ClickHouse/src/AggregateFunctions/IAggregateFunction.h
2021-02-11 16:29:30 +03:00

658 lines
24 KiB
C++

#pragma once
#include <cstddef>
#include <memory>
#include <type_traits>
#include <vector>
#include <common/types.h>
#include <Common/Exception.h>
#include <Core/Block.h>
#include <Core/ColumnNumbers.h>
#include <Core/Field.h>
#include <Columns/ColumnTuple.h>
#include <Columns/ColumnsNumber.h>
namespace DB
{
namespace ErrorCodes
{
extern const int NOT_IMPLEMENTED;
}
class Arena;
class ReadBuffer;
class WriteBuffer;
class IColumn;
class IDataType;
class IWindowFunction;
using DataTypePtr = std::shared_ptr<const IDataType>;
using DataTypes = std::vector<DataTypePtr>;
using AggregateDataPtr = char *;
using ConstAggregateDataPtr = const char *;
class IAggregateFunction;
using AggregateFunctionPtr = std::shared_ptr<IAggregateFunction>;
struct AggregateFunctionProperties;
/** Aggregate functions interface.
* Instances of classes with this interface do not contain the data itself for aggregation,
* but contain only metadata (description) of the aggregate function,
* as well as methods for creating, deleting and working with data.
* The data resulting from the aggregation (intermediate computing states) is stored in other objects
* (which can be created in some memory pool),
* and IAggregateFunction is the external interface for manipulating them.
*/
class IAggregateFunction
{
public:
IAggregateFunction(const DataTypes & argument_types_, const Array & parameters_)
: argument_types(argument_types_), parameters(parameters_)
{
}
/// Get main function name.
virtual String getName() const = 0;
/// Get the result type.
virtual DataTypePtr getReturnType() const = 0;
/// Get type which will be used for prediction result in case if function is an ML method.
virtual DataTypePtr getReturnTypeToPredict() const
{
throw Exception("Prediction is not supported for " + getName(), ErrorCodes::NOT_IMPLEMENTED);
}
virtual ~IAggregateFunction() = default;
/** Data manipulating functions. */
/** Create empty data for aggregation with `placement new` at the specified location.
* You will have to destroy them using the `destroy` method.
*/
virtual void create(AggregateDataPtr __restrict place) const = 0;
/// Delete data for aggregation.
virtual void destroy(AggregateDataPtr __restrict place) const noexcept = 0;
/// It is not necessary to delete data.
virtual bool hasTrivialDestructor() const = 0;
/// Get `sizeof` of structure with data.
virtual size_t sizeOfData() const = 0;
/// How the data structure should be aligned.
virtual size_t alignOfData() const = 0;
/** Adds a value into aggregation data on which place points to.
* columns points to columns containing arguments of aggregation function.
* row_num is number of row which should be added.
* Additional parameter arena should be used instead of standard memory allocator if the addition requires memory allocation.
*/
virtual void add(AggregateDataPtr __restrict place, const IColumn ** columns, size_t row_num, Arena * arena) const = 0;
/// Merges state (on which place points to) with other state of current aggregation function.
virtual void merge(AggregateDataPtr __restrict place, ConstAggregateDataPtr rhs, Arena * arena) const = 0;
/// Serializes state (to transmit it over the network, for example).
virtual void serialize(ConstAggregateDataPtr __restrict place, WriteBuffer & buf) const = 0;
/// Deserializes state. This function is called only for empty (just created) states.
virtual void deserialize(AggregateDataPtr __restrict place, ReadBuffer & buf, Arena * arena) const = 0;
/// Returns true if a function requires Arena to handle own states (see add(), merge(), deserialize()).
virtual bool allocatesMemoryInArena() const { return false; }
/// Inserts results into a column. This method might modify the state (e.g.
/// sort an array), so must be called once, from single thread. The state
/// must remain valid though, and the subsequent calls to add/merge/
/// insertResultInto must work correctly. This kind of call sequence occurs
/// in `runningAccumulate`, or when calculating an aggregate function as a
/// window function.
virtual void insertResultInto(AggregateDataPtr __restrict place, IColumn & to, Arena * arena) const = 0;
/// Used for machine learning methods. Predict result from trained model.
/// Will insert result into `to` column for rows in range [offset, offset + limit).
virtual void predictValues(
ConstAggregateDataPtr /* place */,
IColumn & /*to*/,
const ColumnsWithTypeAndName & /*arguments*/,
size_t /*offset*/,
size_t /*limit*/,
const Context & /*context*/) const
{
throw Exception("Method predictValues is not supported for " + getName(), ErrorCodes::NOT_IMPLEMENTED);
}
/** Returns true for aggregate functions of type -State
* They are executed as other aggregate functions, but not finalized (return an aggregation state that can be combined with another).
* Also returns true when the final value of this aggregate function contains State of other aggregate function inside.
*/
virtual bool isState() const { return false; }
/** The inner loop that uses the function pointer is better than using the virtual function.
* The reason is that in the case of virtual functions GCC 5.1.2 generates code,
* which, at each iteration of the loop, reloads the function address (the offset value in the virtual function table) from memory to the register.
* This gives a performance drop on simple queries around 12%.
* After the appearance of better compilers, the code can be removed.
*/
using AddFunc = void (*)(const IAggregateFunction *, AggregateDataPtr, const IColumn **, size_t, Arena *);
virtual AddFunc getAddressOfAddFunction() const = 0;
/** Contains a loop with calls to "add" function. You can collect arguments into array "places"
* and do a single call to "addBatch" for devirtualization and inlining.
*/
virtual void addBatch(
size_t batch_size,
AggregateDataPtr * places,
size_t place_offset,
const IColumn ** columns,
Arena * arena,
ssize_t if_argument_pos = -1) const = 0;
/** The same for single place.
*/
virtual void addBatchSinglePlace(
size_t batch_size, AggregateDataPtr place, const IColumn ** columns, Arena * arena, ssize_t if_argument_pos = -1) const = 0;
/** The same for single place when need to aggregate only filtered data.
*/
virtual void addBatchSinglePlaceNotNull(
size_t batch_size,
AggregateDataPtr place,
const IColumn ** columns,
const UInt8 * null_map,
Arena * arena,
ssize_t if_argument_pos = -1) const = 0;
virtual void addBatchSinglePlaceFromInterval(
size_t batch_begin, size_t batch_end, AggregateDataPtr place, const IColumn ** columns, Arena * arena, ssize_t if_argument_pos = -1)
const = 0;
/** In addition to addBatch, this method collects multiple rows of arguments into array "places"
* as long as they are between offsets[i-1] and offsets[i]. This is used for arrayReduce and
* -Array combinator. It might also be used generally to break data dependency when array
* "places" contains a large number of same values consecutively.
*/
virtual void addBatchArray(
size_t batch_size, AggregateDataPtr * places, size_t place_offset, const IColumn ** columns, const UInt64 * offsets, Arena * arena)
const = 0;
/** The case when the aggregation key is UInt8
* and pointers to aggregation states are stored in AggregateDataPtr[256] lookup table.
*/
virtual void addBatchLookupTable8(
size_t batch_size,
AggregateDataPtr * places,
size_t place_offset,
std::function<void(AggregateDataPtr &)> init,
const UInt8 * key,
const IColumn ** columns,
Arena * arena) const = 0;
/** By default all NULLs are skipped during aggregation.
* If it returns nullptr, the default one will be used.
* If an aggregate function wants to use something instead of the default one, it overrides this function and returns its own null adapter.
* nested_function is a smart pointer to this aggregate function itself.
* arguments and params are for nested_function.
*/
virtual AggregateFunctionPtr getOwnNullAdapter(
const AggregateFunctionPtr & /*nested_function*/,
const DataTypes & /*arguments*/,
const Array & /*params*/,
const AggregateFunctionProperties & /*properties*/) const
{
return nullptr;
}
/** Return the nested function if this is an Aggregate Function Combinator.
* Otherwise return nullptr.
*/
virtual AggregateFunctionPtr getNestedFunction() const { return {}; }
const DataTypes & getArgumentTypes() const { return argument_types; }
const Array & getParameters() const { return parameters; }
// Any aggregate function can be calculated over a window, but there are some
// window functions such as rank() that require a different interface, e.g.
// because they don't respect the window frame, or need to be notified when
// a new peer group starts. They pretend to be normal aggregate functions,
// but will fail if you actually try to use them in Aggregator. The
// WindowTransform recognizes these functions and handles them differently.
// We could have a separate factory for window functions, and make all
// aggregate functions implement IWindowFunction interface and so on. This
// would be more logically correct, but more complex. We only have a handful
// of true window functions, so this hack-ish interface suffices.
virtual IWindowFunction * asWindowFunction() { return nullptr; }
virtual const IWindowFunction * asWindowFunction() const
{ return const_cast<IAggregateFunction *>(this)->asWindowFunction(); }
protected:
DataTypes argument_types;
Array parameters;
};
/// Implement method to obtain an address of 'add' function.
template <typename Derived>
class IAggregateFunctionHelper : public IAggregateFunction
{
private:
static void addFree(const IAggregateFunction * that, AggregateDataPtr place, const IColumn ** columns, size_t row_num, Arena * arena)
{
static_cast<const Derived &>(*that).add(place, columns, row_num, arena);
}
public:
IAggregateFunctionHelper(const DataTypes & argument_types_, const Array & parameters_)
: IAggregateFunction(argument_types_, parameters_)
{
}
AddFunc getAddressOfAddFunction() const override { return &addFree; }
void addBatch(
size_t batch_size,
AggregateDataPtr * places,
size_t place_offset,
const IColumn ** columns,
Arena * arena,
ssize_t if_argument_pos = -1) const override
{
if (if_argument_pos >= 0)
{
const auto & flags = assert_cast<const ColumnUInt8 &>(*columns[if_argument_pos]).getData();
for (size_t i = 0; i < batch_size; ++i)
{
if (flags[i])
static_cast<const Derived *>(this)->add(places[i] + place_offset, columns, i, arena);
}
}
else
{
for (size_t i = 0; i < batch_size; ++i)
static_cast<const Derived *>(this)->add(places[i] + place_offset, columns, i, arena);
}
}
void addBatchSinglePlace(
size_t batch_size, AggregateDataPtr place, const IColumn ** columns, Arena * arena, ssize_t if_argument_pos = -1) const override
{
if (if_argument_pos >= 0)
{
const auto & flags = assert_cast<const ColumnUInt8 &>(*columns[if_argument_pos]).getData();
for (size_t i = 0; i < batch_size; ++i)
{
if (flags[i])
static_cast<const Derived *>(this)->add(place, columns, i, arena);
}
}
else
{
for (size_t i = 0; i < batch_size; ++i)
static_cast<const Derived *>(this)->add(place, columns, i, arena);
}
}
void addBatchSinglePlaceNotNull(
size_t batch_size,
AggregateDataPtr place,
const IColumn ** columns,
const UInt8 * null_map,
Arena * arena,
ssize_t if_argument_pos = -1) const override
{
if (if_argument_pos >= 0)
{
const auto & flags = assert_cast<const ColumnUInt8 &>(*columns[if_argument_pos]).getData();
for (size_t i = 0; i < batch_size; ++i)
if (!null_map[i] && flags[i])
static_cast<const Derived *>(this)->add(place, columns, i, arena);
}
else
{
for (size_t i = 0; i < batch_size; ++i)
if (!null_map[i])
static_cast<const Derived *>(this)->add(place, columns, i, arena);
}
}
void addBatchSinglePlaceFromInterval(
size_t batch_begin, size_t batch_end, AggregateDataPtr place, const IColumn ** columns, Arena * arena, ssize_t if_argument_pos = -1)
const override
{
if (if_argument_pos >= 0)
{
const auto & flags = assert_cast<const ColumnUInt8 &>(*columns[if_argument_pos]).getData();
for (size_t i = batch_begin; i < batch_end; ++i)
{
if (flags[i])
static_cast<const Derived *>(this)->add(place, columns, i, arena);
}
}
else
{
for (size_t i = batch_begin; i < batch_end; ++i)
static_cast<const Derived *>(this)->add(place, columns, i, arena);
}
}
void addBatchArray(
size_t batch_size, AggregateDataPtr * places, size_t place_offset, const IColumn ** columns, const UInt64 * offsets, Arena * arena)
const override
{
size_t current_offset = 0;
for (size_t i = 0; i < batch_size; ++i)
{
size_t next_offset = offsets[i];
for (size_t j = current_offset; j < next_offset; ++j)
static_cast<const Derived *>(this)->add(places[i] + place_offset, columns, j, arena);
current_offset = next_offset;
}
}
void addBatchLookupTable8(
size_t batch_size,
AggregateDataPtr * map,
size_t place_offset,
std::function<void(AggregateDataPtr &)> init,
const UInt8 * key,
const IColumn ** columns,
Arena * arena) const override
{
static constexpr size_t UNROLL_COUNT = 8;
size_t i = 0;
size_t batch_size_unrolled = batch_size / UNROLL_COUNT * UNROLL_COUNT;
for (; i < batch_size_unrolled; i += UNROLL_COUNT)
{
AggregateDataPtr places[UNROLL_COUNT];
for (size_t j = 0; j < UNROLL_COUNT; ++j)
{
AggregateDataPtr & place = map[key[i + j]];
if (unlikely(!place))
init(place);
places[j] = place;
}
for (size_t j = 0; j < UNROLL_COUNT; ++j)
static_cast<const Derived *>(this)->add(places[j] + place_offset, columns, i + j, arena);
}
for (; i < batch_size; ++i)
{
AggregateDataPtr & place = map[key[i]];
if (unlikely(!place))
init(place);
static_cast<const Derived *>(this)->add(place + place_offset, columns, i, arena);
}
}
};
/// Implements several methods for manipulation with data. T - type of structure with data for aggregation.
template <typename T, typename Derived>
class IAggregateFunctionDataHelper : public IAggregateFunctionHelper<Derived>
{
protected:
using Data = T;
static Data & data(AggregateDataPtr __restrict place) { return *reinterpret_cast<Data *>(place); }
static const Data & data(ConstAggregateDataPtr __restrict place) { return *reinterpret_cast<const Data *>(place); }
public:
// Derived class can `override` this to flag that DateTime64 is not supported.
static constexpr bool DateTime64Supported = true;
IAggregateFunctionDataHelper(const DataTypes & argument_types_, const Array & parameters_)
: IAggregateFunctionHelper<Derived>(argument_types_, parameters_)
{
}
void create(AggregateDataPtr __restrict place) const override { new (place) Data; }
void destroy(AggregateDataPtr __restrict place) const noexcept override { data(place).~Data(); }
bool hasTrivialDestructor() const override { return std::is_trivially_destructible_v<Data>; }
size_t sizeOfData() const override { return sizeof(Data); }
size_t alignOfData() const override { return alignof(Data); }
void addBatchLookupTable8(
size_t batch_size,
AggregateDataPtr * map,
size_t place_offset,
std::function<void(AggregateDataPtr &)> init,
const UInt8 * key,
const IColumn ** columns,
Arena * arena) const override
{
const Derived & func = *static_cast<const Derived *>(this);
/// If the function is complex or too large, use more generic algorithm.
if (func.allocatesMemoryInArena() || sizeof(Data) > 16 || func.sizeOfData() != sizeof(Data))
{
IAggregateFunctionHelper<Derived>::addBatchLookupTable8(batch_size, map, place_offset, init, key, columns, arena);
return;
}
/// Will use UNROLL_COUNT number of lookup tables.
static constexpr size_t UNROLL_COUNT = 4;
std::unique_ptr<Data[]> places{new Data[256 * UNROLL_COUNT]};
bool has_data[256 * UNROLL_COUNT]{}; /// Separate flags array to avoid heavy initialization.
size_t i = 0;
/// Aggregate data into different lookup tables.
size_t batch_size_unrolled = batch_size / UNROLL_COUNT * UNROLL_COUNT;
for (; i < batch_size_unrolled; i += UNROLL_COUNT)
{
for (size_t j = 0; j < UNROLL_COUNT; ++j)
{
size_t idx = j * 256 + key[i + j];
if (unlikely(!has_data[idx]))
{
new (&places[idx]) Data;
has_data[idx] = true;
}
func.add(reinterpret_cast<char *>(&places[idx]), columns, i + j, nullptr);
}
}
/// Merge data from every lookup table to the final destination.
for (size_t k = 0; k < 256; ++k)
{
for (size_t j = 0; j < UNROLL_COUNT; ++j)
{
size_t idx = j * 256 + k;
if (has_data[idx])
{
AggregateDataPtr & place = map[k];
if (unlikely(!place))
init(place);
func.merge(place + place_offset, reinterpret_cast<const char *>(&places[idx]), nullptr);
}
}
}
/// Process tails and add directly to the final destination.
for (; i < batch_size; ++i)
{
size_t k = key[i];
AggregateDataPtr & place = map[k];
if (unlikely(!place))
init(place);
func.add(place + place_offset, columns, i, nullptr);
}
}
};
/// Implements tuple argument unwrapper when the tuple just masks arguments
template <typename T, typename Derived, size_t args_count>
class IAggregateFunctionTupleArgHelper : public IAggregateFunctionDataHelper<T, Derived>
{
private:
using Base = IAggregateFunctionDataHelper<T, Derived>;
static void addFree(const IAggregateFunction * that, AggregateDataPtr place, const IColumn ** columns_, size_t row_num, Arena * arena)
{
if (const auto * col = checkAndGetColumn<ColumnTuple>(*columns_[0]))
{
const IColumn * columns[args_count];
const auto & tup_columns = col->getColumns();
assert(tup_columns.size() == args_count);
for (size_t i = 0; i < tup_columns.size(); ++i)
{
columns[i] = tup_columns[i].get();
}
static_cast<const Derived &>(*that).add(place, columns, row_num, arena);
}
else
static_cast<const Derived &>(*that).add(place, columns_, row_num, arena);
}
protected:
ssize_t extractColumns(const IColumn ** columns, const IColumn ** aggr_columns, ssize_t if_argument_pos) const
{
if (tuple_argument)
{
auto tup_columns = assert_cast<const ColumnTuple *>(aggr_columns[0])->getColumns();
for (size_t i = 0; i < args_count; ++i)
columns[i] = tup_columns[i].get();
}
else
{
for (size_t i = 0; i < args_count; ++i)
columns[i] = aggr_columns[i];
}
if (if_argument_pos >= 0)
{
columns[args_count] = aggr_columns[if_argument_pos];
return args_count;
}
else
return -1;
}
bool tuple_argument;
public:
IAggregateFunctionTupleArgHelper(const DataTypes & argument_types_, const Array & parameters_, bool tuple_argument_)
: Base(argument_types_, parameters_)
{
tuple_argument = tuple_argument_;
}
IAggregateFunction::AddFunc getAddressOfAddFunction() const override { return &addFree; }
/*
* We're overriding addBatch* functions just to avoid extracting columns
* in 'add' functions
*/
void addBatch(
size_t batch_size,
AggregateDataPtr * places,
size_t place_offset,
const IColumn ** columns,
Arena * arena,
ssize_t if_argument_pos = -1) const override
{
const IColumn * ex_columns[args_count + (if_argument_pos >= 0)];
if_argument_pos = extractColumns(ex_columns, columns, if_argument_pos);
Base::addBatch(batch_size, places, place_offset, ex_columns, arena, if_argument_pos);
}
void addBatchSinglePlace(
size_t batch_size, AggregateDataPtr place, const IColumn ** columns, Arena * arena, ssize_t if_argument_pos = -1) const override
{
const IColumn * ex_columns[args_count + (if_argument_pos >= 0)];
if_argument_pos = extractColumns(ex_columns, columns, if_argument_pos);
Base::addBatchSinglePlace(batch_size, place, ex_columns, arena, if_argument_pos);
}
void addBatchSinglePlaceNotNull(
size_t batch_size,
AggregateDataPtr place,
const IColumn ** columns,
const UInt8 * null_map,
Arena * arena,
ssize_t if_argument_pos = -1) const override
{
const IColumn * ex_columns[args_count + (if_argument_pos >= 0)];
if_argument_pos = extractColumns(ex_columns, columns, if_argument_pos);
Base::addBatchSinglePlaceNotNull(batch_size, place, ex_columns, null_map, arena, if_argument_pos);
}
void addBatchSinglePlaceFromInterval(
size_t batch_begin, size_t batch_end, AggregateDataPtr place, const IColumn ** columns, Arena * arena, ssize_t if_argument_pos = -1)
const override
{
const IColumn * ex_columns[args_count + (if_argument_pos >= 0)];
if_argument_pos = extractColumns(ex_columns, columns, if_argument_pos);
Base::addBatchSinglePlaceFromInterval(batch_begin, batch_end, place, ex_columns, arena, if_argument_pos);
}
void addBatchArray(
size_t batch_size, AggregateDataPtr * places, size_t place_offset, const IColumn ** columns, const UInt64 * offsets, Arena * arena)
const override
{
const IColumn * ex_columns[args_count];
extractColumns(ex_columns, columns, -1);
Base::addBatchArray(batch_size, places, place_offset, ex_columns, offsets, arena);
}
void addBatchLookupTable8(
size_t batch_size,
AggregateDataPtr * map,
size_t place_offset,
std::function<void(AggregateDataPtr &)> init,
const UInt8 * key,
const IColumn ** columns,
Arena * arena) const override
{
const IColumn * ex_columns[args_count];
extractColumns(ex_columns, columns, -1);
Base::addBatchLookupTable8(batch_size, map, place_offset, init, key, ex_columns, arena);
}
};
/// Properties of aggregate function that are independent of argument types and parameters.
struct AggregateFunctionProperties
{
/** When the function is wrapped with Null combinator,
* should we return Nullable type with NULL when no values were aggregated
* or we should return non-Nullable type with default value (example: count, countDistinct).
*/
bool returns_default_when_only_null = false;
/** Result varies depending on the data order (example: groupArray).
* Some may also name this property as "non-commutative".
*/
bool is_order_dependent = false;
};
}