ClickHouse/src/Columns/ColumnVector.cpp
Maksim Kita ea0996674f
Merge pull request #37235 from zzachimed/column_replicate_optimize_v2
Improve performance for column replicate for uint32 type. In our benc…
2022-06-29 13:45:22 +02:00

829 lines
28 KiB
C++

#include "ColumnVector.h"
#include <Columns/ColumnsCommon.h>
#include <Columns/ColumnCompressed.h>
#include <Columns/MaskOperations.h>
#include <Processors/Transforms/ColumnGathererTransform.h>
#include <IO/WriteHelpers.h>
#include <Common/Arena.h>
#include <Common/Exception.h>
#include <Common/HashTable/Hash.h>
#include <Common/NaNUtils.h>
#include <Common/RadixSort.h>
#include <Common/SipHash.h>
#include <Common/WeakHash.h>
#include <Common/assert_cast.h>
#include <base/sort.h>
#include <base/unaligned.h>
#include <base/bit_cast.h>
#include <base/scope_guard.h>
#include <cmath>
#include <cstring>
#if defined(__SSE2__)
# include <emmintrin.h>
#endif
#if USE_EMBEDDED_COMPILER
#include <DataTypes/Native.h>
#include <llvm/IR/IRBuilder.h>
#endif
namespace DB
{
namespace ErrorCodes
{
extern const int PARAMETER_OUT_OF_BOUND;
extern const int SIZES_OF_COLUMNS_DOESNT_MATCH;
extern const int LOGICAL_ERROR;
extern const int NOT_IMPLEMENTED;
}
template <typename T>
StringRef ColumnVector<T>::serializeValueIntoArena(size_t n, Arena & arena, char const *& begin) const
{
auto * pos = arena.allocContinue(sizeof(T), begin);
unalignedStore<T>(pos, data[n]);
return StringRef(pos, sizeof(T));
}
template <typename T>
const char * ColumnVector<T>::deserializeAndInsertFromArena(const char * pos)
{
data.emplace_back(unalignedLoad<T>(pos));
return pos + sizeof(T);
}
template <typename T>
const char * ColumnVector<T>::skipSerializedInArena(const char * pos) const
{
return pos + sizeof(T);
}
template <typename T>
void ColumnVector<T>::updateHashWithValue(size_t n, SipHash & hash) const
{
hash.update(data[n]);
}
template <typename T>
void ColumnVector<T>::updateWeakHash32(WeakHash32 & hash) const
{
auto s = data.size();
if (hash.getData().size() != s)
throw Exception("Size of WeakHash32 does not match size of column: column size is " + std::to_string(s) +
", hash size is " + std::to_string(hash.getData().size()), ErrorCodes::LOGICAL_ERROR);
const T * begin = data.data();
const T * end = begin + s;
UInt32 * hash_data = hash.getData().data();
while (begin < end)
{
*hash_data = intHashCRC32(*begin, *hash_data);
++begin;
++hash_data;
}
}
template <typename T>
void ColumnVector<T>::updateHashFast(SipHash & hash) const
{
hash.update(reinterpret_cast<const char *>(data.data()), size() * sizeof(data[0]));
}
template <typename T>
struct ColumnVector<T>::less
{
const Self & parent;
int nan_direction_hint;
less(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const { return CompareHelper<T>::less(parent.data[lhs], parent.data[rhs], nan_direction_hint); }
};
template <typename T>
struct ColumnVector<T>::less_stable
{
const Self & parent;
int nan_direction_hint;
less_stable(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const
{
if (unlikely(parent.data[lhs] == parent.data[rhs]))
return lhs < rhs;
if constexpr (std::is_floating_point_v<T>)
{
if (unlikely(std::isnan(parent.data[lhs]) && std::isnan(parent.data[rhs])))
{
return lhs < rhs;
}
}
return CompareHelper<T>::less(parent.data[lhs], parent.data[rhs], nan_direction_hint);
}
};
template <typename T>
struct ColumnVector<T>::greater
{
const Self & parent;
int nan_direction_hint;
greater(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const { return CompareHelper<T>::greater(parent.data[lhs], parent.data[rhs], nan_direction_hint); }
};
template <typename T>
struct ColumnVector<T>::greater_stable
{
const Self & parent;
int nan_direction_hint;
greater_stable(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const
{
if (unlikely(parent.data[lhs] == parent.data[rhs]))
return lhs < rhs;
if constexpr (std::is_floating_point_v<T>)
{
if (unlikely(std::isnan(parent.data[lhs]) && std::isnan(parent.data[rhs])))
{
return lhs < rhs;
}
}
return CompareHelper<T>::greater(parent.data[lhs], parent.data[rhs], nan_direction_hint);
}
};
template <typename T>
struct ColumnVector<T>::equals
{
const Self & parent;
int nan_direction_hint;
equals(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const { return CompareHelper<T>::equals(parent.data[lhs], parent.data[rhs], nan_direction_hint); }
};
namespace
{
template <typename T>
struct ValueWithIndex
{
T value;
UInt32 index;
};
template <typename T>
struct RadixSortTraits : RadixSortNumTraits<T>
{
using Element = ValueWithIndex<T>;
using Result = size_t;
static T & extractKey(Element & elem) { return elem.value; }
static size_t extractResult(Element & elem) { return elem.index; }
};
}
#if USE_EMBEDDED_COMPILER
template <typename T>
bool ColumnVector<T>::isComparatorCompilable() const
{
/// TODO: for std::is_floating_point_v<T> we need implement is_nan in LLVM IR.
return std::is_integral_v<T>;
}
template <typename T>
llvm::Value * ColumnVector<T>::compileComparator(llvm::IRBuilderBase & builder, llvm::Value * lhs, llvm::Value * rhs, llvm::Value *) const
{
llvm::IRBuilder<> & b = static_cast<llvm::IRBuilder<> &>(builder);
if constexpr (std::is_integral_v<T>)
{
// a > b ? 1 : (a < b ? -1 : 0);
bool is_signed = std::is_signed_v<T>;
auto * lhs_greater_than_rhs_result = llvm::ConstantInt::getSigned(b.getInt8Ty(), 1);
auto * lhs_less_than_rhs_result = llvm::ConstantInt::getSigned(b.getInt8Ty(), -1);
auto * lhs_equals_rhs_result = llvm::ConstantInt::getSigned(b.getInt8Ty(), 0);
auto * lhs_greater_than_rhs = is_signed ? b.CreateICmpSGT(lhs, rhs) : b.CreateICmpUGT(lhs, rhs);
auto * lhs_less_than_rhs = is_signed ? b.CreateICmpSLT(lhs, rhs) : b.CreateICmpULT(lhs, rhs);
auto * if_lhs_less_than_rhs_result = b.CreateSelect(lhs_less_than_rhs, lhs_less_than_rhs_result, lhs_equals_rhs_result);
return b.CreateSelect(lhs_greater_than_rhs, lhs_greater_than_rhs_result, if_lhs_less_than_rhs_result);
}
else
{
throw Exception(ErrorCodes::LOGICAL_ERROR, "Method compileComparator is not supported for type {}", TypeName<T>);
}
}
#endif
template <typename T>
void ColumnVector<T>::getPermutation(IColumn::PermutationSortDirection direction, IColumn::PermutationSortStability stability,
size_t limit, int nan_direction_hint, IColumn::Permutation & res) const
{
size_t s = data.size();
res.resize(s);
if (s == 0)
return;
if (limit >= s)
limit = 0;
if (limit)
{
for (size_t i = 0; i < s; ++i)
res[i] = i;
if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable)
::partial_sort(res.begin(), res.begin() + limit, res.end(), less(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable)
::partial_sort(res.begin(), res.begin() + limit, res.end(), less_stable(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable)
::partial_sort(res.begin(), res.begin() + limit, res.end(), greater(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Stable)
::partial_sort(res.begin(), res.begin() + limit, res.end(), greater_stable(*this, nan_direction_hint));
}
else
{
/// A case for radix sort
/// LSD RadixSort is stable
if constexpr (is_arithmetic_v<T> && !is_big_int_v<T>)
{
bool reverse = direction == IColumn::PermutationSortDirection::Descending;
bool ascending = direction == IColumn::PermutationSortDirection::Ascending;
bool sort_is_stable = stability == IColumn::PermutationSortStability::Stable;
/// TODO: LSD RadixSort is currently not stable if direction is descending, or value is floating point
bool use_radix_sort = (sort_is_stable && ascending && !std::is_floating_point_v<T>) || !sort_is_stable;
/// Thresholds on size. Lower threshold is arbitrary. Upper threshold is chosen by the type for histogram counters.
if (s >= 256 && s <= std::numeric_limits<UInt32>::max() && use_radix_sort)
{
PaddedPODArray<ValueWithIndex<T>> pairs(s);
for (UInt32 i = 0; i < static_cast<UInt32>(s); ++i)
pairs[i] = {data[i], i};
RadixSort<RadixSortTraits<T>>::executeLSD(pairs.data(), s, reverse, res.data());
/// Radix sort treats all NaNs to be greater than all numbers.
/// If the user needs the opposite, we must move them accordingly.
if (std::is_floating_point_v<T> && nan_direction_hint < 0)
{
size_t nans_to_move = 0;
for (size_t i = 0; i < s; ++i)
{
if (isNaN(data[res[reverse ? i : s - 1 - i]]))
++nans_to_move;
else
break;
}
if (nans_to_move)
{
std::rotate(std::begin(res), std::begin(res) + (reverse ? nans_to_move : s - nans_to_move), std::end(res));
}
}
return;
}
}
/// Default sorting algorithm.
for (size_t i = 0; i < s; ++i)
res[i] = i;
if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable)
::sort(res.begin(), res.end(), less(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable)
::sort(res.begin(), res.end(), less_stable(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable)
::sort(res.begin(), res.end(), greater(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Stable)
::sort(res.begin(), res.end(), greater_stable(*this, nan_direction_hint));
}
}
template <typename T>
void ColumnVector<T>::updatePermutation(IColumn::PermutationSortDirection direction, IColumn::PermutationSortStability stability,
size_t limit, int nan_direction_hint, IColumn::Permutation & res, EqualRanges & equal_ranges) const
{
bool reverse = direction == IColumn::PermutationSortDirection::Descending;
bool ascending = direction == IColumn::PermutationSortDirection::Ascending;
bool sort_is_stable = stability == IColumn::PermutationSortStability::Stable;
auto sort = [&](auto begin, auto end, auto pred)
{
/// A case for radix sort
if constexpr (is_arithmetic_v<T> && !is_big_int_v<T>)
{
/// TODO: LSD RadixSort is currently not stable if direction is descending, or value is floating point
bool use_radix_sort = (sort_is_stable && ascending && !std::is_floating_point_v<T>) || !sort_is_stable;
size_t size = end - begin;
/// Thresholds on size. Lower threshold is arbitrary. Upper threshold is chosen by the type for histogram counters.
if (size >= 256 && size <= std::numeric_limits<UInt32>::max() && use_radix_sort)
{
PaddedPODArray<ValueWithIndex<T>> pairs(size);
size_t index = 0;
for (auto * it = begin; it != end; ++it)
{
pairs[index] = {data[*it], static_cast<UInt32>(*it)};
++index;
}
RadixSort<RadixSortTraits<T>>::executeLSD(pairs.data(), size, reverse, begin);
/// Radix sort treats all NaNs to be greater than all numbers.
/// If the user needs the opposite, we must move them accordingly.
if (std::is_floating_point_v<T> && nan_direction_hint < 0)
{
size_t nans_to_move = 0;
for (size_t i = 0; i < size; ++i)
{
if (isNaN(data[begin[reverse ? i : size - 1 - i]]))
++nans_to_move;
else
break;
}
if (nans_to_move)
{
std::rotate(begin, begin + (reverse ? nans_to_move : size - nans_to_move), end);
}
}
return;
}
}
::sort(begin, end, pred);
};
auto partial_sort = [](auto begin, auto mid, auto end, auto pred) { ::partial_sort(begin, mid, end, pred); };
if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable)
{
this->updatePermutationImpl(
limit, res, equal_ranges,
less(*this, nan_direction_hint),
equals(*this, nan_direction_hint),
sort, partial_sort);
}
else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable)
{
this->updatePermutationImpl(
limit, res, equal_ranges,
less_stable(*this, nan_direction_hint),
equals(*this, nan_direction_hint),
sort, partial_sort);
}
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable)
{
this->updatePermutationImpl(
limit, res, equal_ranges,
greater(*this, nan_direction_hint),
equals(*this, nan_direction_hint),
sort, partial_sort);
}
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Stable)
{
this->updatePermutationImpl(
limit, res, equal_ranges,
greater_stable(*this, nan_direction_hint),
equals(*this, nan_direction_hint),
sort, partial_sort);
}
}
template <typename T>
MutableColumnPtr ColumnVector<T>::cloneResized(size_t size) const
{
auto res = this->create();
if (size > 0)
{
auto & new_col = static_cast<Self &>(*res);
new_col.data.resize(size);
size_t count = std::min(this->size(), size);
memcpy(new_col.data.data(), data.data(), count * sizeof(data[0]));
if (size > count)
memset(static_cast<void *>(&new_col.data[count]), 0, (size - count) * sizeof(ValueType));
}
return res;
}
template <typename T>
UInt64 ColumnVector<T>::get64(size_t n [[maybe_unused]]) const
{
if constexpr (is_arithmetic_v<T>)
return bit_cast<UInt64>(data[n]);
else
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Cannot get the value of {} as UInt64", TypeName<T>);
}
template <typename T>
inline Float64 ColumnVector<T>::getFloat64(size_t n [[maybe_unused]]) const
{
if constexpr (is_arithmetic_v<T>)
return static_cast<Float64>(data[n]);
else
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Cannot get the value of {} as Float64", TypeName<T>);
}
template <typename T>
Float32 ColumnVector<T>::getFloat32(size_t n [[maybe_unused]]) const
{
if constexpr (is_arithmetic_v<T>)
return static_cast<Float32>(data[n]);
else
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Cannot get the value of {} as Float32", TypeName<T>);
}
template <typename T>
void ColumnVector<T>::insertRangeFrom(const IColumn & src, size_t start, size_t length)
{
const ColumnVector & src_vec = assert_cast<const ColumnVector &>(src);
if (start + length > src_vec.data.size())
throw Exception("Parameters start = "
+ toString(start) + ", length = "
+ toString(length) + " are out of bound in ColumnVector<T>::insertRangeFrom method"
" (data.size() = " + toString(src_vec.data.size()) + ").",
ErrorCodes::PARAMETER_OUT_OF_BOUND);
size_t old_size = data.size();
data.resize(old_size + length);
memcpy(data.data() + old_size, &src_vec.data[start], length * sizeof(data[0]));
}
template <typename T>
ColumnPtr ColumnVector<T>::filter(const IColumn::Filter & filt, ssize_t result_size_hint) const
{
size_t size = data.size();
if (size != filt.size())
throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH, "Size of filter ({}) doesn't match size of column ({})", filt.size(), size);
auto res = this->create();
Container & res_data = res->getData();
if (result_size_hint)
res_data.reserve(result_size_hint > 0 ? result_size_hint : size);
const UInt8 * filt_pos = filt.data();
const UInt8 * filt_end = filt_pos + size;
const T * data_pos = data.data();
/** A slightly more optimized version.
* Based on the assumption that often pieces of consecutive values
* completely pass or do not pass the filter.
* Therefore, we will optimistically check the parts of `SIMD_BYTES` values.
*/
static constexpr size_t SIMD_BYTES = 64;
const UInt8 * filt_end_aligned = filt_pos + size / SIMD_BYTES * SIMD_BYTES;
while (filt_pos < filt_end_aligned)
{
UInt64 mask = bytes64MaskToBits64Mask(filt_pos);
if (0xffffffffffffffff == mask)
{
res_data.insert(data_pos, data_pos + SIMD_BYTES);
}
else
{
while (mask)
{
size_t index = __builtin_ctzll(mask);
res_data.push_back(data_pos[index]);
#ifdef __BMI__
mask = _blsr_u64(mask);
#else
mask = mask & (mask-1);
#endif
}
}
filt_pos += SIMD_BYTES;
data_pos += SIMD_BYTES;
}
while (filt_pos < filt_end)
{
if (*filt_pos)
res_data.push_back(*data_pos);
++filt_pos;
++data_pos;
}
return res;
}
template <typename T>
void ColumnVector<T>::expand(const IColumn::Filter & mask, bool inverted)
{
expandDataByMask<T>(data, mask, inverted);
}
template <typename T>
void ColumnVector<T>::applyZeroMap(const IColumn::Filter & filt, bool inverted)
{
size_t size = data.size();
if (size != filt.size())
throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH, "Size of filter ({}) doesn't match size of column ({})", filt.size(), size);
const UInt8 * filt_pos = filt.data();
const UInt8 * filt_end = filt_pos + size;
T * data_pos = data.data();
if (inverted)
{
for (; filt_pos < filt_end; ++filt_pos, ++data_pos)
if (!*filt_pos)
*data_pos = 0;
}
else
{
for (; filt_pos < filt_end; ++filt_pos, ++data_pos)
if (*filt_pos)
*data_pos = 0;
}
}
template <typename T>
ColumnPtr ColumnVector<T>::permute(const IColumn::Permutation & perm, size_t limit) const
{
return permuteImpl(*this, perm, limit);
}
template <typename T>
ColumnPtr ColumnVector<T>::index(const IColumn & indexes, size_t limit) const
{
return selectIndexImpl(*this, indexes, limit);
}
template <typename T>
ColumnPtr ColumnVector<T>::replicate(const IColumn::Offsets & offsets) const
{
const size_t size = data.size();
if (size != offsets.size())
throw Exception("Size of offsets doesn't match size of column.", ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH);
if (0 == size)
return this->create();
#ifdef __SSE2__
if constexpr (std::is_same_v<T, UInt32>)
return replicateSSE2(offsets);
#endif
auto res = this->create(offsets.back());
auto it = res->getData().begin(); // NOLINT
for (size_t i = 0; i < size; ++i)
{
const auto span_end = res->getData().begin() + offsets[i]; // NOLINT
for (; it != span_end; ++it)
*it = data[i];
}
return res;
}
#ifdef __SSE2__
template <typename T>
ColumnPtr ColumnVector<T>::replicateSSE2(const IColumn::Offsets & offsets) const
{
auto res = this->create(offsets.back());
auto it = res->getData().begin(); // NOLINT
/// Column is using PaddedPODArray, so we don't have to worry about the 4 out of range elements.
IColumn::Offset prev_offset = 0;
std::optional<size_t> copy_begin;
size_t size = offsets.size();
for (size_t i = 0; i < size; ++i)
{
size_t span = offsets[i] - prev_offset;
prev_offset = offsets[i];
if (span == 1)
{
if (!copy_begin)
copy_begin = i;
continue;
}
/// data : 11 22 33 44 55
/// offsets: 0 1 2 3 3
/// res: 22 33 44
if (copy_begin)
{
size_t copy_size = i - (*copy_begin);
bool remain = (copy_size & 3);
size_t sse_copy_counter = (copy_size >> 2);
sse_copy_counter = remain * (sse_copy_counter + 1) + (!remain) * (sse_copy_counter);
auto it_tmp = it; // NOLINT
size_t data_start = *copy_begin;
copy_begin.reset();
constexpr const int copy_mask = _MM_SHUFFLE(3, 2, 1, 0);
while (sse_copy_counter)
{
__m128i data_to_copy = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&data[data_start]));
auto copy_result = _mm_shuffle_epi32(data_to_copy, copy_mask);
_mm_storeu_si128(reinterpret_cast<__m128i *>(it_tmp), copy_result);
it_tmp += 4;
data_start += 4;
--sse_copy_counter;
}
it += copy_size;
}
if (span == 0)
continue;
/// data : 11 22 33
/// offsets: 0 0 4
/// res: 33 33 33 33
size_t shuffle_size = span;
bool shuffle_remain = (shuffle_size & 3);
size_t sse_shuffle_counter = (shuffle_size >> 2);
sse_shuffle_counter = shuffle_remain * (sse_shuffle_counter + 1) + (!shuffle_remain) * (sse_shuffle_counter);
auto it_tmp = it; // NOLINT
constexpr const int shuffle_mask = (_MM_SHUFFLE(0, 0, 0, 0));
__m128i data_to_shuffle = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&data[i]));
auto shuffle_result = _mm_shuffle_epi32(data_to_shuffle, shuffle_mask);
while (sse_shuffle_counter)
{
_mm_storeu_si128(reinterpret_cast<__m128i *>(it_tmp), shuffle_result);
it_tmp += 4;
--sse_shuffle_counter;
}
it += shuffle_size;
}
/// data : 11 22 33 44 55
/// offsets: 1 2 3 4 5
/// res: 11 22 33 44 55
if (copy_begin)
{
size_t copy_size = (size - (*copy_begin));
bool remain = (copy_size & 3);
size_t sse_copy_counter = (copy_size >> 2);
sse_copy_counter = remain * (sse_copy_counter + 1) + (!remain) * (sse_copy_counter);
auto it_tmp = it; // NOLINT
size_t data_start = *copy_begin;
constexpr const int copy_mask = (_MM_SHUFFLE(3, 2, 1, 0));
while (sse_copy_counter)
{
__m128i data_to_copy = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&data[data_start]));
auto copy_result = _mm_shuffle_epi32(data_to_copy, copy_mask);
_mm_storeu_si128(reinterpret_cast<__m128i *>(it_tmp), copy_result);
it_tmp += 4;
data_start += 4;
--sse_copy_counter;
}
it += copy_size;
}
return res;
}
#endif
template <typename T>
void ColumnVector<T>::gather(ColumnGathererStream & gatherer)
{
gatherer.gather(*this);
}
template <typename T>
void ColumnVector<T>::getExtremes(Field & min, Field & max) const
{
size_t size = data.size();
if (size == 0)
{
min = T(0);
max = T(0);
return;
}
bool has_value = false;
/** Skip all NaNs in extremes calculation.
* If all values are NaNs, then return NaN.
* NOTE: There exist many different NaNs.
* Different NaN could be returned: not bit-exact value as one of NaNs from column.
*/
T cur_min = NaNOrZero<T>();
T cur_max = NaNOrZero<T>();
for (const T & x : data)
{
if (isNaN(x))
continue;
if (!has_value)
{
cur_min = x;
cur_max = x;
has_value = true;
continue;
}
if (x < cur_min)
cur_min = x;
else if (x > cur_max)
cur_max = x;
}
min = NearestFieldType<T>(cur_min);
max = NearestFieldType<T>(cur_max);
}
#pragma GCC diagnostic ignored "-Wold-style-cast"
template <typename T>
ColumnPtr ColumnVector<T>::compress() const
{
const size_t data_size = data.size();
const size_t source_size = data_size * sizeof(T);
/// Don't compress small blocks.
if (source_size < 4096) /// A wild guess.
return ColumnCompressed::wrap(this->getPtr());
auto compressed = ColumnCompressed::compressBuffer(data.data(), source_size, false);
if (!compressed)
return ColumnCompressed::wrap(this->getPtr());
const size_t compressed_size = compressed->size();
return ColumnCompressed::create(data_size, compressed_size,
[compressed = std::move(compressed), column_size = data_size]
{
auto res = ColumnVector<T>::create(column_size);
ColumnCompressed::decompressBuffer(
compressed->data(), res->getData().data(), compressed->size(), column_size * sizeof(T));
return res;
});
}
template <typename T>
ColumnPtr ColumnVector<T>::createWithOffsets(const IColumn::Offsets & offsets, const Field & default_field, size_t total_rows, size_t shift) const
{
if (offsets.size() + shift != size())
throw Exception(ErrorCodes::LOGICAL_ERROR,
"Incompatible sizes of offsets ({}), shift ({}) and size of column {}", offsets.size(), shift, size());
auto res = this->create();
auto & res_data = res->getData();
T default_value = safeGet<T>(default_field);
res_data.resize_fill(total_rows, default_value);
for (size_t i = 0; i < offsets.size(); ++i)
res_data[offsets[i]] = data[i + shift];
return res;
}
/// Explicit template instantiations - to avoid code bloat in headers.
template class ColumnVector<UInt8>;
template class ColumnVector<UInt16>;
template class ColumnVector<UInt32>;
template class ColumnVector<UInt64>;
template class ColumnVector<UInt128>;
template class ColumnVector<UInt256>;
template class ColumnVector<Int8>;
template class ColumnVector<Int16>;
template class ColumnVector<Int32>;
template class ColumnVector<Int64>;
template class ColumnVector<Int128>;
template class ColumnVector<Int256>;
template class ColumnVector<Float32>;
template class ColumnVector<Float64>;
template class ColumnVector<UUID>;
}