|
{
|
|
const auto table_join = static_cast<const ASTTableJoin &>(*join->table_join);
|
|
if (table_join.using_expression_list)
|
|
getRootActions(table_join.using_expression_list, true, false, temp_actions);
|
|
if (table_join.on_expression)
|
|
for (const auto & key_ast : analyzed_join.key_asts_left)
|
|
getRootActions(key_ast, true, false, temp_actions);
|
|
|
|
addJoinAction(temp_actions, true);
|
|
}
|
|
}
|
|
|
|
getAggregates(query, temp_actions);
|
|
|
|
if (has_aggregation)
|
|
{
|
|
assertSelect();
|
|
|
|
/// Find out aggregation keys.
|
|
if (select_query->group_expression_list)
|
|
{
|
|
NameSet unique_keys;
|
|
ASTs & group_asts = select_query->group_expression_list->children;
|
|
for (ssize_t i = 0; i < ssize_t(group_asts.size()); ++i)
|
|
{
|
|
ssize_t size = group_asts.size();
|
|
getRootActions(group_asts[i], true, false, temp_actions);
|
|
|
|
const auto & column_name = group_asts[i]->getColumnName();
|
|
const auto & block = temp_actions->getSampleBlock();
|
|
|
|
if (!block.has(column_name))
|
|
throw Exception("Unknown identifier (in GROUP BY): " + column_name, ErrorCodes::UNKNOWN_IDENTIFIER);
|
|
|
|
const auto & col = block.getByName(column_name);
|
|
|
|
/// Constant expressions have non-null column pointer at this stage.
|
|
if (col.column && col.column->isColumnConst())
|
|
{
|
|
/// But don't remove last key column if no aggregate functions, otherwise aggregation will not work.
|
|
if (!aggregate_descriptions.empty() || size > 1)
|
|
{
|
|
if (i + 1 < static_cast<ssize_t>(size))
|
|
group_asts[i] = std::move(group_asts.back());
|
|
|
|
group_asts.pop_back();
|
|
|
|
--i;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
NameAndTypePair key{column_name, col.type};
|
|
|
|
/// Aggregation keys are uniqued.
|
|
if (!unique_keys.count(key.name))
|
|
{
|
|
unique_keys.insert(key.name);
|
|
aggregation_keys.push_back(key);
|
|
|
|
/// Key is no longer needed, therefore we can save a little by moving it.
|
|
aggregated_columns.push_back(std::move(key));
|
|
}
|
|
}
|
|
|
|
if (group_asts.empty())
|
|
{
|
|
select_query->group_expression_list = nullptr;
|
|
has_aggregation = select_query->having_expression || aggregate_descriptions.size();
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < aggregate_descriptions.size(); ++i)
|
|
{
|
|
AggregateDescription & desc = aggregate_descriptions[i];
|
|
aggregated_columns.emplace_back(desc.column_name, desc.function->getReturnType());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
aggregated_columns = temp_actions->getSampleBlock().getNamesAndTypesList();
|
|
}
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::initGlobalSubqueriesAndExternalTables()
|
|
{
|
|
/// Adds existing external tables (not subqueries) to the external_tables dictionary.
|
|
findExternalTables(query);
|
|
|
|
/// Converts GLOBAL subqueries to external tables; Puts them into the external_tables dictionary: name -> StoragePtr.
|
|
initGlobalSubqueries(query);
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::initGlobalSubqueries(ASTPtr & ast)
|
|
{
|
|
/// Recursive calls. We do not go into subqueries.
|
|
|
|
for (auto & child : ast->children)
|
|
if (!typeid_cast<ASTSelectQuery *>(child.get()))
|
|
initGlobalSubqueries(child);
|
|
|
|
/// Bottom-up actions.
|
|
|
|
if (ASTFunction * func = typeid_cast<ASTFunction *>(ast.get()))
|
|
{
|
|
/// For GLOBAL IN.
|
|
if (do_global && (func->name == "globalIn" || func->name == "globalNotIn"))
|
|
addExternalStorage(func->arguments->children.at(1));
|
|
}
|
|
else if (ASTTablesInSelectQueryElement * table_elem = typeid_cast<ASTTablesInSelectQueryElement *>(ast.get()))
|
|
{
|
|
/// For GLOBAL JOIN.
|
|
if (do_global && table_elem->table_join
|
|
&& static_cast<const ASTTableJoin &>(*table_elem->table_join).locality == ASTTableJoin::Locality::Global)
|
|
addExternalStorage(table_elem->table_expression);
|
|
}
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::findExternalTables(ASTPtr & ast)
|
|
{
|
|
/// Traverse from the bottom. Intentionally go into subqueries.
|
|
for (auto & child : ast->children)
|
|
findExternalTables(child);
|
|
|
|
/// If table type identifier
|
|
StoragePtr external_storage;
|
|
|
|
if (ASTIdentifier * node = typeid_cast<ASTIdentifier *>(ast.get()))
|
|
if (node->kind == ASTIdentifier::Table)
|
|
if ((external_storage = context.tryGetExternalTable(node->name)))
|
|
external_tables[node->name] = external_storage;
|
|
}
|
|
|
|
static std::shared_ptr<InterpreterSelectWithUnionQuery> interpretSubquery(
|
|
const ASTPtr & table_expression, const Context & context, size_t subquery_depth, const Names & required_source_columns)
|
|
{
|
|
/// Subquery or table name. The name of the table is similar to the subquery `SELECT * FROM t`.
|
|
const ASTSubquery * subquery = typeid_cast<const ASTSubquery *>(table_expression.get());
|
|
const ASTFunction * function = typeid_cast<const ASTFunction *>(table_expression.get());
|
|
const ASTIdentifier * table = typeid_cast<const ASTIdentifier *>(table_expression.get());
|
|
|
|
if (!subquery && !table && !function)
|
|
throw Exception("Table expression is undefined, Method: ExpressionAnalyzer::interpretSubquery." , ErrorCodes::LOGICAL_ERROR);
|
|
|
|
/** The subquery in the IN / JOIN section does not have any restrictions on the maximum size of the result.
|
|
* Because the result of this query is not the result of the entire query.
|
|
* Constraints work instead
|
|
* max_rows_in_set, max_bytes_in_set, set_overflow_mode,
|
|
* max_rows_in_join, max_bytes_in_join, join_overflow_mode,
|
|
* which are checked separately (in the Set, Join objects).
|
|
*/
|
|
Context subquery_context = context;
|
|
Settings subquery_settings = context.getSettings();
|
|
subquery_settings.max_result_rows = 0;
|
|
subquery_settings.max_result_bytes = 0;
|
|
/// The calculation of `extremes` does not make sense and is not necessary (if you do it, then the `extremes` of the subquery can be taken instead of the whole query).
|
|
subquery_settings.extremes = 0;
|
|
subquery_context.setSettings(subquery_settings);
|
|
|
|
ASTPtr query;
|
|
if (table || function)
|
|
{
|
|
/// create ASTSelectQuery for "SELECT * FROM table" as if written by hand
|
|
const auto select_with_union_query = std::make_shared<ASTSelectWithUnionQuery>();
|
|
query = select_with_union_query;
|
|
|
|
select_with_union_query->list_of_selects = std::make_shared<ASTExpressionList>();
|
|
|
|
const auto select_query = std::make_shared<ASTSelectQuery>();
|
|
select_with_union_query->list_of_selects->children.push_back(select_query);
|
|
|
|
const auto select_expression_list = std::make_shared<ASTExpressionList>();
|
|
select_query->select_expression_list = select_expression_list;
|
|
select_query->children.emplace_back(select_query->select_expression_list);
|
|
|
|
NamesAndTypesList columns;
|
|
|
|
/// get columns list for target table
|
|
if (function)
|
|
{
|
|
auto query_context = const_cast<Context *>(&context.getQueryContext());
|
|
const auto & storage = query_context->executeTableFunction(table_expression);
|
|
columns = storage->getColumns().ordinary;
|
|
select_query->addTableFunction(*const_cast<ASTPtr *>(&table_expression));
|
|
}
|
|
else
|
|
{
|
|
auto database_table = getDatabaseAndTableNameFromIdentifier(*table);
|
|
const auto & storage = context.getTable(database_table.first, database_table.second);
|
|
columns = storage->getColumns().ordinary;
|
|
select_query->replaceDatabaseAndTable(database_table.first, database_table.second);
|
|
}
|
|
|
|
select_expression_list->children.reserve(columns.size());
|
|
/// manually substitute column names in place of asterisk
|
|
for (const auto & column : columns)
|
|
select_expression_list->children.emplace_back(std::make_shared<ASTIdentifier>(column.name));
|
|
}
|
|
else
|
|
{
|
|
query = subquery->children.at(0);
|
|
|
|
/** Columns with the same name can be specified in a subquery. For example, SELECT x, x FROM t
|
|
* This is bad, because the result of such a query can not be saved to the table, because the table can not have the same name columns.
|
|
* Saving to the table is required for GLOBAL subqueries.
|
|
*
|
|
* To avoid this situation, we will rename the same columns.
|
|
*/
|
|
|
|
std::set<std::string> all_column_names;
|
|
std::set<std::string> assigned_column_names;
|
|
|
|
if (ASTSelectWithUnionQuery * select_with_union = typeid_cast<ASTSelectWithUnionQuery *>(query.get()))
|
|
{
|
|
if (ASTSelectQuery * select = typeid_cast<ASTSelectQuery *>(select_with_union->list_of_selects->children.at(0).get()))
|
|
{
|
|
for (auto & expr : select->select_expression_list->children)
|
|
all_column_names.insert(expr->getAliasOrColumnName());
|
|
|
|
for (auto & expr : select->select_expression_list->children)
|
|
{
|
|
auto name = expr->getAliasOrColumnName();
|
|
|
|
if (!assigned_column_names.insert(name).second)
|
|
{
|
|
size_t i = 1;
|
|
while (all_column_names.end() != all_column_names.find(name + "_" + toString(i)))
|
|
++i;
|
|
|
|
name = name + "_" + toString(i);
|
|
expr = expr->clone(); /// Cancels fuse of the same expressions in the tree.
|
|
expr->setAlias(name);
|
|
|
|
all_column_names.insert(name);
|
|
assigned_column_names.insert(name);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::make_shared<InterpreterSelectWithUnionQuery>(
|
|
query, subquery_context, required_source_columns, QueryProcessingStage::Complete, subquery_depth + 1);
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::addExternalStorage(ASTPtr & subquery_or_table_name_or_table_expression)
|
|
{
|
|
/// With nondistributed queries, creating temporary tables does not make sense.
|
|
if (!(storage && storage->isRemote()))
|
|
return;
|
|
|
|
ASTPtr subquery;
|
|
ASTPtr table_name;
|
|
ASTPtr subquery_or_table_name;
|
|
|
|
if (typeid_cast<const ASTIdentifier *>(subquery_or_table_name_or_table_expression.get()))
|
|
{
|
|
table_name = subquery_or_table_name_or_table_expression;
|
|
subquery_or_table_name = table_name;
|
|
}
|
|
else if (auto ast_table_expr = typeid_cast<const ASTTableExpression *>(subquery_or_table_name_or_table_expression.get()))
|
|
{
|
|
if (ast_table_expr->database_and_table_name)
|
|
{
|
|
table_name = ast_table_expr->database_and_table_name;
|
|
subquery_or_table_name = table_name;
|
|
}
|
|
else if (ast_table_expr->subquery)
|
|
{
|
|
subquery = ast_table_expr->subquery;
|
|
subquery_or_table_name = subquery;
|
|
}
|
|
}
|
|
else if (typeid_cast<const ASTSubquery *>(subquery_or_table_name_or_table_expression.get()))
|
|
{
|
|
subquery = subquery_or_table_name_or_table_expression;
|
|
subquery_or_table_name = subquery;
|
|
}
|
|
|
|
if (!subquery_or_table_name)
|
|
throw Exception("Logical error: unknown AST element passed to ExpressionAnalyzer::addExternalStorage method", ErrorCodes::LOGICAL_ERROR);
|
|
|
|
if (table_name)
|
|
{
|
|
/// If this is already an external table, you do not need to add anything. Just remember its presence.
|
|
if (external_tables.end() != external_tables.find(static_cast<const ASTIdentifier &>(*table_name).name))
|
|
return;
|
|
}
|
|
|
|
/// Generate the name for the external table.
|
|
String external_table_name = "_data" + toString(external_table_id);
|
|
while (external_tables.count(external_table_name))
|
|
{
|
|
++external_table_id;
|
|
external_table_name = "_data" + toString(external_table_id);
|
|
}
|
|
|
|
auto interpreter = interpretSubquery(subquery_or_table_name, context, subquery_depth, {});
|
|
|
|
Block sample = interpreter->getSampleBlock();
|
|
NamesAndTypesList columns = sample.getNamesAndTypesList();
|
|
|
|
StoragePtr external_storage = StorageMemory::create(external_table_name, ColumnsDescription{columns});
|
|
external_storage->startup();
|
|
|
|
/** We replace the subquery with the name of the temporary table.
|
|
* It is in this form, the request will go to the remote server.
|
|
* This temporary table will go to the remote server, and on its side,
|
|
* instead of doing a subquery, you just need to read it.
|
|
*/
|
|
|
|
auto database_and_table_name = std::make_shared<ASTIdentifier>(external_table_name, ASTIdentifier::Table);
|
|
|
|
if (auto ast_table_expr = typeid_cast<ASTTableExpression *>(subquery_or_table_name_or_table_expression.get()))
|
|
{
|
|
ast_table_expr->subquery.reset();
|
|
ast_table_expr->database_and_table_name = database_and_table_name;
|
|
|
|
ast_table_expr->children.clear();
|
|
ast_table_expr->children.emplace_back(database_and_table_name);
|
|
}
|
|
else
|
|
subquery_or_table_name_or_table_expression = database_and_table_name;
|
|
|
|
external_tables[external_table_name] = external_storage;
|
|
subqueries_for_sets[external_table_name].source = interpreter->execute().in;
|
|
subqueries_for_sets[external_table_name].table = external_storage;
|
|
|
|
/** NOTE If it was written IN tmp_table - the existing temporary (but not external) table,
|
|
* then a new temporary table will be created (for example, _data1),
|
|
* and the data will then be copied to it.
|
|
* Maybe this can be avoided.
|
|
*/
|
|
}
|
|
|
|
|
|
static NamesAndTypesList::iterator findColumn(const String & name, NamesAndTypesList & cols)
|
|
{
|
|
return std::find_if(cols.begin(), cols.end(),
|
|
[&](const NamesAndTypesList::value_type & val) { return val.name == name; });
|
|
}
|
|
|
|
|
|
/// ignore_levels - aliases in how many upper levels of the subtree should be ignored.
|
|
/// For example, with ignore_levels=1 ast can not be put in the dictionary, but its children can.
|
|
void ExpressionAnalyzer::addASTAliases(ASTPtr & ast, int ignore_levels)
|
|
{
|
|
/// Bottom-up traversal. We do not go into subqueries.
|
|
for (auto & child : ast->children)
|
|
{
|
|
int new_ignore_levels = std::max(0, ignore_levels - 1);
|
|
|
|
/// The top-level aliases in the ARRAY JOIN section have a special meaning, we will not add them
|
|
/// (skip the expression list itself and its children).
|
|
if (typeid_cast<ASTArrayJoin *>(ast.get()))
|
|
new_ignore_levels = 3;
|
|
|
|
/// Don't descent into table functions and subqueries.
|
|
if (!typeid_cast<ASTTableExpression *>(child.get())
|
|
&& !typeid_cast<ASTSelectWithUnionQuery *>(child.get()))
|
|
addASTAliases(child, new_ignore_levels);
|
|
}
|
|
|
|
if (ignore_levels > 0)
|
|
return;
|
|
|
|
String alias = ast->tryGetAlias();
|
|
if (!alias.empty())
|
|
{
|
|
if (aliases.count(alias) && ast->getTreeHash() != aliases[alias]->getTreeHash())
|
|
{
|
|
std::stringstream message;
|
|
message << "Different expressions with the same alias " << backQuoteIfNeed(alias) << ":\n";
|
|
formatAST(*ast, message, false, true);
|
|
message << "\nand\n";
|
|
formatAST(*aliases[alias], message, false, true);
|
|
message << "\n";
|
|
|
|
throw Exception(message.str(), ErrorCodes::MULTIPLE_EXPRESSIONS_FOR_ALIAS);
|
|
}
|
|
|
|
aliases[alias] = ast;
|
|
}
|
|
else if (auto subquery = typeid_cast<ASTSubquery *>(ast.get()))
|
|
{
|
|
/// Set unique aliases for all subqueries. This is needed, because content of subqueries could change after recursive analysis,
|
|
/// and auto-generated column names could become incorrect.
|
|
|
|
size_t subquery_index = 1;
|
|
while (true)
|
|
{
|
|
alias = "_subquery" + toString(subquery_index);
|
|
if (!aliases.count("_subquery" + toString(subquery_index)))
|
|
break;
|
|
++subquery_index;
|
|
}
|
|
|
|
subquery->setAlias(alias);
|
|
subquery->prefer_alias_to_column_name = true;
|
|
aliases[alias] = ast;
|
|
}
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::normalizeTree()
|
|
{
|
|
SetOfASTs tmp_set;
|
|
MapOfASTs tmp_map;
|
|
normalizeTreeImpl(query, tmp_map, tmp_set, "", 0);
|
|
|
|
try
|
|
{
|
|
query->checkSize(settings.max_expanded_ast_elements);
|
|
}
|
|
catch (Exception & e)
|
|
{
|
|
e.addMessage("(after expansion of aliases)");
|
|
throw;
|
|
}
|
|
}
|
|
|
|
|
|
/// finished_asts - already processed vertices (and by what they replaced)
|
|
/// current_asts - vertices in the current call stack of this method
|
|
/// current_alias - the alias referencing to the ancestor of ast (the deepest ancestor with aliases)
|
|
void ExpressionAnalyzer::normalizeTreeImpl(
|
|
ASTPtr & ast, MapOfASTs & finished_asts, SetOfASTs & current_asts, std::string current_alias, size_t level)
|
|
{
|
|
if (level > settings.max_ast_depth)
|
|
throw Exception("Normalized AST is too deep. Maximum: "
|
|
+ settings.max_ast_depth.toString(), ErrorCodes::TOO_DEEP_AST);
|
|
|
|
if (finished_asts.count(ast))
|
|
{
|
|
ast = finished_asts[ast];
|
|
return;
|
|
}
|
|
|
|
ASTPtr initial_ast = ast;
|
|
current_asts.insert(initial_ast.get());
|
|
|
|
String my_alias = ast->tryGetAlias();
|
|
if (!my_alias.empty())
|
|
current_alias = my_alias;
|
|
|
|
/// rewrite rules that act when you go from top to bottom.
|
|
bool replaced = false;
|
|
|
|
ASTIdentifier * identifier_node = nullptr;
|
|
ASTFunction * func_node = nullptr;
|
|
|
|
if ((func_node = typeid_cast<ASTFunction *>(ast.get())))
|
|
{
|
|
/// `IN t` can be specified, where t is a table, which is equivalent to `IN (SELECT * FROM t)`.
|
|
if (functionIsInOrGlobalInOperator(func_node->name))
|
|
if (ASTIdentifier * right = typeid_cast<ASTIdentifier *>(func_node->arguments->children.at(1).get()))
|
|
if (!aliases.count(right->name))
|
|
right->kind = ASTIdentifier::Table;
|
|
|
|
/// Special cases for count function.
|
|
String func_name_lowercase = Poco::toLower(func_node->name);
|
|
if (startsWith(func_name_lowercase, "count"))
|
|
{
|
|
/// Select implementation of countDistinct based on settings.
|
|
/// Important that it is done as query rewrite. It means rewritten query
|
|
/// will be sent to remote servers during distributed query execution,
|
|
/// and on all remote servers, function implementation will be same.
|
|
if (endsWith(func_node->name, "Distinct") && func_name_lowercase == "countdistinct")
|
|
func_node->name = settings.count_distinct_implementation;
|
|
|
|
/// As special case, treat count(*) as count(), not as count(list of all columns).
|
|
if (func_name_lowercase == "count" && func_node->arguments->children.size() == 1
|
|
&& typeid_cast<const ASTAsterisk *>(func_node->arguments->children[0].get()))
|
|
{
|
|
func_node->arguments->children.clear();
|
|
}
|
|
}
|
|
}
|
|
else if ((identifier_node = typeid_cast<ASTIdentifier *>(ast.get())))
|
|
{
|
|
if (identifier_node->kind == ASTIdentifier::Column)
|
|
{
|
|
/// If it is an alias, but not a parent alias (for constructs like "SELECT column + 1 AS column").
|
|
auto it_alias = aliases.find(identifier_node->name);
|
|
if (it_alias != aliases.end() && current_alias != identifier_node->name)
|
|
{
|
|
/// Let's replace it with the corresponding tree node.
|
|
if (current_asts.count(it_alias->second.get()))
|
|
throw Exception("Cyclic aliases", ErrorCodes::CYCLIC_ALIASES);
|
|
|
|
if (!my_alias.empty() && my_alias != it_alias->second->getAliasOrColumnName())
|
|
{
|
|
/// Avoid infinite recursion here
|
|
auto replace_to_identifier = typeid_cast<ASTIdentifier *>(it_alias->second.get());
|
|
bool is_cycle = replace_to_identifier &&
|
|
replace_to_identifier->kind == ASTIdentifier::Column &&
|
|
replace_to_identifier->name == identifier_node->name;
|
|
|
|
if (!is_cycle)
|
|
{
|
|
/// In a construct like "a AS b", where a is an alias, you must set alias b to the result of substituting alias a.
|
|
ast = it_alias->second->clone();
|
|
ast->setAlias(my_alias);
|
|
replaced = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ast = it_alias->second;
|
|
replaced = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (ASTExpressionList * expr_list = typeid_cast<ASTExpressionList *>(ast.get()))
|
|
{
|
|
/// Replace * with a list of columns.
|
|
ASTs & asts = expr_list->children;
|
|
for (int i = static_cast<int>(asts.size()) - 1; i >= 0; --i)
|
|
{
|
|
if (typeid_cast<ASTAsterisk *>(asts[i].get()))
|
|
{
|
|
Names all_columns_name;
|
|
|
|
auto columns_name = storage ? storage->getColumns().ordinary.getNames() : source_columns.getNames();
|
|
all_columns_name.insert(all_columns_name.begin(), columns_name.begin(), columns_name.end());
|
|
|
|
if (!settings.asterisk_left_columns_only)
|
|
{
|
|
auto columns_from_joined_table = analyzed_join.getColumnsFromJoinedTable(context, select_query).getNames();
|
|
all_columns_name.insert(all_columns_name.end(), columns_from_joined_table.begin(), columns_from_joined_table.end());
|
|
}
|
|
|
|
asts.erase(asts.begin() + i);
|
|
for (size_t idx = 0; idx < all_columns_name.size(); idx++)
|
|
asts.insert(asts.begin() + idx + i, std::make_shared<ASTIdentifier>(all_columns_name[idx]));
|
|
}
|
|
}
|
|
}
|
|
else if (ASTTablesInSelectQueryElement * tables_elem = typeid_cast<ASTTablesInSelectQueryElement *>(ast.get()))
|
|
{
|
|
if (tables_elem->table_expression)
|
|
{
|
|
auto & database_and_table_name = static_cast<ASTTableExpression &>(*tables_elem->table_expression).database_and_table_name;
|
|
if (database_and_table_name)
|
|
{
|
|
if (ASTIdentifier * right = typeid_cast<ASTIdentifier *>(database_and_table_name.get()))
|
|
{
|
|
right->kind = ASTIdentifier::Table;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If we replace the root of the subtree, we will be called again for the new root, in case the alias is replaced by an alias.
|
|
if (replaced)
|
|
{
|
|
normalizeTreeImpl(ast, finished_asts, current_asts, current_alias, level + 1);
|
|
current_asts.erase(initial_ast.get());
|
|
current_asts.erase(ast.get());
|
|
finished_asts[initial_ast] = ast;
|
|
return;
|
|
}
|
|
|
|
/// Recurring calls. Don't go into subqueries. Don't go into components of compound identifiers.
|
|
/// We also do not go to the left argument of lambda expressions, so as not to replace the formal parameters
|
|
/// on aliases in expressions of the form 123 AS x, arrayMap(x -> 1, [2]).
|
|
|
|
if (func_node && func_node->name == "lambda")
|
|
{
|
|
/// We skip the first argument. We also assume that the lambda function can not have parameters.
|
|
for (size_t i = 1, size = func_node->arguments->children.size(); i < size; ++i)
|
|
{
|
|
auto & child = func_node->arguments->children[i];
|
|
|
|
if (typeid_cast<const ASTSelectQuery *>(child.get())
|
|
|| typeid_cast<const ASTTableExpression *>(child.get()))
|
|
continue;
|
|
|
|
normalizeTreeImpl(child, finished_asts, current_asts, current_alias, level + 1);
|
|
}
|
|
}
|
|
else if (identifier_node)
|
|
{
|
|
}
|
|
else
|
|
{
|
|
for (auto & child : ast->children)
|
|
{
|
|
if (typeid_cast<const ASTSelectQuery *>(child.get())
|
|
|| typeid_cast<const ASTTableExpression *>(child.get()))
|
|
continue;
|
|
|
|
normalizeTreeImpl(child, finished_asts, current_asts, current_alias, level + 1);
|
|
}
|
|
}
|
|
|
|
/// If the WHERE clause or HAVING consists of a single alias, the reference must be replaced not only in children, but also in where_expression and having_expression.
|
|
if (ASTSelectQuery * select = typeid_cast<ASTSelectQuery *>(ast.get()))
|
|
{
|
|
if (select->prewhere_expression)
|
|
normalizeTreeImpl(select->prewhere_expression, finished_asts, current_asts, current_alias, level + 1);
|
|
if (select->where_expression)
|
|
normalizeTreeImpl(select->where_expression, finished_asts, current_asts, current_alias, level + 1);
|
|
if (select->having_expression)
|
|
normalizeTreeImpl(select->having_expression, finished_asts, current_asts, current_alias, level + 1);
|
|
}
|
|
|
|
current_asts.erase(initial_ast.get());
|
|
current_asts.erase(ast.get());
|
|
finished_asts[initial_ast] = ast;
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::addAliasColumns()
|
|
{
|
|
if (!select_query)
|
|
return;
|
|
|
|
if (!storage)
|
|
return;
|
|
|
|
const auto & storage_aliases = storage->getColumns().aliases;
|
|
source_columns.insert(std::end(source_columns), std::begin(storage_aliases), std::end(storage_aliases));
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::executeScalarSubqueries()
|
|
{
|
|
if (!select_query)
|
|
executeScalarSubqueriesImpl(query);
|
|
else
|
|
{
|
|
for (auto & child : query->children)
|
|
{
|
|
/// Do not go to FROM, JOIN, UNION.
|
|
if (!typeid_cast<const ASTTableExpression *>(child.get())
|
|
&& !typeid_cast<const ASTSelectQuery *>(child.get()))
|
|
{
|
|
executeScalarSubqueriesImpl(child);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static ASTPtr addTypeConversion(std::unique_ptr<ASTLiteral> && ast, const String & type_name)
|
|
{
|
|
auto func = std::make_shared<ASTFunction>();
|
|
ASTPtr res = func;
|
|
func->alias = ast->alias;
|
|
func->prefer_alias_to_column_name = ast->prefer_alias_to_column_name;
|
|
ast->alias.clear();
|
|
func->name = "CAST";
|
|
auto exp_list = std::make_shared<ASTExpressionList>();
|
|
func->arguments = exp_list;
|
|
func->children.push_back(func->arguments);
|
|
exp_list->children.emplace_back(ast.release());
|
|
exp_list->children.emplace_back(std::make_shared<ASTLiteral>(type_name));
|
|
return res;
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::executeScalarSubqueriesImpl(ASTPtr & ast)
|
|
{
|
|
/** Replace subqueries that return exactly one row
|
|
* ("scalar" subqueries) to the corresponding constants.
|
|
*
|
|
* If the subquery returns more than one column, it is replaced by a tuple of constants.
|
|
*
|
|
* Features
|
|
*
|
|
* A replacement occurs during query analysis, and not during the main runtime.
|
|
* This means that the progress indicator will not work during the execution of these requests,
|
|
* and also such queries can not be aborted.
|
|
*
|
|
* But the query result can be used for the index in the table.
|
|
*
|
|
* Scalar subqueries are executed on the request-initializer server.
|
|
* The request is sent to remote servers with already substituted constants.
|
|
*/
|
|
|
|
if (ASTSubquery * subquery = typeid_cast<ASTSubquery *>(ast.get()))
|
|
{
|
|
Context subquery_context = context;
|
|
Settings subquery_settings = context.getSettings();
|
|
subquery_settings.max_result_rows = 1;
|
|
subquery_settings.extremes = 0;
|
|
subquery_context.setSettings(subquery_settings);
|
|
|
|
ASTPtr subquery_select = subquery->children.at(0);
|
|
BlockIO res = InterpreterSelectWithUnionQuery(subquery_select, subquery_context, {}, QueryProcessingStage::Complete, subquery_depth + 1).execute();
|
|
|
|
Block block;
|
|
try
|
|
{
|
|
block = res.in->read();
|
|
|
|
if (!block)
|
|
{
|
|
/// Interpret subquery with empty result as Null literal
|
|
auto ast_new = std::make_unique<ASTLiteral>(Null());
|
|
ast_new->setAlias(ast->tryGetAlias());
|
|
ast = std::move(ast_new);
|
|
return;
|
|
}
|
|
|
|
if (block.rows() != 1 || res.in->read())
|
|
throw Exception("Scalar subquery returned more than one row", ErrorCodes::INCORRECT_RESULT_OF_SCALAR_SUBQUERY);
|
|
}
|
|
catch (const Exception & e)
|
|
{
|
|
if (e.code() == ErrorCodes::TOO_MANY_ROWS)
|
|
throw Exception("Scalar subquery returned more than one row", ErrorCodes::INCORRECT_RESULT_OF_SCALAR_SUBQUERY);
|
|
else
|
|
throw;
|
|
}
|
|
|
|
size_t columns = block.columns();
|
|
if (columns == 1)
|
|
{
|
|
auto lit = std::make_unique<ASTLiteral>((*block.safeGetByPosition(0).column)[0]);
|
|
lit->alias = subquery->alias;
|
|
lit->prefer_alias_to_column_name = subquery->prefer_alias_to_column_name;
|
|
ast = addTypeConversion(std::move(lit), block.safeGetByPosition(0).type->getName());
|
|
}
|
|
else
|
|
{
|
|
auto tuple = std::make_shared<ASTFunction>();
|
|
tuple->alias = subquery->alias;
|
|
ast = tuple;
|
|
tuple->name = "tuple";
|
|
auto exp_list = std::make_shared<ASTExpressionList>();
|
|
tuple->arguments = exp_list;
|
|
tuple->children.push_back(tuple->arguments);
|
|
|
|
exp_list->children.resize(columns);
|
|
for (size_t i = 0; i < columns; ++i)
|
|
{
|
|
exp_list->children[i] = addTypeConversion(
|
|
std::make_unique<ASTLiteral>((*block.safeGetByPosition(i).column)[0]),
|
|
block.safeGetByPosition(i).type->getName());
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/** Don't descend into subqueries in FROM section.
|
|
*/
|
|
if (!typeid_cast<ASTTableExpression *>(ast.get()))
|
|
{
|
|
/** Don't descend into subqueries in arguments of IN operator.
|
|
* But if an argument is not subquery, than deeper may be scalar subqueries and we need to descend in them.
|
|
*/
|
|
ASTFunction * func = typeid_cast<ASTFunction *>(ast.get());
|
|
|
|
if (func && functionIsInOrGlobalInOperator(func->name))
|
|
{
|
|
for (auto & child : ast->children)
|
|
{
|
|
if (child != func->arguments)
|
|
executeScalarSubqueriesImpl(child);
|
|
else
|
|
for (size_t i = 0, size = func->arguments->children.size(); i < size; ++i)
|
|
if (i != 1 || !typeid_cast<ASTSubquery *>(func->arguments->children[i].get()))
|
|
executeScalarSubqueriesImpl(func->arguments->children[i]);
|
|
}
|
|
}
|
|
else
|
|
for (auto & child : ast->children)
|
|
executeScalarSubqueriesImpl(child);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::optimizeGroupBy()
|
|
{
|
|
if (!(select_query && select_query->group_expression_list))
|
|
return;
|
|
|
|
const auto is_literal = [] (const ASTPtr & ast)
|
|
{
|
|
return typeid_cast<const ASTLiteral *>(ast.get());
|
|
};
|
|
|
|
auto & group_exprs = select_query->group_expression_list->children;
|
|
|
|
/// removes expression at index idx by making it last one and calling .pop_back()
|
|
const auto remove_expr_at_index = [&group_exprs] (const size_t idx)
|
|
{
|
|
if (idx < group_exprs.size() - 1)
|
|
std::swap(group_exprs[idx], group_exprs.back());
|
|
|
|
group_exprs.pop_back();
|
|
};
|
|
|
|
/// iterate over each GROUP BY expression, eliminate injective function calls and literals
|
|
for (size_t i = 0; i < group_exprs.size();)
|
|
{
|
|
if (const auto function = typeid_cast<ASTFunction *>(group_exprs[i].get()))
|
|
{
|
|
/// assert function is injective
|
|
if (possibly_injective_function_names.count(function->name))
|
|
{
|
|
/// do not handle semantic errors here
|
|
if (function->arguments->children.size() < 2)
|
|
{
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
const auto & dict_name = typeid_cast<const ASTLiteral &>(*function->arguments->children[0])
|
|
.value.safeGet<String>();
|
|
|
|
const auto & dict_ptr = context.getExternalDictionaries().getDictionary(dict_name);
|
|
|
|
const auto & attr_name = typeid_cast<const ASTLiteral &>(*function->arguments->children[1])
|
|
.value.safeGet<String>();
|
|
|
|
if (!dict_ptr->isInjective(attr_name))
|
|
{
|
|
++i;
|
|
continue;
|
|
}
|
|
}
|
|
else if (!injective_function_names.count(function->name))
|
|
{
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
/// copy shared pointer to args in order to ensure lifetime
|
|
auto args_ast = function->arguments;
|
|
|
|
/** remove function call and take a step back to ensure
|
|
* next iteration does not skip not yet processed data
|
|
*/
|
|
remove_expr_at_index(i);
|
|
|
|
/// copy non-literal arguments
|
|
std::remove_copy_if(
|
|
std::begin(args_ast->children), std::end(args_ast->children),
|
|
std::back_inserter(group_exprs), is_literal
|
|
);
|
|
}
|
|
else if (is_literal(group_exprs[i]))
|
|
{
|
|
remove_expr_at_index(i);
|
|
}
|
|
else
|
|
{
|
|
/// if neither a function nor literal - advance to next expression
|
|
++i;
|
|
}
|
|
}
|
|
|
|
if (group_exprs.empty())
|
|
{
|
|
/** You can not completely remove GROUP BY. Because if there were no aggregate functions, then it turns out that there will be no aggregation.
|
|
* Instead, leave `GROUP BY const`.
|
|
* Next, see deleting the constants in the analyzeAggregation method.
|
|
*/
|
|
|
|
/// You must insert a constant that is not the name of the column in the table. Such a case is rare, but it happens.
|
|
UInt64 unused_column = 0;
|
|
String unused_column_name = toString(unused_column);
|
|
|
|
while (source_columns.end() != std::find_if(source_columns.begin(), source_columns.end(),
|
|
[&unused_column_name](const NameAndTypePair & name_type) { return name_type.name == unused_column_name; }))
|
|
{
|
|
++unused_column;
|
|
unused_column_name = toString(unused_column);
|
|
}
|
|
|
|
select_query->group_expression_list = std::make_shared<ASTExpressionList>();
|
|
select_query->group_expression_list->children.emplace_back(std::make_shared<ASTLiteral>(UInt64(unused_column)));
|
|
}
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::optimizeOrderBy()
|
|
{
|
|
if (!(select_query && select_query->order_expression_list))
|
|
return;
|
|
|
|
/// Make unique sorting conditions.
|
|
using NameAndLocale = std::pair<String, String>;
|
|
std::set<NameAndLocale> elems_set;
|
|
|
|
ASTs & elems = select_query->order_expression_list->children;
|
|
ASTs unique_elems;
|
|
unique_elems.reserve(elems.size());
|
|
|
|
for (const auto & elem : elems)
|
|
{
|
|
String name = elem->children.front()->getColumnName();
|
|
const ASTOrderByElement & order_by_elem = typeid_cast<const ASTOrderByElement &>(*elem);
|
|
|
|
if (elems_set.emplace(name, order_by_elem.collation ? order_by_elem.collation->getColumnName() : "").second)
|
|
unique_elems.emplace_back(elem);
|
|
}
|
|
|
|
if (unique_elems.size() < elems.size())
|
|
elems = unique_elems;
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::optimizeLimitBy()
|
|
{
|
|
if (!(select_query && select_query->limit_by_expression_list))
|
|
return;
|
|
|
|
std::set<String> elems_set;
|
|
|
|
ASTs & elems = select_query->limit_by_expression_list->children;
|
|
ASTs unique_elems;
|
|
unique_elems.reserve(elems.size());
|
|
|
|
for (const auto & elem : elems)
|
|
{
|
|
if (elems_set.emplace(elem->getColumnName()).second)
|
|
unique_elems.emplace_back(elem);
|
|
}
|
|
|
|
if (unique_elems.size() < elems.size())
|
|
elems = unique_elems;
|
|
}
|
|
|
|
void ExpressionAnalyzer::optimizeUsing()
|
|
{
|
|
if (!select_query)
|
|
return;
|
|
|
|
auto node = const_cast<ASTTablesInSelectQueryElement *>(select_query->join());
|
|
if (!node)
|
|
return;
|
|
|
|
auto table_join = static_cast<ASTTableJoin *>(&*node->table_join);
|
|
if (!(table_join && table_join->using_expression_list))
|
|
return;
|
|
|
|
ASTs & expression_list = table_join->using_expression_list->children;
|
|
ASTs uniq_expressions_list;
|
|
|
|
std::set<String> expressions_names;
|
|
|
|
for (const auto & expression : expression_list)
|
|
{
|
|
auto expression_name = expression->getAliasOrColumnName();
|
|
if (expressions_names.find(expression_name) == expressions_names.end())
|
|
{
|
|
uniq_expressions_list.push_back(expression);
|
|
expressions_names.insert(expression_name);
|
|
}
|
|
}
|
|
|
|
if (uniq_expressions_list.size() < expression_list.size())
|
|
expression_list = uniq_expressions_list;
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::makeSetsForIndex()
|
|
{
|
|
if (storage && select_query && storage->supportsIndexForIn())
|
|
{
|
|
if (select_query->where_expression)
|
|
makeSetsForIndexImpl(select_query->where_expression, storage->getSampleBlock());
|
|
if (select_query->prewhere_expression)
|
|
makeSetsForIndexImpl(select_query->prewhere_expression, storage->getSampleBlock());
|
|
}
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::tryMakeSetForIndexFromSubquery(const ASTPtr & subquery_or_table_name)
|
|
{
|
|
BlockIO res = interpretSubquery(subquery_or_table_name, context, subquery_depth + 1, {})->execute();
|
|
|
|
SizeLimits set_for_index_size_limits = SizeLimits(settings.max_rows_in_set, settings.max_bytes_in_set, settings.set_overflow_mode);
|
|
SetPtr set = std::make_shared<Set>(set_for_index_size_limits, true);
|
|
|
|
set->setHeader(res.in->getHeader());
|
|
while (Block block = res.in->read())
|
|
{
|
|
/// If the limits have been exceeded, give up and let the default subquery processing actions take place.
|
|
if (!set->insertFromBlock(block))
|
|
return;
|
|
}
|
|
|
|
prepared_sets[subquery_or_table_name->range] = std::move(set);
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::makeSetsForIndexImpl(const ASTPtr & node, const Block & sample_block)
|
|
{
|
|
for (auto & child : node->children)
|
|
{
|
|
/// Don't descent into subqueries.
|
|
if (typeid_cast<ASTSubquery *>(child.get()))
|
|
continue;
|
|
|
|
/// Don't dive into lambda functions
|
|
const ASTFunction * func = typeid_cast<const ASTFunction *>(child.get());
|
|
if (func && func->name == "lambda")
|
|
continue;
|
|
|
|
makeSetsForIndexImpl(child, sample_block);
|
|
}
|
|
|
|
const ASTFunction * func = typeid_cast<const ASTFunction *>(node.get());
|
|
if (func && functionIsInOperator(func->name))
|
|
{
|
|
const IAST & args = *func->arguments;
|
|
|
|
if (storage && storage->mayBenefitFromIndexForIn(args.children.at(0)))
|
|
{
|
|
const ASTPtr & arg = args.children.at(1);
|
|
|
|
if (!prepared_sets.count(arg->range)) /// Not already prepared.
|
|
{
|
|
if (typeid_cast<ASTSubquery *>(arg.get()) || typeid_cast<ASTIdentifier *>(arg.get()))
|
|
{
|
|
if (settings.use_index_for_in_with_subqueries)
|
|
tryMakeSetForIndexFromSubquery(arg);
|
|
}
|
|
else
|
|
{
|
|
NamesAndTypesList temp_columns = source_columns;
|
|
temp_columns.insert(temp_columns.end(), array_join_columns.begin(), array_join_columns.end());
|
|
for (const auto & joined_column : analyzed_join.columns_added_by_join)
|
|
temp_columns.push_back(joined_column.name_and_type);
|
|
ExpressionActionsPtr temp_actions = std::make_shared<ExpressionActions>(temp_columns, context);
|
|
getRootActions(func->arguments->children.at(0), true, false, temp_actions);
|
|
|
|
Block sample_block_with_calculated_columns = temp_actions->getSampleBlock();
|
|
if (sample_block_with_calculated_columns.has(args.children.at(0)->getColumnName()))
|
|
makeExplicitSet(func, sample_block_with_calculated_columns, true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::makeSet(const ASTFunction * node, const Block & sample_block)
|
|
{
|
|
/** You need to convert the right argument to a set.
|
|
* This can be a table name, a value, a value enumeration, or a subquery.
|
|
* The enumeration of values is parsed as a function `tuple`.
|
|
*/
|
|
const IAST & args = *node->arguments;
|
|
const ASTPtr & arg = args.children.at(1);
|
|
|
|
/// Already converted.
|
|
if (prepared_sets.count(arg->range))
|
|
return;
|
|
|
|
/// If the subquery or table name for SELECT.
|
|
const ASTIdentifier * identifier = typeid_cast<const ASTIdentifier *>(arg.get());
|
|
if (typeid_cast<const ASTSubquery *>(arg.get()) || identifier)
|
|
{
|
|
/// We get the stream of blocks for the subquery. Create Set and put it in place of the subquery.
|
|
String set_id = arg->getColumnName();
|
|
|
|
/// A special case is if the name of the table is specified on the right side of the IN statement,
|
|
/// and the table has the type Set (a previously prepared set).
|
|
if (identifier)
|
|
{
|
|
auto database_table = getDatabaseAndTableNameFromIdentifier(*identifier);
|
|
StoragePtr table = context.tryGetTable(database_table.first, database_table.second);
|
|
|
|
if (table)
|
|
{
|
|
StorageSet * storage_set = dynamic_cast<StorageSet *>(table.get());
|
|
|
|
if (storage_set)
|
|
{
|
|
prepared_sets[arg->range] = storage_set->getSet();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
SubqueryForSet & subquery_for_set = subqueries_for_sets[set_id];
|
|
|
|
/// If you already created a Set with the same subquery / table.
|
|
if (subquery_for_set.set)
|
|
{
|
|
prepared_sets[arg->range] = subquery_for_set.set;
|
|
return;
|
|
}
|
|
|
|
SetPtr set = std::make_shared<Set>(SizeLimits(settings.max_rows_in_set, settings.max_bytes_in_set, settings.set_overflow_mode), false);
|
|
|
|
/** The following happens for GLOBAL INs:
|
|
* - in the addExternalStorage function, the IN (SELECT ...) subquery is replaced with IN _data1,
|
|
* in the subquery_for_set object, this subquery is set as source and the temporary table _data1 as the table.
|
|
* - this function shows the expression IN_data1.
|
|
*/
|
|
if (!subquery_for_set.source && (!storage || !storage->isRemote()))
|
|
{
|
|
auto interpreter = interpretSubquery(arg, context, subquery_depth, {});
|
|
subquery_for_set.source = std::make_shared<LazyBlockInputStream>(
|
|
interpreter->getSampleBlock(), [interpreter]() mutable { return interpreter->execute().in; });
|
|
|
|
/** Why is LazyBlockInputStream used?
|
|
*
|
|
* The fact is that when processing a query of the form
|
|
* SELECT ... FROM remote_test WHERE column GLOBAL IN (subquery),
|
|
* if the distributed remote_test table contains localhost as one of the servers,
|
|
* the query will be interpreted locally again (and not sent over TCP, as in the case of a remote server).
|
|
*
|
|
* The query execution pipeline will be:
|
|
* CreatingSets
|
|
* subquery execution, filling the temporary table with _data1 (1)
|
|
* CreatingSets
|
|
* reading from the table _data1, creating the set (2)
|
|
* read from the table subordinate to remote_test.
|
|
*
|
|
* (The second part of the pipeline under CreateSets is a reinterpretation of the query inside StorageDistributed,
|
|
* the query differs in that the database name and tables are replaced with subordinates, and the subquery is replaced with _data1.)
|
|
*
|
|
* But when creating the pipeline, when creating the source (2), it will be found that the _data1 table is empty
|
|
* (because the query has not started yet), and empty source will be returned as the source.
|
|
* And then, when the query is executed, an empty set will be created in step (2).
|
|
*
|
|
* Therefore, we make the initialization of step (2) lazy
|
|
* - so that it does not occur until step (1) is completed, on which the table will be populated.
|
|
*
|
|
* Note: this solution is not very good, you need to think better.
|
|
*/
|
|
}
|
|
|
|
subquery_for_set.set = set;
|
|
prepared_sets[arg->range] = set;
|
|
}
|
|
else
|
|
{
|
|
/// An explicit enumeration of values in parentheses.
|
|
makeExplicitSet(node, sample_block, false);
|
|
}
|
|
}
|
|
|
|
/// The case of an explicit enumeration of values.
|
|
void ExpressionAnalyzer::makeExplicitSet(const ASTFunction * node, const Block & sample_block, bool create_ordered_set)
|
|
{
|
|
const IAST & args = *node->arguments;
|
|
|
|
if (args.children.size() != 2)
|
|
throw Exception("Wrong number of arguments passed to function in", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
|
|
|
|
const ASTPtr & left_arg = args.children.at(0);
|
|
const ASTPtr & right_arg = args.children.at(1);
|
|
|
|
auto getTupleTypeFromAst = [this](const ASTPtr & tuple_ast) -> DataTypePtr
|
|
{
|
|
auto ast_function = typeid_cast<const ASTFunction *>(tuple_ast.get());
|
|
if (ast_function && ast_function->name == "tuple" && !ast_function->arguments->children.empty())
|
|
{
|
|
/// Won't parse all values of outer tuple.
|
|
auto element = ast_function->arguments->children.at(0);
|
|
std::pair<Field, DataTypePtr> value_raw = evaluateConstantExpression(element, context);
|
|
return std::make_shared<DataTypeTuple>(DataTypes({value_raw.second}));
|
|
}
|
|
|
|
return evaluateConstantExpression(tuple_ast, context).second;
|
|
};
|
|
|
|
const DataTypePtr & left_arg_type = sample_block.getByName(left_arg->getColumnName()).type;
|
|
const DataTypePtr & right_arg_type = getTupleTypeFromAst(right_arg);
|
|
|
|
std::function<size_t(const DataTypePtr &)> getTupleDepth;
|
|
getTupleDepth = [&getTupleDepth](const DataTypePtr & type) -> size_t
|
|
{
|
|
if (auto tuple_type = typeid_cast<const DataTypeTuple *>(type.get()))
|
|
return 1 + (tuple_type->getElements().empty() ? 0 : getTupleDepth(tuple_type->getElements().at(0)));
|
|
|
|
return 0;
|
|
};
|
|
|
|
size_t left_tuple_depth = getTupleDepth(left_arg_type);
|
|
size_t right_tuple_depth = getTupleDepth(right_arg_type);
|
|
|
|
DataTypes set_element_types = {left_arg_type};
|
|
auto left_tuple_type = typeid_cast<const DataTypeTuple *>(left_arg_type.get());
|
|
if (left_tuple_type && left_tuple_type->getElements().size() != 1)
|
|
set_element_types = left_tuple_type->getElements();
|
|
|
|
ASTPtr elements_ast = nullptr;
|
|
|
|
/// 1 in 1; (1, 2) in (1, 2); identity(tuple(tuple(tuple(1)))) in tuple(tuple(tuple(1))); etc.
|
|
if (left_tuple_depth == right_tuple_depth)
|
|
{
|
|
ASTPtr exp_list = std::make_shared<ASTExpressionList>();
|
|
exp_list->children.push_back(right_arg);
|
|
elements_ast = exp_list;
|
|
}
|
|
/// 1 in (1, 2); (1, 2) in ((1, 2), (3, 4)); etc.
|
|
else if (left_tuple_depth + 1 == right_tuple_depth)
|
|
{
|
|
ASTFunction * set_func = typeid_cast<ASTFunction *>(right_arg.get());
|
|
|
|
if (!set_func || set_func->name != "tuple")
|
|
throw Exception("Incorrect type of 2nd argument for function " + node->name
|
|
+ ". Must be subquery or set of elements with type " + left_arg_type->getName() + ".",
|
|
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
|
|
|
|
elements_ast = set_func->arguments;
|
|
}
|
|
else
|
|
throw Exception("Invalid types for IN function: "
|
|
+ left_arg_type->getName() + " and " + right_arg_type->getName() + ".",
|
|
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
|
|
|
|
SetPtr set = std::make_shared<Set>(SizeLimits(settings.max_rows_in_set, settings.max_bytes_in_set, settings.set_overflow_mode), create_ordered_set);
|
|
set->createFromAST(set_element_types, elements_ast, context);
|
|
prepared_sets[right_arg->range] = std::move(set);
|
|
}
|
|
|
|
|
|
static String getUniqueName(const Block & block, const String & prefix)
|
|
{
|
|
int i = 1;
|
|
while (block.has(prefix + toString(i)))
|
|
++i;
|
|
return prefix + toString(i);
|
|
}
|
|
|
|
/** For getActionsImpl.
|
|
* A stack of ExpressionActions corresponding to nested lambda expressions.
|
|
* The new action should be added to the highest possible level.
|
|
* For example, in the expression "select arrayMap(x -> x + column1 * column2, array1)"
|
|
* calculation of the product must be done outside the lambda expression (it does not depend on x), and the calculation of the sum is inside (depends on x).
|
|
*/
|
|
ScopeStack::ScopeStack(const ExpressionActionsPtr & actions, const Context & context_)
|
|
: context(context_)
|
|
{
|
|
stack.emplace_back();
|
|
stack.back().actions = actions;
|
|
|
|
const Block & sample_block = actions->getSampleBlock();
|
|
for (size_t i = 0, size = sample_block.columns(); i < size; ++i)
|
|
stack.back().new_columns.insert(sample_block.getByPosition(i).name);
|
|
}
|
|
|
|
void ScopeStack::pushLevel(const NamesAndTypesList & input_columns)
|
|
{
|
|
stack.emplace_back();
|
|
Level & prev = stack[stack.size() - 2];
|
|
|
|
ColumnsWithTypeAndName all_columns;
|
|
NameSet new_names;
|
|
|
|
for (NamesAndTypesList::const_iterator it = input_columns.begin(); it != input_columns.end(); ++it)
|
|
{
|
|
all_columns.emplace_back(nullptr, it->type, it->name);
|
|
new_names.insert(it->name);
|
|
stack.back().new_columns.insert(it->name);
|
|
}
|
|
|
|
const Block & prev_sample_block = prev.actions->getSampleBlock();
|
|
for (size_t i = 0, size = prev_sample_block.columns(); i < size; ++i)
|
|
{
|
|
const ColumnWithTypeAndName & col = prev_sample_block.getByPosition(i);
|
|
if (!new_names.count(col.name))
|
|
all_columns.push_back(col);
|
|
}
|
|
|
|
stack.back().actions = std::make_shared<ExpressionActions>(all_columns, context);
|
|
}
|
|
|
|
size_t ScopeStack::getColumnLevel(const std::string & name)
|
|
{
|
|
for (int i = static_cast<int>(stack.size()) - 1; i >= 0; --i)
|
|
if (stack[i].new_columns.count(name))
|
|
return i;
|
|
|
|
throw Exception("Unknown identifier: " + name, ErrorCodes::UNKNOWN_IDENTIFIER);
|
|
}
|
|
|
|
void ScopeStack::addAction(const ExpressionAction & action)
|
|
{
|
|
size_t level = 0;
|
|
Names required = action.getNeededColumns();
|
|
for (size_t i = 0; i < required.size(); ++i)
|
|
level = std::max(level, getColumnLevel(required[i]));
|
|
|
|
Names added;
|
|
stack[level].actions->add(action, added);
|
|
|
|
stack[level].new_columns.insert(added.begin(), added.end());
|
|
|
|
for (size_t i = 0; i < added.size(); ++i)
|
|
{
|
|
const ColumnWithTypeAndName & col = stack[level].actions->getSampleBlock().getByName(added[i]);
|
|
for (size_t j = level + 1; j < stack.size(); ++j)
|
|
stack[j].actions->addInput(col);
|
|
}
|
|
}
|
|
|
|
ExpressionActionsPtr ScopeStack::popLevel()
|
|
{
|
|
ExpressionActionsPtr res = stack.back().actions;
|
|
stack.pop_back();
|
|
return res;
|
|
}
|
|
|
|
const Block & ScopeStack::getSampleBlock() const
|
|
{
|
|
return stack.back().actions->getSampleBlock();
|
|
}
|
|
|
|
void ExpressionAnalyzer::getRootActions(const ASTPtr & ast, bool no_subqueries, bool only_consts, ExpressionActionsPtr & actions)
|
|
{
|
|
ScopeStack scopes(actions, context);
|
|
|
|
ProjectionManipulatorPtr projection_manipulator;
|
|
if (!isThereArrayJoin(ast) && settings.enable_conditional_computation && !only_consts)
|
|
projection_manipulator = std::make_shared<ConditionalTree>(scopes, context);
|
|
else
|
|
projection_manipulator = std::make_shared<DefaultProjectionManipulator>(scopes);
|
|
|
|
getActionsImpl(ast, no_subqueries, only_consts, scopes, projection_manipulator);
|
|
|
|
actions = scopes.popLevel();
|
|
}
|
|
|
|
void ExpressionAnalyzer::getArrayJoinedColumns()
|
|
{
|
|
if (select_query && select_query->array_join_expression_list())
|
|
{
|
|
ASTs & array_join_asts = select_query->array_join_expression_list()->children;
|
|
for (const auto & ast : array_join_asts)
|
|
{
|
|
const String nested_table_name = ast->getColumnName();
|
|
const String nested_table_alias = ast->getAliasOrColumnName();
|
|
|
|
if (nested_table_alias == nested_table_name && !typeid_cast<const ASTIdentifier *>(ast.get()))
|
|
throw Exception("No alias for non-trivial value in ARRAY JOIN: " + nested_table_name, ErrorCodes::ALIAS_REQUIRED);
|
|
|
|
if (array_join_alias_to_name.count(nested_table_alias) || aliases.count(nested_table_alias))
|
|
throw Exception("Duplicate alias in ARRAY JOIN: " + nested_table_alias, ErrorCodes::MULTIPLE_EXPRESSIONS_FOR_ALIAS);
|
|
|
|
array_join_alias_to_name[nested_table_alias] = nested_table_name;
|
|
array_join_name_to_alias[nested_table_name] = nested_table_alias;
|
|
}
|
|
|
|
getArrayJoinedColumnsImpl(query);
|
|
|
|
/// If the result of ARRAY JOIN is not used, it is necessary to ARRAY-JOIN any column,
|
|
/// to get the correct number of rows.
|
|
if (array_join_result_to_source.empty())
|
|
{
|
|
ASTPtr expr = select_query->array_join_expression_list()->children.at(0);
|
|
String source_name = expr->getColumnName();
|
|
String result_name = expr->getAliasOrColumnName();
|
|
|
|
/// This is an array.
|
|
if (!typeid_cast<ASTIdentifier *>(expr.get()) || findColumn(source_name, source_columns) != source_columns.end())
|
|
{
|
|
array_join_result_to_source[result_name] = source_name;
|
|
}
|
|
else /// This is a nested table.
|
|
{
|
|
bool found = false;
|
|
for (const auto & column_name_type : source_columns)
|
|
{
|
|
auto splitted = Nested::splitName(column_name_type.name);
|
|
if (splitted.first == source_name && !splitted.second.empty())
|
|
{
|
|
array_join_result_to_source[Nested::concatenateName(result_name, splitted.second)] = column_name_type.name;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
throw Exception("No columns in nested table " + source_name, ErrorCodes::EMPTY_NESTED_TABLE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// Fills the array_join_result_to_source: on which columns-arrays to replicate, and how to call them after that.
|
|
void ExpressionAnalyzer::getArrayJoinedColumnsImpl(const ASTPtr & ast)
|
|
{
|
|
if (typeid_cast<ASTTablesInSelectQuery *>(ast.get()))
|
|
return;
|
|
|
|
if (ASTIdentifier * node = typeid_cast<ASTIdentifier *>(ast.get()))
|
|
{
|
|
if (node->kind == ASTIdentifier::Column)
|
|
{
|
|
auto splitted = Nested::splitName(node->name); /// ParsedParams, Key1
|
|
|
|
if (array_join_alias_to_name.count(node->name))
|
|
{
|
|
/// ARRAY JOIN was written with an array column. Example: SELECT K1 FROM ... ARRAY JOIN ParsedParams.Key1 AS K1
|
|
array_join_result_to_source[node->name] = array_join_alias_to_name[node->name]; /// K1 -> ParsedParams.Key1
|
|
}
|
|
else if (array_join_alias_to_name.count(splitted.first) && !splitted.second.empty())
|
|
{
|
|
/// ARRAY JOIN was written with a nested table. Example: SELECT PP.KEY1 FROM ... ARRAY JOIN ParsedParams AS PP
|
|
array_join_result_to_source[node->name] /// PP.Key1 -> ParsedParams.Key1
|
|
= Nested::concatenateName(array_join_alias_to_name[splitted.first], splitted.second);
|
|
}
|
|
else if (array_join_name_to_alias.count(node->name))
|
|
{
|
|
/** Example: SELECT ParsedParams.Key1 FROM ... ARRAY JOIN ParsedParams.Key1 AS PP.Key1.
|
|
* That is, the query uses the original array, replicated by itself.
|
|
*/
|
|
array_join_result_to_source[ /// PP.Key1 -> ParsedParams.Key1
|
|
array_join_name_to_alias[node->name]] = node->name;
|
|
}
|
|
else if (array_join_name_to_alias.count(splitted.first) && !splitted.second.empty())
|
|
{
|
|
/** Example: SELECT ParsedParams.Key1 FROM ... ARRAY JOIN ParsedParams AS PP.
|
|
*/
|
|
array_join_result_to_source[ /// PP.Key1 -> ParsedParams.Key1
|
|
Nested::concatenateName(array_join_name_to_alias[splitted.first], splitted.second)] = node->name;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (auto & child : ast->children)
|
|
if (!typeid_cast<const ASTSubquery *>(child.get())
|
|
&& !typeid_cast<const ASTSelectQuery *>(child.get()))
|
|
getArrayJoinedColumnsImpl(child);
|
|
}
|
|
}
|
|
|
|
bool ExpressionAnalyzer::isThereArrayJoin(const ASTPtr & ast)
|
|
{
|
|
if (typeid_cast<ASTIdentifier *>(ast.get()))
|
|
{
|
|
return false;
|
|
}
|
|
else if (ASTFunction * node = typeid_cast<ASTFunction *>(ast.get()))
|
|
{
|
|
if (node->name == "arrayJoin")
|
|
{
|
|
return true;
|
|
}
|
|
if (functionIsInOrGlobalInOperator(node->name))
|
|
{
|
|
return isThereArrayJoin(node->arguments->children.at(0));
|
|
}
|
|
if (node->name == "indexHint")
|
|
{
|
|
return false;
|
|
}
|
|
if (AggregateFunctionFactory::instance().isAggregateFunctionName(node->name))
|
|
{
|
|
return false;
|
|
}
|
|
for (auto & child : node->arguments->children)
|
|
{
|
|
if (isThereArrayJoin(child))
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
else if (typeid_cast<ASTLiteral *>(ast.get()))
|
|
{
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
for (auto & child : ast->children)
|
|
{
|
|
if (isThereArrayJoin(child))
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void ExpressionAnalyzer::getActionsFromJoinKeys(const ASTTableJoin & table_join, bool no_subqueries, bool only_consts,
|
|
ExpressionActionsPtr & actions)
|
|
{
|
|
ScopeStack scopes(actions, context);
|
|
|
|
ProjectionManipulatorPtr projection_manipulator;
|
|
if (!isThereArrayJoin(query) && settings.enable_conditional_computation && !only_consts)
|
|
projection_manipulator = std::make_shared<ConditionalTree>(scopes, context);
|
|
else
|
|
projection_manipulator = std::make_shared<DefaultProjectionManipulator>(scopes);
|
|
|
|
if (table_join.using_expression_list)
|
|
getActionsImpl(table_join.using_expression_list, no_subqueries, only_consts, scopes, projection_manipulator);
|
|
else if (table_join.on_expression)
|
|
{
|
|
for (const auto & ast : analyzed_join.key_asts_left)
|
|
getActionsImpl(ast, no_subqueries, only_consts, scopes, projection_manipulator);
|
|
}
|
|
|
|
actions = scopes.popLevel();
|
|
}
|
|
|
|
void ExpressionAnalyzer::getActionsImpl(const ASTPtr & ast, bool no_subqueries, bool only_consts, ScopeStack & actions_stack,
|
|
ProjectionManipulatorPtr projection_manipulator)
|
|
{
|
|
String ast_column_name;
|
|
auto getColumnName = [&ast, &ast_column_name]()
|
|
{
|
|
if (ast_column_name.empty())
|
|
ast_column_name = ast->getColumnName();
|
|
|
|
return ast_column_name;
|
|
};
|
|
|
|
/// If the result of the calculation already exists in the block.
|
|
if ((typeid_cast<ASTFunction *>(ast.get()) || typeid_cast<ASTLiteral *>(ast.get()))
|
|
&& projection_manipulator->tryToGetFromUpperProjection(getColumnName()))
|
|
return;
|
|
|
|
if (typeid_cast<ASTIdentifier *>(ast.get()))
|
|
{
|
|
if (!only_consts && !projection_manipulator->tryToGetFromUpperProjection(getColumnName()))
|
|
{
|
|
/// The requested column is not in the block.
|
|
/// If such a column exists in the table, then the user probably forgot to surround it with an aggregate function or add it to GROUP BY.
|
|
|
|
bool found = false;
|
|
for (const auto & column_name_type : source_columns)
|
|
if (column_name_type.name == getColumnName())
|
|
found = true;
|
|
|
|
if (found)
|
|
throw Exception("Column " + getColumnName() + " is not under aggregate function and not in GROUP BY.",
|
|
ErrorCodes::NOT_AN_AGGREGATE);
|
|
}
|
|
}
|
|
else if (ASTFunction * node = typeid_cast<ASTFunction *>(ast.get()))
|
|
{
|
|
if (node->name == "lambda")
|
|
throw Exception("Unexpected lambda expression", ErrorCodes::UNEXPECTED_EXPRESSION);
|
|
|
|
/// Function arrayJoin.
|
|
if (node->name == "arrayJoin")
|
|
{
|
|
if (node->arguments->children.size() != 1)
|
|
throw Exception("arrayJoin requires exactly 1 argument", ErrorCodes::TYPE_MISMATCH);
|
|
|
|
ASTPtr arg = node->arguments->children.at(0);
|
|
getActionsImpl(arg, no_subqueries, only_consts, actions_stack, projection_manipulator);
|
|
if (!only_consts)
|
|
{
|
|
String result_name = projection_manipulator->getColumnName(getColumnName());
|
|
actions_stack.addAction(ExpressionAction::copyColumn(projection_manipulator->getColumnName(arg->getColumnName()), result_name));
|
|
NameSet joined_columns;
|
|
joined_columns.insert(result_name);
|
|
actions_stack.addAction(ExpressionAction::arrayJoin(joined_columns, false, context));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (functionIsInOrGlobalInOperator(node->name))
|
|
{
|
|
if (!no_subqueries)
|
|
{
|
|
/// Let's find the type of the first argument (then getActionsImpl will be called again and will not affect anything).
|
|
getActionsImpl(node->arguments->children.at(0), no_subqueries, only_consts, actions_stack,
|
|
projection_manipulator);
|
|
|
|
/// Transform tuple or subquery into a set.
|
|
makeSet(node, actions_stack.getSampleBlock());
|
|
}
|
|
else
|
|
{
|
|
if (!only_consts)
|
|
{
|
|
/// We are in the part of the tree that we are not going to compute. You just need to define types.
|
|
/// Do not subquery and create sets. We insert an arbitrary column of the correct type.
|
|
ColumnWithTypeAndName fake_column;
|
|
fake_column.name = projection_manipulator->getColumnName(getColumnName());
|
|
fake_column.type = std::make_shared<DataTypeUInt8>();
|
|
fake_column.column = fake_column.type->createColumn();
|
|
actions_stack.addAction(ExpressionAction::addColumn(fake_column, projection_manipulator->getProjectionSourceColumn(), false));
|
|
getActionsImpl(node->arguments->children.at(0), no_subqueries, only_consts, actions_stack,
|
|
projection_manipulator);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// A special function `indexHint`. Everything that is inside it is not calculated
|
|
/// (and is used only for index analysis, see KeyCondition).
|
|
if (node->name == "indexHint")
|
|
{
|
|
actions_stack.addAction(ExpressionAction::addColumn(ColumnWithTypeAndName(
|
|
ColumnConst::create(ColumnUInt8::create(1, 1), 1), std::make_shared<DataTypeUInt8>(),
|
|
projection_manipulator->getColumnName(getColumnName())), projection_manipulator->getProjectionSourceColumn(), false));
|
|
return;
|
|
}
|
|
|
|
if (AggregateFunctionFactory::instance().isAggregateFunctionName(node->name))
|
|
return;
|
|
|
|
/// Context object that we pass to function should live during query.
|
|
const Context & function_context = context.hasQueryContext()
|
|
? context.getQueryContext()
|
|
: context;
|
|
|
|
const FunctionBuilderPtr & function_builder = FunctionFactory::instance().get(node->name, function_context);
|
|
auto projection_action = getProjectionAction(node->name, actions_stack, projection_manipulator, getColumnName(), function_context);
|
|
|
|
Names argument_names;
|
|
DataTypes argument_types;
|
|
bool arguments_present = true;
|
|
|
|
/// If the function has an argument-lambda expression, you need to determine its type before the recursive call.
|
|
bool has_lambda_arguments = false;
|
|
|
|
for (size_t arg = 0; arg < node->arguments->children.size(); ++arg)
|
|
{
|
|
auto & child = node->arguments->children[arg];
|
|
auto child_column_name = child->getColumnName();
|
|
|
|
ASTFunction * lambda = typeid_cast<ASTFunction *>(child.get());
|
|
if (lambda && lambda->name == "lambda")
|
|
{
|
|
/// If the argument is a lambda expression, just remember its approximate type.
|
|
if (lambda->arguments->children.size() != 2)
|
|
throw Exception("lambda requires two arguments", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
|
|
|
|
ASTFunction * lambda_args_tuple = typeid_cast<ASTFunction *>(lambda->arguments->children.at(0).get());
|
|
|
|
if (!lambda_args_tuple || lambda_args_tuple->name != "tuple")
|
|
throw Exception("First argument of lambda must be a tuple", ErrorCodes::TYPE_MISMATCH);
|
|
|
|
has_lambda_arguments = true;
|
|
argument_types.emplace_back(std::make_shared<DataTypeFunction>(DataTypes(lambda_args_tuple->arguments->children.size())));
|
|
/// Select the name in the next cycle.
|
|
argument_names.emplace_back();
|
|
}
|
|
else if (prepared_sets.count(child->range) && functionIsInOrGlobalInOperator(node->name) && arg == 1)
|
|
{
|
|
ColumnWithTypeAndName column;
|
|
column.type = std::make_shared<DataTypeSet>();
|
|
|
|
const SetPtr & set = prepared_sets[child->range];
|
|
|
|
/// If the argument is a set given by an enumeration of values (so, the set was already built), give it a unique name,
|
|
/// so that sets with the same literal representation do not fuse together (they can have different types).
|
|
if (!set->empty())
|
|
column.name = getUniqueName(actions_stack.getSampleBlock(), "__set");
|
|
else
|
|
column.name = child_column_name;
|
|
|
|
column.name = projection_manipulator->getColumnName(column.name);
|
|
|
|
if (!actions_stack.getSampleBlock().has(column.name))
|
|
{
|
|
column.column = ColumnSet::create(1, set);
|
|
|
|
actions_stack.addAction(ExpressionAction::addColumn(column, projection_manipulator->getProjectionSourceColumn(), false));
|
|
}
|
|
|
|
argument_types.push_back(column.type);
|
|
argument_names.push_back(column.name);
|
|
}
|
|
else
|
|
{
|
|
/// If the argument is not a lambda expression, call it recursively and find out its type.
|
|
projection_action->preArgumentAction();
|
|
getActionsImpl(child, no_subqueries, only_consts, actions_stack,
|
|
projection_manipulator);
|
|
std::string name = projection_manipulator->getColumnName(child_column_name);
|
|
projection_action->postArgumentAction(child_column_name);
|
|
if (actions_stack.getSampleBlock().has(name))
|
|
{
|
|
argument_types.push_back(actions_stack.getSampleBlock().getByName(name).type);
|
|
argument_names.push_back(name);
|
|
}
|
|
else
|
|
{
|
|
if (only_consts)
|
|
{
|
|
arguments_present = false;
|
|
}
|
|
else
|
|
{
|
|
throw Exception("Unknown identifier: " + name + ", projection layer " + projection_manipulator->getProjectionExpression() , ErrorCodes::UNKNOWN_IDENTIFIER);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (only_consts && !arguments_present)
|
|
return;
|
|
|
|
if (has_lambda_arguments && !only_consts)
|
|
{
|
|
function_builder->getLambdaArgumentTypes(argument_types);
|
|
|
|
/// Call recursively for lambda expressions.
|
|
for (size_t i = 0; i < node->arguments->children.size(); ++i)
|
|
{
|
|
ASTPtr child = node->arguments->children[i];
|
|
|
|
ASTFunction * lambda = typeid_cast<ASTFunction *>(child.get());
|
|
if (lambda && lambda->name == "lambda")
|
|
{
|
|
const DataTypeFunction * lambda_type = typeid_cast<const DataTypeFunction *>(argument_types[i].get());
|
|
ASTFunction * lambda_args_tuple = typeid_cast<ASTFunction *>(lambda->arguments->children.at(0).get());
|
|
ASTs lambda_arg_asts = lambda_args_tuple->arguments->children;
|
|
NamesAndTypesList lambda_arguments;
|
|
|
|
for (size_t j = 0; j < lambda_arg_asts.size(); ++j)
|
|
{
|
|
ASTIdentifier * identifier = typeid_cast<ASTIdentifier *>(lambda_arg_asts[j].get());
|
|
if (!identifier)
|
|
throw Exception("lambda argument declarations must be identifiers", ErrorCodes::TYPE_MISMATCH);
|
|
|
|
String arg_name = identifier->name;
|
|
|
|
lambda_arguments.emplace_back(arg_name, lambda_type->getArgumentTypes()[j]);
|
|
}
|
|
|
|
projection_action->preArgumentAction();
|
|
actions_stack.pushLevel(lambda_arguments);
|
|
getActionsImpl(lambda->arguments->children.at(1), no_subqueries, only_consts, actions_stack,
|
|
projection_manipulator);
|
|
ExpressionActionsPtr lambda_actions = actions_stack.popLevel();
|
|
|
|
String result_name = projection_manipulator->getColumnName(lambda->arguments->children.at(1)->getColumnName());
|
|
lambda_actions->finalize(Names(1, result_name));
|
|
DataTypePtr result_type = lambda_actions->getSampleBlock().getByName(result_name).type;
|
|
|
|
Names captured;
|
|
Names required = lambda_actions->getRequiredColumns();
|
|
for (const auto & required_arg : required)
|
|
if (findColumn(required_arg, lambda_arguments) == lambda_arguments.end())
|
|
captured.push_back(required_arg);
|
|
|
|
/// We can not name `getColumnName()`,
|
|
/// because it does not uniquely define the expression (the types of arguments can be different).
|
|
String lambda_name = getUniqueName(actions_stack.getSampleBlock(), "__lambda");
|
|
|
|
auto function_capture = std::make_shared<FunctionCapture>(
|
|
lambda_actions, captured, lambda_arguments, result_type, result_name);
|
|
actions_stack.addAction(ExpressionAction::applyFunction(function_capture, captured, lambda_name,
|
|
projection_manipulator->getProjectionSourceColumn()));
|
|
|
|
argument_types[i] = std::make_shared<DataTypeFunction>(lambda_type->getArgumentTypes(), result_type);
|
|
argument_names[i] = lambda_name;
|
|
projection_action->postArgumentAction(lambda_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (only_consts)
|
|
{
|
|
for (const auto & argument_name : argument_names)
|
|
{
|
|
if (!actions_stack.getSampleBlock().has(argument_name))
|
|
{
|
|
arguments_present = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (arguments_present)
|
|
{
|
|
projection_action->preCalculation();
|
|
if (projection_action->isCalculationRequired())
|
|
{
|
|
actions_stack.addAction(
|
|
ExpressionAction::applyFunction(function_builder,
|
|
argument_names,
|
|
projection_manipulator->getColumnName(getColumnName()),
|
|
projection_manipulator->getProjectionSourceColumn()));
|
|
}
|
|
}
|
|
}
|
|
else if (ASTLiteral * literal = typeid_cast<ASTLiteral *>(ast.get()))
|
|
{
|
|
DataTypePtr type = applyVisitor(FieldToDataType(), literal->value);
|
|
|
|
ColumnWithTypeAndName column;
|
|
column.column = type->createColumnConst(1, convertFieldToType(literal->value, *type));
|
|
column.type = type;
|
|
column.name = getColumnName();
|
|
|
|
actions_stack.addAction(ExpressionAction::addColumn(column, "", false));
|
|
projection_manipulator->tryToGetFromUpperProjection(column.name);
|
|
}
|
|
else
|
|
{
|
|
for (auto & child : ast->children)
|
|
{
|
|
/// Do not go to FROM, JOIN, UNION.
|
|
if (!typeid_cast<const ASTTableExpression *>(child.get())
|
|
&& !typeid_cast<const ASTSelectQuery *>(child.get()))
|
|
getActionsImpl(child, no_subqueries, only_consts, actions_stack, projection_manipulator);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::getAggregates(const ASTPtr & ast, ExpressionActionsPtr & actions)
|
|
{
|
|
/// There can not be aggregate functions inside the WHERE and PREWHERE.
|
|
if (select_query && (ast.get() == select_query->where_expression.get() || ast.get() == select_query->prewhere_expression.get()))
|
|
{
|
|
assertNoAggregates(ast, "in WHERE or PREWHERE");
|
|
return;
|
|
}
|
|
|
|
/// If we are not analyzing a SELECT query, but a separate expression, then there can not be aggregate functions in it.
|
|
if (!select_query)
|
|
{
|
|
assertNoAggregates(ast, "in wrong place");
|
|
return;
|
|
}
|
|
|
|
const ASTFunction * node = typeid_cast<const ASTFunction *>(ast.get());
|
|
if (node && AggregateFunctionFactory::instance().isAggregateFunctionName(node->name))
|
|
{
|
|
has_aggregation = true;
|
|
AggregateDescription aggregate;
|
|
aggregate.column_name = node->getColumnName();
|
|
|
|
/// Make unique aggregate functions.
|
|
for (size_t i = 0; i < aggregate_descriptions.size(); ++i)
|
|
if (aggregate_descriptions[i].column_name == aggregate.column_name)
|
|
return;
|
|
|
|
const ASTs & arguments = node->arguments->children;
|
|
aggregate.argument_names.resize(arguments.size());
|
|
DataTypes types(arguments.size());
|
|
|
|
for (size_t i = 0; i < arguments.size(); ++i)
|
|
{
|
|
/// There can not be other aggregate functions within the aggregate functions.
|
|
assertNoAggregates(arguments[i], "inside another aggregate function");
|
|
|
|
getRootActions(arguments[i], true, false, actions);
|
|
const std::string & name = arguments[i]->getColumnName();
|
|
types[i] = actions->getSampleBlock().getByName(name).type;
|
|
aggregate.argument_names[i] = name;
|
|
}
|
|
|
|
aggregate.parameters = (node->parameters) ? getAggregateFunctionParametersArray(node->parameters) : Array();
|
|
aggregate.function = AggregateFunctionFactory::instance().get(node->name, types, aggregate.parameters);
|
|
|
|
aggregate_descriptions.push_back(aggregate);
|
|
}
|
|
else
|
|
{
|
|
for (const auto & child : ast->children)
|
|
if (!typeid_cast<const ASTSubquery *>(child.get())
|
|
&& !typeid_cast<const ASTSelectQuery *>(child.get()))
|
|
getAggregates(child, actions);
|
|
}
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::assertNoAggregates(const ASTPtr & ast, const char * description)
|
|
{
|
|
const ASTFunction * node = typeid_cast<const ASTFunction *>(ast.get());
|
|
|
|
if (node && AggregateFunctionFactory::instance().isAggregateFunctionName(node->name))
|
|
throw Exception("Aggregate function " + node->getColumnName()
|
|
+ " is found " + String(description) + " in query", ErrorCodes::ILLEGAL_AGGREGATION);
|
|
|
|
for (const auto & child : ast->children)
|
|
if (!typeid_cast<const ASTSubquery *>(child.get())
|
|
&& !typeid_cast<const ASTSelectQuery *>(child.get()))
|
|
assertNoAggregates(child, description);
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::assertSelect() const
|
|
{
|
|
if (!select_query)
|
|
throw Exception("Not a select query", ErrorCodes::LOGICAL_ERROR);
|
|
}
|
|
|
|
void ExpressionAnalyzer::assertAggregation() const
|
|
{
|
|
if (!has_aggregation)
|
|
throw Exception("No aggregation", ErrorCodes::LOGICAL_ERROR);
|
|
}
|
|
|
|
void ExpressionAnalyzer::initChain(ExpressionActionsChain & chain, const NamesAndTypesList & columns) const
|
|
{
|
|
if (chain.steps.empty())
|
|
{
|
|
chain.steps.emplace_back(std::make_shared<ExpressionActions>(columns, context));
|
|
}
|
|
}
|
|
|
|
/// "Big" ARRAY JOIN.
|
|
void ExpressionAnalyzer::addMultipleArrayJoinAction(ExpressionActionsPtr & actions) const
|
|
{
|
|
NameSet result_columns;
|
|
for (const auto & result_source : array_join_result_to_source)
|
|
{
|
|
/// Assign new names to columns, if needed.
|
|
if (result_source.first != result_source.second)
|
|
actions->add(ExpressionAction::copyColumn(result_source.second, result_source.first));
|
|
|
|
/// Make ARRAY JOIN (replace arrays with their insides) for the columns in these new names.
|
|
result_columns.insert(result_source.first);
|
|
}
|
|
|
|
actions->add(ExpressionAction::arrayJoin(result_columns, select_query->array_join_is_left(), context));
|
|
}
|
|
|
|
bool ExpressionAnalyzer::appendArrayJoin(ExpressionActionsChain & chain, bool only_types)
|
|
{
|
|
assertSelect();
|
|
|
|
if (!select_query->array_join_expression_list())
|
|
return false;
|
|
|
|
initChain(chain, source_columns);
|
|
ExpressionActionsChain::Step & step = chain.steps.back();
|
|
|
|
getRootActions(select_query->array_join_expression_list(), only_types, false, step.actions);
|
|
|
|
addMultipleArrayJoinAction(step.actions);
|
|
|
|
return true;
|
|
}
|
|
|
|
void ExpressionAnalyzer::addJoinAction(ExpressionActionsPtr & actions, bool only_types) const
|
|
{
|
|
if (only_types)
|
|
actions->add(ExpressionAction::ordinaryJoin(nullptr, analyzed_join.key_names_left,
|
|
analyzed_join.getColumnsAddedByJoin()));
|
|
else
|
|
for (auto & subquery_for_set : subqueries_for_sets)
|
|
if (subquery_for_set.second.join)
|
|
actions->add(ExpressionAction::ordinaryJoin(subquery_for_set.second.join, analyzed_join.key_names_left,
|
|
analyzed_join.getColumnsAddedByJoin()));
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::AnalyzedJoin::createJoinedBlockActions(const ASTSelectQuery * select_query_with_join,
|
|
const Context & context)
|
|
{
|
|
if (!select_query_with_join)
|
|
return;
|
|
|
|
const ASTTablesInSelectQueryElement * join = select_query_with_join->join();
|
|
|
|
if (!join)
|
|
return;
|
|
|
|
const auto & join_params = static_cast<const ASTTableJoin &>(*join->table_join);
|
|
|
|
/// Create custom expression list with join keys from right table.
|
|
auto expression_list = std::make_shared<ASTExpressionList>();
|
|
ASTs & children = expression_list->children;
|
|
|
|
if (join_params.on_expression)
|
|
for (const auto & join_right_key : key_asts_right)
|
|
children.emplace_back(join_right_key);
|
|
|
|
NameSet required_columns_set(key_names_right.begin(), key_names_right.end());
|
|
for (const auto & joined_column : columns_added_by_join)
|
|
required_columns_set.insert(joined_column.original_name);
|
|
|
|
required_columns_set.insert(key_names_right.begin(), key_names_right.end());
|
|
|
|
required_columns_from_joined_table.insert(required_columns_from_joined_table.end(),
|
|
required_columns_set.begin(), required_columns_set.end());
|
|
|
|
const auto & source_columns_name = getColumnsFromJoinedTable(context, select_query_with_join);
|
|
ExpressionAnalyzer analyzer(expression_list, context, nullptr, source_columns_name, required_columns_from_joined_table);
|
|
joined_block_actions = analyzer.getActions(false);
|
|
|
|
for (const auto & column_required_from_actions : joined_block_actions->getRequiredColumns())
|
|
if (!required_columns_set.count(column_required_from_actions))
|
|
required_columns_from_joined_table.push_back(column_required_from_actions);
|
|
}
|
|
|
|
|
|
NamesAndTypesList ExpressionAnalyzer::AnalyzedJoin::getColumnsAddedByJoin() const
|
|
{
|
|
NamesAndTypesList result;
|
|
for (const auto & joined_column : columns_added_by_join)
|
|
result.push_back(joined_column.name_and_type);
|
|
|
|
return result;
|
|
}
|
|
|
|
NamesAndTypesList ExpressionAnalyzer::AnalyzedJoin::getColumnsFromJoinedTable(const Context & context, const ASTSelectQuery * select_query_with_join)
|
|
{
|
|
if (select_query_with_join && !columns_from_joined_table.size())
|
|
{
|
|
if (const ASTTablesInSelectQueryElement * node = select_query_with_join->join())
|
|
{
|
|
Block nested_result_sample;
|
|
const auto & table_expression = static_cast<const ASTTableExpression &>(*node->table_expression);
|
|
|
|
if (table_expression.subquery)
|
|
{
|
|
const auto & subquery = table_expression.subquery->children.at(0);
|
|
nested_result_sample = InterpreterSelectWithUnionQuery::getSampleBlock(subquery, context);
|
|
}
|
|
else if (table_expression.table_function)
|
|
{
|
|
const auto table_function = table_expression.table_function;
|
|
auto query_context = const_cast<Context *>(&context.getQueryContext());
|
|
const auto & join_storage = query_context->executeTableFunction(table_function);
|
|
nested_result_sample = join_storage->getSampleBlockNonMaterialized();
|
|
}
|
|
else if (table_expression.database_and_table_name)
|
|
{
|
|
const auto & identifier = static_cast<const ASTIdentifier &>(*table_expression.database_and_table_name);
|
|
auto database_table = getDatabaseAndTableNameFromIdentifier(identifier);
|
|
const auto & table = context.getTable(database_table.first, database_table.second);
|
|
nested_result_sample = table->getSampleBlockNonMaterialized();
|
|
}
|
|
|
|
columns_from_joined_table = nested_result_sample.getNamesAndTypesList();
|
|
}
|
|
}
|
|
|
|
return columns_from_joined_table;
|
|
}
|
|
|
|
|
|
bool ExpressionAnalyzer::appendJoin(ExpressionActionsChain & chain, bool only_types)
|
|
{
|
|
assertSelect();
|
|
|
|
if (!select_query->join())
|
|
return false;
|
|
|
|
initChain(chain, source_columns);
|
|
ExpressionActionsChain::Step & step = chain.steps.back();
|
|
|
|
const auto & join_element = static_cast<const ASTTablesInSelectQueryElement &>(*select_query->join());
|
|
auto & join_params = static_cast<ASTTableJoin &>(*join_element.table_join);
|
|
|
|
if (join_params.strictness == ASTTableJoin::Strictness::Unspecified && join_params.kind != ASTTableJoin::Kind::Cross)
|
|
{
|
|
if (settings.join_default_strictness.toString() == "ANY")
|
|
join_params.strictness = ASTTableJoin::Strictness::Any;
|
|
else if (settings.join_default_strictness.toString() == "ALL")
|
|
join_params.strictness = ASTTableJoin::Strictness::All;
|
|
else
|
|
throw Exception("Expected ANY or ALL in JOIN section, because setting (join_default_strictness) is empty", DB::ErrorCodes::EXPECTED_ALL_OR_ANY);
|
|
}
|
|
|
|
const auto & table_to_join = static_cast<const ASTTableExpression &>(*join_element.table_expression);
|
|
|
|
getActionsFromJoinKeys(join_params, only_types, false, step.actions);
|
|
|
|
/// Two JOINs are not supported with the same subquery, but different USINGs.
|
|
auto join_hash = join_element.getTreeHash();
|
|
|
|
SubqueryForSet & subquery_for_set = subqueries_for_sets[toString(join_hash.first) + "_" + toString(join_hash.second)];
|
|
|
|
/// Special case - if table name is specified on the right of JOIN, then the table has the type Join (the previously prepared mapping).
|
|
/// TODO This syntax does not support specifying a database name.
|
|
if (table_to_join.database_and_table_name)
|
|
{
|
|
const auto & identifier = static_cast<const ASTIdentifier &>(*table_to_join.database_and_table_name);
|
|
auto database_table = getDatabaseAndTableNameFromIdentifier(identifier);
|
|
StoragePtr table = context.tryGetTable(database_table.first, database_table.second);
|
|
|
|
if (table)
|
|
{
|
|
StorageJoin * storage_join = dynamic_cast<StorageJoin *>(table.get());
|
|
|
|
if (storage_join)
|
|
{
|
|
storage_join->assertCompatible(join_params.kind, join_params.strictness);
|
|
/// TODO Check the set of keys.
|
|
|
|
JoinPtr & join = storage_join->getJoin();
|
|
subquery_for_set.join = join;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!subquery_for_set.join)
|
|
{
|
|
JoinPtr join = std::make_shared<Join>(
|
|
analyzed_join.key_names_left, analyzed_join.key_names_right, analyzed_join.columns_added_by_join_from_right_keys,
|
|
settings.join_use_nulls, SizeLimits(settings.max_rows_in_join, settings.max_bytes_in_join, settings.join_overflow_mode),
|
|
join_params.kind, join_params.strictness);
|
|
|
|
/** For GLOBAL JOINs (in the case, for example, of the push method for executing GLOBAL subqueries), the following occurs
|
|
* - in the addExternalStorage function, the JOIN (SELECT ...) subquery is replaced with JOIN _data1,
|
|
* in the subquery_for_set object this subquery is exposed as source and the temporary table _data1 as the `table`.
|
|
* - this function shows the expression JOIN _data1.
|
|
*/
|
|
if (!subquery_for_set.source)
|
|
{
|
|
ASTPtr table;
|
|
|
|
if (table_to_join.subquery)
|
|
table = table_to_join.subquery;
|
|
else if (table_to_join.table_function)
|
|
table = table_to_join.table_function;
|
|
else if (table_to_join.database_and_table_name)
|
|
table = table_to_join.database_and_table_name;
|
|
|
|
auto interpreter = interpretSubquery(table, context, subquery_depth, analyzed_join.required_columns_from_joined_table);
|
|
subquery_for_set.source = std::make_shared<LazyBlockInputStream>(
|
|
interpreter->getSampleBlock(),
|
|
[interpreter]() mutable { return interpreter->execute().in; });
|
|
}
|
|
|
|
/// Alias duplicating columns.
|
|
for (const auto & joined_column : analyzed_join.columns_added_by_join)
|
|
{
|
|
const auto & qualified_name = joined_column.name_and_type.name;
|
|
if (joined_column.original_name != qualified_name)
|
|
subquery_for_set.joined_block_aliases.emplace_back(joined_column.original_name, qualified_name);
|
|
}
|
|
|
|
auto sample_block = subquery_for_set.source->getHeader();
|
|
analyzed_join.joined_block_actions->execute(sample_block);
|
|
for (const auto & name_with_alias : subquery_for_set.joined_block_aliases)
|
|
{
|
|
if (sample_block.has(name_with_alias.first))
|
|
{
|
|
auto pos = sample_block.getPositionByName(name_with_alias.first);
|
|
auto column = sample_block.getByPosition(pos);
|
|
sample_block.erase(pos);
|
|
column.name = name_with_alias.second;
|
|
sample_block.insert(std::move(column));
|
|
}
|
|
}
|
|
|
|
/// TODO You do not need to set this up when JOIN is only needed on remote servers.
|
|
subquery_for_set.join = join;
|
|
subquery_for_set.join->setSampleBlock(sample_block);
|
|
subquery_for_set.joined_block_actions = analyzed_join.joined_block_actions;
|
|
}
|
|
|
|
addJoinAction(step.actions, false);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ExpressionAnalyzer::appendPrewhere(ExpressionActionsChain & chain, bool only_types)
|
|
{
|
|
assertSelect();
|
|
|
|
if (!select_query->prewhere_expression)
|
|
return false;
|
|
|
|
initChain(chain, source_columns);
|
|
auto & step = chain.getLastStep();
|
|
getRootActions(select_query->prewhere_expression, only_types, false, step.actions);
|
|
String prewhere_column_name = select_query->prewhere_expression->getColumnName();
|
|
step.required_output.push_back(prewhere_column_name);
|
|
step.can_remove_required_output.push_back(true);
|
|
|
|
{
|
|
/// Remove unused source_columns from prewhere actions.
|
|
auto tmp_actions = std::make_shared<ExpressionActions>(source_columns, context);
|
|
getRootActions(select_query->prewhere_expression, only_types, false, tmp_actions);
|
|
tmp_actions->finalize({prewhere_column_name});
|
|
auto required_columns = tmp_actions->getRequiredColumns();
|
|
NameSet required_source_columns(required_columns.begin(), required_columns.end());
|
|
|
|
auto names = step.actions->getSampleBlock().getNames();
|
|
NameSet name_set(names.begin(), names.end());
|
|
|
|
for (const auto & column : source_columns)
|
|
if (required_source_columns.count(column.name) == 0)
|
|
name_set.erase(column.name);
|
|
|
|
Names required_output(name_set.begin(), name_set.end());
|
|
step.actions->finalize(required_output);
|
|
}
|
|
|
|
{
|
|
/// Add empty action with input = {prewhere actions output} + {unused source columns}
|
|
/// Reasons:
|
|
/// 1. Remove remove source columns which are used only in prewhere actions during prewhere actions execution.
|
|
/// Example: select A prewhere B > 0. B can be removed at prewhere step.
|
|
/// 2. Store side columns which were calculated during prewhere actions execution if they are used.
|
|
/// Example: select F(A) prewhere F(A) > 0. F(A) can be saved from prewhere step.
|
|
/// 3. Check if we can remove filter column at prewhere step. If we can, action will store single REMOVE_COLUMN.
|
|
ColumnsWithTypeAndName columns = step.actions->getSampleBlock().getColumnsWithTypeAndName();
|
|
auto required_columns = step.actions->getRequiredColumns();
|
|
NameSet prewhere_input_names(required_columns.begin(), required_columns.end());
|
|
NameSet unused_source_columns;
|
|
|
|
for (const auto & column : source_columns)
|
|
{
|
|
if (prewhere_input_names.count(column.name) == 0)
|
|
{
|
|
columns.emplace_back(column.type, column.name);
|
|
unused_source_columns.emplace(column.name);
|
|
}
|
|
}
|
|
|
|
chain.steps.emplace_back(std::make_shared<ExpressionActions>(std::move(columns), context));
|
|
chain.steps.back().additional_input = std::move(unused_source_columns);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ExpressionAnalyzer::appendWhere(ExpressionActionsChain & chain, bool only_types)
|
|
{
|
|
assertSelect();
|
|
|
|
if (!select_query->where_expression)
|
|
return false;
|
|
|
|
initChain(chain, source_columns);
|
|
ExpressionActionsChain::Step & step = chain.steps.back();
|
|
|
|
step.required_output.push_back(select_query->where_expression->getColumnName());
|
|
step.can_remove_required_output = {true};
|
|
|
|
getRootActions(select_query->where_expression, only_types, false, step.actions);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ExpressionAnalyzer::appendGroupBy(ExpressionActionsChain & chain, bool only_types)
|
|
{
|
|
assertAggregation();
|
|
|
|
if (!select_query->group_expression_list)
|
|
return false;
|
|
|
|
initChain(chain, source_columns);
|
|
ExpressionActionsChain::Step & step = chain.steps.back();
|
|
|
|
ASTs asts = select_query->group_expression_list->children;
|
|
for (size_t i = 0; i < asts.size(); ++i)
|
|
{
|
|
step.required_output.push_back(asts[i]->getColumnName());
|
|
getRootActions(asts[i], only_types, false, step.actions);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void ExpressionAnalyzer::appendAggregateFunctionsArguments(ExpressionActionsChain & chain, bool only_types)
|
|
{
|
|
assertAggregation();
|
|
|
|
initChain(chain, source_columns);
|
|
ExpressionActionsChain::Step & step = chain.steps.back();
|
|
|
|
for (size_t i = 0; i < aggregate_descriptions.size(); ++i)
|
|
{
|
|
for (size_t j = 0; j < aggregate_descriptions[i].argument_names.size(); ++j)
|
|
{
|
|
step.required_output.push_back(aggregate_descriptions[i].argument_names[j]);
|
|
}
|
|
}
|
|
|
|
getActionsBeforeAggregation(select_query->select_expression_list, step.actions, only_types);
|
|
|
|
if (select_query->having_expression)
|
|
getActionsBeforeAggregation(select_query->having_expression, step.actions, only_types);
|
|
|
|
if (select_query->order_expression_list)
|
|
getActionsBeforeAggregation(select_query->order_expression_list, step.actions, only_types);
|
|
}
|
|
|
|
bool ExpressionAnalyzer::appendHaving(ExpressionActionsChain & chain, bool only_types)
|
|
{
|
|
assertAggregation();
|
|
|
|
if (!select_query->having_expression)
|
|
return false;
|
|
|
|
initChain(chain, aggregated_columns);
|
|
ExpressionActionsChain::Step & step = chain.steps.back();
|
|
|
|
step.required_output.push_back(select_query->having_expression->getColumnName());
|
|
getRootActions(select_query->having_expression, only_types, false, step.actions);
|
|
|
|
return true;
|
|
}
|
|
|
|
void ExpressionAnalyzer::appendSelect(ExpressionActionsChain & chain, bool only_types)
|
|
{
|
|
assertSelect();
|
|
|
|
initChain(chain, aggregated_columns);
|
|
ExpressionActionsChain::Step & step = chain.steps.back();
|
|
|
|
getRootActions(select_query->select_expression_list, only_types, false, step.actions);
|
|
|
|
for (const auto & child : select_query->select_expression_list->children)
|
|
step.required_output.push_back(child->getColumnName());
|
|
}
|
|
|
|
bool ExpressionAnalyzer::appendOrderBy(ExpressionActionsChain & chain, bool only_types)
|
|
{
|
|
assertSelect();
|
|
|
|
if (!select_query->order_expression_list)
|
|
return false;
|
|
|
|
initChain(chain, aggregated_columns);
|
|
ExpressionActionsChain::Step & step = chain.steps.back();
|
|
|
|
getRootActions(select_query->order_expression_list, only_types, false, step.actions);
|
|
|
|
ASTs asts = select_query->order_expression_list->children;
|
|
for (size_t i = 0; i < asts.size(); ++i)
|
|
{
|
|
ASTOrderByElement * ast = typeid_cast<ASTOrderByElement *>(asts[i].get());
|
|
if (!ast || ast->children.size() < 1)
|
|
throw Exception("Bad order expression AST", ErrorCodes::UNKNOWN_TYPE_OF_AST_NODE);
|
|
ASTPtr order_expression = ast->children.at(0);
|
|
step.required_output.push_back(order_expression->getColumnName());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ExpressionAnalyzer::appendLimitBy(ExpressionActionsChain & chain, bool only_types)
|
|
{
|
|
assertSelect();
|
|
|
|
if (!select_query->limit_by_expression_list)
|
|
return false;
|
|
|
|
initChain(chain, aggregated_columns);
|
|
ExpressionActionsChain::Step & step = chain.steps.back();
|
|
|
|
getRootActions(select_query->limit_by_expression_list, only_types, false, step.actions);
|
|
|
|
for (const auto & child : select_query->limit_by_expression_list->children)
|
|
step.required_output.push_back(child->getColumnName());
|
|
|
|
return true;
|
|
}
|
|
|
|
void ExpressionAnalyzer::appendProjectResult(ExpressionActionsChain & chain) const
|
|
{
|
|
assertSelect();
|
|
|
|
initChain(chain, aggregated_columns);
|
|
ExpressionActionsChain::Step & step = chain.steps.back();
|
|
|
|
NamesWithAliases result_columns;
|
|
|
|
ASTs asts = select_query->select_expression_list->children;
|
|
for (size_t i = 0; i < asts.size(); ++i)
|
|
{
|
|
String result_name = asts[i]->getAliasOrColumnName();
|
|
if (required_result_columns.empty()
|
|
|| std::find(required_result_columns.begin(), required_result_columns.end(), result_name) != required_result_columns.end())
|
|
{
|
|
result_columns.emplace_back(asts[i]->getColumnName(), result_name);
|
|
step.required_output.push_back(result_columns.back().second);
|
|
}
|
|
}
|
|
|
|
step.actions->add(ExpressionAction::project(result_columns));
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::getActionsBeforeAggregation(const ASTPtr & ast, ExpressionActionsPtr & actions, bool no_subqueries)
|
|
{
|
|
ASTFunction * node = typeid_cast<ASTFunction *>(ast.get());
|
|
|
|
if (node && AggregateFunctionFactory::instance().isAggregateFunctionName(node->name))
|
|
for (auto & argument : node->arguments->children)
|
|
getRootActions(argument, no_subqueries, false, actions);
|
|
else
|
|
for (auto & child : ast->children)
|
|
getActionsBeforeAggregation(child, actions, no_subqueries);
|
|
}
|
|
|
|
|
|
ExpressionActionsPtr ExpressionAnalyzer::getActions(bool add_aliases, bool project_result)
|
|
{
|
|
ExpressionActionsPtr actions = std::make_shared<ExpressionActions>(source_columns, context);
|
|
NamesWithAliases result_columns;
|
|
Names result_names;
|
|
|
|
ASTs asts;
|
|
|
|
if (auto node = typeid_cast<const ASTExpressionList *>(query.get()))
|
|
asts = node->children;
|
|
else
|
|
asts = ASTs(1, query);
|
|
|
|
for (size_t i = 0; i < asts.size(); ++i)
|
|
{
|
|
std::string name = asts[i]->getColumnName();
|
|
std::string alias;
|
|
if (add_aliases)
|
|
alias = asts[i]->getAliasOrColumnName();
|
|
else
|
|
alias = name;
|
|
result_columns.emplace_back(name, alias);
|
|
result_names.push_back(alias);
|
|
getRootActions(asts[i], false, false, actions);
|
|
}
|
|
|
|
if (add_aliases)
|
|
{
|
|
if (project_result)
|
|
actions->add(ExpressionAction::project(result_columns));
|
|
else
|
|
actions->add(ExpressionAction::addAliases(result_columns));
|
|
}
|
|
|
|
if (!(add_aliases && project_result))
|
|
{
|
|
/// We will not delete the original columns.
|
|
for (const auto & column_name_type : source_columns)
|
|
result_names.push_back(column_name_type.name);
|
|
}
|
|
|
|
actions->finalize(result_names);
|
|
|
|
return actions;
|
|
}
|
|
|
|
|
|
ExpressionActionsPtr ExpressionAnalyzer::getConstActions()
|
|
{
|
|
ExpressionActionsPtr actions = std::make_shared<ExpressionActions>(NamesAndTypesList(), context);
|
|
|
|
getRootActions(query, true, true, actions);
|
|
|
|
return actions;
|
|
}
|
|
|
|
void ExpressionAnalyzer::getAggregateInfo(Names & key_names, AggregateDescriptions & aggregates) const
|
|
{
|
|
for (const auto & name_and_type : aggregation_keys)
|
|
key_names.emplace_back(name_and_type.name);
|
|
|
|
aggregates = aggregate_descriptions;
|
|
}
|
|
|
|
void ExpressionAnalyzer::collectUsedColumns()
|
|
{
|
|
/** Calculate which columns are required to execute the expression.
|
|
* Then, delete all other columns from the list of available columns.
|
|
* After execution, columns will only contain the list of columns needed to read from the table.
|
|
*/
|
|
|
|
NameSet required;
|
|
NameSet ignored;
|
|
|
|
NameSet available_columns;
|
|
for (const auto & column : source_columns)
|
|
available_columns.insert(column.name);
|
|
|
|
if (select_query && select_query->array_join_expression_list())
|
|
{
|
|
ASTs & expressions = select_query->array_join_expression_list()->children;
|
|
for (size_t i = 0; i < expressions.size(); ++i)
|
|
{
|
|
/// Ignore the top-level identifiers from the ARRAY JOIN section.
|
|
/// Then add them separately.
|
|
if (typeid_cast<ASTIdentifier *>(expressions[i].get()))
|
|
{
|
|
ignored.insert(expressions[i]->getColumnName());
|
|
}
|
|
else
|
|
{
|
|
/// Nothing needs to be ignored for expressions in ARRAY JOIN.
|
|
NameSet empty;
|
|
getRequiredSourceColumnsImpl(expressions[i], available_columns, required, empty, empty, empty);
|
|
}
|
|
|
|
ignored.insert(expressions[i]->getAliasOrColumnName());
|
|
}
|
|
}
|
|
|
|
/** You also need to ignore the identifiers of the columns that are obtained by JOIN.
|
|
* (Do not assume that they are required for reading from the "left" table).
|
|
*/
|
|
NameSet available_joined_columns;
|
|
collectJoinedColumns(available_joined_columns);
|
|
|
|
NameSet required_joined_columns;
|
|
|
|
for (const auto & left_key_ast : analyzed_join.key_asts_left)
|
|
getRequiredSourceColumnsImpl(left_key_ast, available_columns, required, ignored, {}, required_joined_columns);
|
|
|
|
getRequiredSourceColumnsImpl(query, available_columns, required, ignored, available_joined_columns, required_joined_columns);
|
|
|
|
for (auto it = analyzed_join.columns_added_by_join.begin(); it != analyzed_join.columns_added_by_join.end();)
|
|
{
|
|
if (required_joined_columns.count(it->name_and_type.name))
|
|
++it;
|
|
else
|
|
analyzed_join.columns_added_by_join.erase(it++);
|
|
}
|
|
|
|
analyzed_join.createJoinedBlockActions(select_query, context);
|
|
|
|
/// Some columns from right join key may be used in query. This columns will be appended to block during join.
|
|
for (const auto & right_key_name : analyzed_join.key_names_right)
|
|
if (required_joined_columns.count(right_key_name))
|
|
analyzed_join.columns_added_by_join_from_right_keys.insert(right_key_name);
|
|
|
|
/// Insert the columns required for the ARRAY JOIN calculation into the required columns list.
|
|
NameSet array_join_sources;
|
|
for (const auto & result_source : array_join_result_to_source)
|
|
array_join_sources.insert(result_source.second);
|
|
|
|
for (const auto & column_name_type : source_columns)
|
|
if (array_join_sources.count(column_name_type.name))
|
|
required.insert(column_name_type.name);
|
|
|
|
/// You need to read at least one column to find the number of rows.
|
|
if (select_query && required.empty())
|
|
required.insert(ExpressionActions::getSmallestColumn(source_columns));
|
|
|
|
NameSet unknown_required_source_columns = required;
|
|
|
|
for (NamesAndTypesList::iterator it = source_columns.begin(); it != source_columns.end();)
|
|
{
|
|
unknown_required_source_columns.erase(it->name);
|
|
|
|
if (!required.count(it->name))
|
|
source_columns.erase(it++);
|
|
else
|
|
++it;
|
|
}
|
|
|
|
/// If there are virtual columns among the unknown columns. Remove them from the list of unknown and add
|
|
/// in columns list, so that when further processing they are also considered.
|
|
if (storage)
|
|
{
|
|
for (auto it = unknown_required_source_columns.begin(); it != unknown_required_source_columns.end();)
|
|
{
|
|
if (storage->hasColumn(*it))
|
|
{
|
|
source_columns.push_back(storage->getColumn(*it));
|
|
unknown_required_source_columns.erase(it++);
|
|
}
|
|
else
|
|
++it;
|
|
}
|
|
}
|
|
|
|
if (!unknown_required_source_columns.empty())
|
|
throw Exception("Unknown identifier: " + *unknown_required_source_columns.begin(), ErrorCodes::UNKNOWN_IDENTIFIER);
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::collectJoinedColumnsFromJoinOnExpr()
|
|
{
|
|
const auto & tables = static_cast<const ASTTablesInSelectQuery &>(*select_query->tables);
|
|
const auto * left_tables_element = static_cast<const ASTTablesInSelectQueryElement *>(tables.children.at(0).get());
|
|
const auto * right_tables_element = select_query->join();
|
|
|
|
if (!left_tables_element || !right_tables_element)
|
|
return;
|
|
|
|
const auto & table_join = static_cast<const ASTTableJoin &>(*right_tables_element->table_join);
|
|
if (!table_join.on_expression)
|
|
return;
|
|
|
|
const auto & left_table_expression = static_cast<const ASTTableExpression &>(*left_tables_element->table_expression);
|
|
const auto & right_table_expression = static_cast<const ASTTableExpression &>(*right_tables_element->table_expression);
|
|
|
|
auto left_source_names = getTableNameWithAliasFromTableExpression(left_table_expression, context);
|
|
auto right_source_names = getTableNameWithAliasFromTableExpression(right_table_expression, context);
|
|
|
|
/// Stores examples of columns which are only from one table.
|
|
struct TableBelonging
|
|
{
|
|
const ASTIdentifier * example_only_from_left = nullptr;
|
|
const ASTIdentifier * example_only_from_right = nullptr;
|
|
};
|
|
|
|
/// Check all identifiers in ast and decide their possible table belonging.
|
|
/// Throws if there are two identifiers definitely from different tables.
|
|
std::function<TableBelonging(const ASTPtr &)> get_table_belonging;
|
|
get_table_belonging = [&](const ASTPtr & ast) -> TableBelonging
|
|
{
|
|
auto * identifier = typeid_cast<const ASTIdentifier *>(ast.get());
|
|
if (identifier)
|
|
{
|
|
if (identifier->kind == ASTIdentifier::Column)
|
|
{
|
|
auto left_num_components = getNumComponentsToStripInOrderToTranslateQualifiedName(*identifier, left_source_names);
|
|
auto right_num_components = getNumComponentsToStripInOrderToTranslateQualifiedName(*identifier, right_source_names);
|
|
|
|
/// Assume that component from definite table if num_components is greater than for the other table.
|
|
if (left_num_components > right_num_components)
|
|
return {identifier, nullptr};
|
|
if (left_num_components < right_num_components)
|
|
return {nullptr, identifier};
|
|
}
|
|
return {};
|
|
}
|
|
|
|
TableBelonging table_belonging;
|
|
for (const auto & child : ast->children)
|
|
{
|
|
auto children_belonging = get_table_belonging(child);
|
|
if (!table_belonging.example_only_from_left)
|
|
table_belonging.example_only_from_left = children_belonging.example_only_from_left;
|
|
if (!table_belonging.example_only_from_right)
|
|
table_belonging.example_only_from_right = children_belonging.example_only_from_right;
|
|
}
|
|
|
|
if (table_belonging.example_only_from_left && table_belonging.example_only_from_right)
|
|
throw Exception("Invalid columns in JOIN ON section. Columns "
|
|
+ table_belonging.example_only_from_left->getAliasOrColumnName() + " and "
|
|
+ table_belonging.example_only_from_right->getAliasOrColumnName()
|
|
+ " are from different tables.", ErrorCodes::INVALID_JOIN_ON_EXPRESSION);
|
|
|
|
return table_belonging;
|
|
};
|
|
|
|
std::function<void(ASTPtr &, const DatabaseAndTableWithAlias &)> translate_qualified_names;
|
|
translate_qualified_names = [&](ASTPtr & ast, const DatabaseAndTableWithAlias & source_names)
|
|
{
|
|
auto * identifier = typeid_cast<const ASTIdentifier *>(ast.get());
|
|
if (identifier)
|
|
{
|
|
if (identifier->kind == ASTIdentifier::Column)
|
|
{
|
|
auto num_components = getNumComponentsToStripInOrderToTranslateQualifiedName(*identifier, source_names);
|
|
stripIdentifier(ast, num_components);
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (auto & child : ast->children)
|
|
translate_qualified_names(child, source_names);
|
|
};
|
|
|
|
const auto supported_syntax = " Supported syntax: JOIN ON Expr([table.]column, ...) = Expr([table.]column, ...) "
|
|
"[AND Expr([table.]column, ...) = Expr([table.]column, ...) ...]";
|
|
auto throwSyntaxException = [&](const String & msg)
|
|
{
|
|
throw Exception("Invalid expression for JOIN ON. " + msg + supported_syntax, ErrorCodes::INVALID_JOIN_ON_EXPRESSION);
|
|
};
|
|
|
|
/// For equal expression find out corresponding table for each part, translate qualified names and add asts to join keys.
|
|
auto add_columns_from_equals_expr = [&](const ASTPtr & expr)
|
|
{
|
|
auto * func_equals = typeid_cast<const ASTFunction *>(expr.get());
|
|
if (!func_equals || func_equals->name != "equals")
|
|
throwSyntaxException("Expected equals expression, got " + queryToString(expr) + ".");
|
|
|
|
ASTPtr left_ast = func_equals->arguments->children.at(0)->clone();
|
|
ASTPtr right_ast = func_equals->arguments->children.at(1)->clone();
|
|
|
|
auto left_table_belonging = get_table_belonging(left_ast);
|
|
auto right_table_belonging = get_table_belonging(right_ast);
|
|
|
|
bool can_be_left_part_from_left_table = left_table_belonging.example_only_from_right == nullptr;
|
|
bool can_be_left_part_from_right_table = left_table_belonging.example_only_from_left == nullptr;
|
|
bool can_be_right_part_from_left_table = right_table_belonging.example_only_from_right == nullptr;
|
|
bool can_be_right_part_from_right_table = right_table_belonging.example_only_from_left == nullptr;
|
|
|
|
auto add_join_keys = [&](ASTPtr & ast_to_left_table, ASTPtr & ast_to_right_table)
|
|
{
|
|
translate_qualified_names(ast_to_left_table, left_source_names);
|
|
translate_qualified_names(ast_to_right_table, right_source_names);
|
|
|
|
analyzed_join.key_asts_left.push_back(ast_to_left_table);
|
|
analyzed_join.key_names_left.push_back(ast_to_left_table->getColumnName());
|
|
analyzed_join.key_asts_right.push_back(ast_to_right_table);
|
|
analyzed_join.key_names_right.push_back(ast_to_right_table->getAliasOrColumnName());
|
|
};
|
|
|
|
/// Default variant when all identifiers may be from any table.
|
|
if (can_be_left_part_from_left_table && can_be_right_part_from_right_table)
|
|
add_join_keys(left_ast, right_ast);
|
|
else if (can_be_left_part_from_right_table && can_be_right_part_from_left_table)
|
|
add_join_keys(right_ast, left_ast);
|
|
else
|
|
{
|
|
auto * left_example = left_table_belonging.example_only_from_left ?
|
|
left_table_belonging.example_only_from_left :
|
|
left_table_belonging.example_only_from_right;
|
|
|
|
auto * right_example = right_table_belonging.example_only_from_left ?
|
|
right_table_belonging.example_only_from_left :
|
|
right_table_belonging.example_only_from_right;
|
|
|
|
auto left_name = queryToString(*left_example);
|
|
auto right_name = queryToString(*right_example);
|
|
auto expr_name = queryToString(expr);
|
|
|
|
throwSyntaxException("In expression " + expr_name + " columns " + left_name + " and " + right_name
|
|
+ " are from the same table but from different arguments of equal function.");
|
|
}
|
|
};
|
|
|
|
auto * func = typeid_cast<const ASTFunction *>(table_join.on_expression.get());
|
|
if (func && func->name == "and")
|
|
{
|
|
for (const auto & expr : func->arguments->children)
|
|
add_columns_from_equals_expr(expr);
|
|
}
|
|
else
|
|
add_columns_from_equals_expr(table_join.on_expression);
|
|
}
|
|
|
|
void ExpressionAnalyzer::collectJoinedColumns(NameSet & joined_columns)
|
|
{
|
|
if (!select_query)
|
|
return;
|
|
|
|
const ASTTablesInSelectQueryElement * node = select_query->join();
|
|
|
|
if (!node)
|
|
return;
|
|
|
|
const auto & table_join = static_cast<const ASTTableJoin &>(*node->table_join);
|
|
const auto & table_expression = static_cast<const ASTTableExpression &>(*node->table_expression);
|
|
auto joined_table_name = getTableNameWithAliasFromTableExpression(table_expression, context);
|
|
|
|
auto add_name_to_join_keys = [](Names & join_keys, ASTs & join_asts, const String & name, const ASTPtr & ast)
|
|
{
|
|
join_keys.push_back(name);
|
|
join_asts.push_back(ast);
|
|
};
|
|
|
|
if (table_join.using_expression_list)
|
|
{
|
|
auto & keys = typeid_cast<ASTExpressionList &>(*table_join.using_expression_list);
|
|
for (const auto & key : keys.children)
|
|
{
|
|
add_name_to_join_keys(analyzed_join.key_names_left, analyzed_join.key_asts_left, key->getColumnName(), key);
|
|
add_name_to_join_keys(analyzed_join.key_names_right, analyzed_join.key_asts_right, key->getAliasOrColumnName(), key);
|
|
}
|
|
}
|
|
else if (table_join.on_expression)
|
|
collectJoinedColumnsFromJoinOnExpr();
|
|
|
|
/// When we use JOIN ON syntax, non_joined_columns are columns from join_key_names_left,
|
|
/// because even if a column from join_key_names_right, we may need to join it if it has different name.
|
|
/// If we use USING syntax, join_key_names_left and join_key_names_right are almost the same, but we need to use
|
|
/// join_key_names_right in order to support aliases in USING list. Example:
|
|
/// SELECT x FROM tab1 ANY LEFT JOIN tab2 USING (x as y) - will join column x from tab1 with column y from tab2.
|
|
auto & not_joined_columns = table_join.using_expression_list ? analyzed_join.key_names_right : analyzed_join.key_names_left;
|
|
auto columns_from_joined_table = analyzed_join.getColumnsFromJoinedTable(context, select_query);
|
|
|
|
for (auto & column_name_and_type : columns_from_joined_table)
|
|
{
|
|
auto & column_name = column_name_and_type.name;
|
|
auto & column_type = column_name_and_type.type;
|
|
if (not_joined_columns.end() == std::find(not_joined_columns.begin(), not_joined_columns.end(), column_name))
|
|
{
|
|
auto qualified_name = column_name;
|
|
/// Change name for duplicate column form joined table.
|
|
if (source_columns.contains(qualified_name))
|
|
qualified_name = joined_table_name.getQualifiedNamePrefix() + qualified_name;
|
|
|
|
if (joined_columns.count(qualified_name)) /// Duplicate columns in the subquery for JOIN do not make sense.
|
|
continue;
|
|
|
|
joined_columns.insert(qualified_name);
|
|
|
|
bool make_nullable = settings.join_use_nulls && (table_join.kind == ASTTableJoin::Kind::Left ||
|
|
table_join.kind == ASTTableJoin::Kind::Full);
|
|
auto type = make_nullable ? makeNullable(column_type) : column_type;
|
|
analyzed_join.columns_added_by_join.emplace_back(NameAndTypePair(qualified_name, std::move(type)), column_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Names ExpressionAnalyzer::getRequiredSourceColumns() const
|
|
{
|
|
return source_columns.getNames();
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::getRequiredSourceColumnsImpl(const ASTPtr & ast,
|
|
const NameSet & available_columns, NameSet & required_source_columns, NameSet & ignored_names,
|
|
const NameSet & available_joined_columns, NameSet & required_joined_columns)
|
|
{
|
|
/** Find all the identifiers in the query.
|
|
* We will use depth first search in AST.
|
|
* In this case
|
|
* - for lambda functions we will not take formal parameters;
|
|
* - do not go into subqueries (they have their own identifiers);
|
|
* - there is some exception for the ARRAY JOIN clause (it has a slightly different identifiers);
|
|
* - we put identifiers available from JOIN in required_joined_columns.
|
|
*/
|
|
|
|
if (ASTIdentifier * node = typeid_cast<ASTIdentifier *>(ast.get()))
|
|
{
|
|
if (node->kind == ASTIdentifier::Column
|
|
&& !ignored_names.count(node->name)
|
|
&& !ignored_names.count(Nested::extractTableName(node->name)))
|
|
{
|
|
if (!available_joined_columns.count(node->name)
|
|
|| available_columns.count(node->name)) /// Read column from left table if has.
|
|
required_source_columns.insert(node->name);
|
|
else
|
|
required_joined_columns.insert(node->name);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (ASTFunction * node = typeid_cast<ASTFunction *>(ast.get()))
|
|
{
|
|
if (node->name == "lambda")
|
|
{
|
|
if (node->arguments->children.size() != 2)
|
|
throw Exception("lambda requires two arguments", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
|
|
|
|
ASTFunction * lambda_args_tuple = typeid_cast<ASTFunction *>(node->arguments->children.at(0).get());
|
|
|
|
if (!lambda_args_tuple || lambda_args_tuple->name != "tuple")
|
|
throw Exception("First argument of lambda must be a tuple", ErrorCodes::TYPE_MISMATCH);
|
|
|
|
/// You do not need to add formal parameters of the lambda expression in required_source_columns.
|
|
Names added_ignored;
|
|
for (auto & child : lambda_args_tuple->arguments->children)
|
|
{
|
|
ASTIdentifier * identifier = typeid_cast<ASTIdentifier *>(child.get());
|
|
if (!identifier)
|
|
throw Exception("lambda argument declarations must be identifiers", ErrorCodes::TYPE_MISMATCH);
|
|
|
|
String & name = identifier->name;
|
|
if (!ignored_names.count(name))
|
|
{
|
|
ignored_names.insert(name);
|
|
added_ignored.push_back(name);
|
|
}
|
|
}
|
|
|
|
getRequiredSourceColumnsImpl(node->arguments->children.at(1),
|
|
available_columns, required_source_columns, ignored_names,
|
|
available_joined_columns, required_joined_columns);
|
|
|
|
for (size_t i = 0; i < added_ignored.size(); ++i)
|
|
ignored_names.erase(added_ignored[i]);
|
|
|
|
return;
|
|
}
|
|
|
|
/// A special function `indexHint`. Everything that is inside it is not calculated
|
|
/// (and is used only for index analysis, see KeyCondition).
|
|
if (node->name == "indexHint")
|
|
return;
|
|
}
|
|
|
|
/// Recursively traverses an expression.
|
|
for (auto & child : ast->children)
|
|
{
|
|
/** We will not go to the ARRAY JOIN section, because we need to look at the names of non-ARRAY-JOIN columns.
|
|
* There, `collectUsedColumns` will send us separately.
|
|
*/
|
|
if (!typeid_cast<const ASTSelectQuery *>(child.get())
|
|
&& !typeid_cast<const ASTArrayJoin *>(child.get())
|
|
&& !typeid_cast<const ASTTableExpression *>(child.get())
|
|
&& !typeid_cast<const ASTTableJoin *>(child.get()))
|
|
getRequiredSourceColumnsImpl(child, available_columns, required_source_columns,
|
|
ignored_names, available_joined_columns, required_joined_columns);
|
|
}
|
|
}
|
|
|
|
|
|
static bool hasArrayJoin(const ASTPtr & ast)
|
|
{
|
|
if (const ASTFunction * function = typeid_cast<const ASTFunction *>(&*ast))
|
|
if (function->name == "arrayJoin")
|
|
return true;
|
|
|
|
for (const auto & child : ast->children)
|
|
if (!typeid_cast<ASTSelectQuery *>(child.get()) && hasArrayJoin(child))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
void ExpressionAnalyzer::removeUnneededColumnsFromSelectClause()
|
|
{
|
|
if (!select_query)
|
|
return;
|
|
|
|
if (required_result_columns.empty())
|
|
return;
|
|
|
|
ASTs & elements = select_query->select_expression_list->children;
|
|
|
|
ASTs new_elements;
|
|
new_elements.reserve(elements.size());
|
|
|
|
/// Some columns may be queried multiple times, like SELECT x, y, y FROM table.
|
|
/// In that case we keep them exactly same number of times.
|
|
std::map<String, size_t> required_columns_with_duplicate_count;
|
|
for (const auto & name : required_result_columns)
|
|
++required_columns_with_duplicate_count[name];
|
|
|
|
for (const auto & elem : elements)
|
|
{
|
|
String name = elem->getAliasOrColumnName();
|
|
|
|
auto it = required_columns_with_duplicate_count.find(name);
|
|
if (required_columns_with_duplicate_count.end() != it && it->second)
|
|
{
|
|
new_elements.push_back(elem);
|
|
--it->second;
|
|
}
|
|
else if (select_query->distinct || hasArrayJoin(elem))
|
|
{
|
|
new_elements.push_back(elem);
|
|
}
|
|
}
|
|
|
|
elements = std::move(new_elements);
|
|
}
|
|
|
|
}
|