mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-11 17:02:25 +00:00
fa2074e67b
There is no bug in Linux, the issue that CLOCK_MONOTONIC returns values
less then previous calls likely happens due to adjtime(3) (NTP), since
CLOCK_MONOTONIC is affected by it, and I've seen lots of slight time
modifications due to NTP on the servers. And even on my desktop (I also
have NTP enabled):
CLOCK_MONOTONIC: 189292.803 (2 days + 4h 34m 52s)
CLOCK_MONOTONIC_RAW: 189290.016 (2 days + 4h 34m 50s)
However on Linux there is CLOCK_MONOTONIC_RAW, it is similar to
CLOCK_MONOTONIC, but does not affected by the adjtime(3).
About performance, it is the same:
CLOCK_MONOTONIC 10e6: real=0m0.191s user=0m0.190s sys=0m0.000s
CLOCK_MONOTONIC_RAW 10e6: real=0m0.191s user=0m0.191s sys=0m0.000s
Ops/s:
- AMD Threadripper: 52.3e6
- Xeon Silver 4216 2.10: 46.5e6
Fixes: c5d631ca54
Fixes: #29811 (cc @tavplubix)
Signed-off-by: Azat Khuzhin <a.khuzhin@semrush.com>
179 lines
6.4 KiB
C++
179 lines
6.4 KiB
C++
#pragma once
|
|
|
|
#include <base/time.h>
|
|
#include <base/types.h>
|
|
#include <base/defines.h>
|
|
|
|
#include <cassert>
|
|
#include <atomic>
|
|
#include <memory>
|
|
|
|
/// From clock_getres(2):
|
|
///
|
|
/// Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-based
|
|
/// time that is not subject to NTP adjustments or the incremental
|
|
/// adjustments performed by adjtime(3).
|
|
#ifdef CLOCK_MONOTONIC_RAW
|
|
static constexpr clockid_t STOPWATCH_DEFAULT_CLOCK = CLOCK_MONOTONIC_RAW;
|
|
#else
|
|
static constexpr clockid_t STOPWATCH_DEFAULT_CLOCK = CLOCK_MONOTONIC;
|
|
#endif
|
|
|
|
inline UInt64 clock_gettime_ns(clockid_t clock_type = STOPWATCH_DEFAULT_CLOCK)
|
|
{
|
|
struct timespec ts;
|
|
clock_gettime(clock_type, &ts);
|
|
return UInt64(ts.tv_sec * 1000000000LL + ts.tv_nsec);
|
|
}
|
|
|
|
/// Takes previously returned value and returns it again if time stepped back for some reason.
|
|
///
|
|
/// You should use this if OS does not support CLOCK_MONOTONIC_RAW
|
|
inline UInt64 clock_gettime_ns_adjusted(UInt64 prev_time, clockid_t clock_type = STOPWATCH_DEFAULT_CLOCK)
|
|
{
|
|
#ifdef CLOCK_MONOTONIC_RAW
|
|
if (likely(clock_type == CLOCK_MONOTONIC_RAW))
|
|
return clock_gettime_ns(clock_type);
|
|
#endif
|
|
|
|
UInt64 current_time = clock_gettime_ns(clock_type);
|
|
if (likely(prev_time <= current_time))
|
|
return current_time;
|
|
|
|
/// Something probably went completely wrong if time stepped back for more than 1 second.
|
|
assert(prev_time - current_time <= 1000000000ULL);
|
|
return prev_time;
|
|
}
|
|
|
|
/** Differs from Poco::Stopwatch only by using 'clock_gettime' instead of 'gettimeofday',
|
|
* returns nanoseconds instead of microseconds, and also by other minor differences.
|
|
*/
|
|
class Stopwatch
|
|
{
|
|
public:
|
|
/** CLOCK_MONOTONIC/CLOCK_MONOTONIC_RAW works relatively efficient (~40-50 million calls/sec) and doesn't lead to syscall.
|
|
* Pass CLOCK_MONOTONIC_COARSE, if you need better performance with acceptable cost of several milliseconds of inaccuracy.
|
|
*/
|
|
explicit Stopwatch(clockid_t clock_type_ = STOPWATCH_DEFAULT_CLOCK) : clock_type(clock_type_) { start(); }
|
|
explicit Stopwatch(clockid_t clock_type_, UInt64 start_nanoseconds, bool is_running_)
|
|
: start_ns(start_nanoseconds), clock_type(clock_type_), is_running(is_running_)
|
|
{
|
|
}
|
|
|
|
void start() { start_ns = nanoseconds(); is_running = true; }
|
|
void stop() { stop_ns = nanoseconds(); is_running = false; }
|
|
void reset() { start_ns = 0; stop_ns = 0; is_running = false; }
|
|
void restart() { start(); }
|
|
UInt64 elapsed() const { return elapsedNanoseconds(); }
|
|
UInt64 elapsedNanoseconds() const { return is_running ? nanoseconds() - start_ns : stop_ns - start_ns; }
|
|
UInt64 elapsedMicroseconds() const { return elapsedNanoseconds() / 1000U; }
|
|
UInt64 elapsedMilliseconds() const { return elapsedNanoseconds() / 1000000UL; }
|
|
double elapsedSeconds() const { return static_cast<double>(elapsedNanoseconds()) / 1000000000ULL; }
|
|
|
|
UInt64 getStart() const { return start_ns; }
|
|
UInt64 getEnd() const { return stop_ns; }
|
|
|
|
private:
|
|
UInt64 start_ns = 0;
|
|
UInt64 stop_ns = 0;
|
|
clockid_t clock_type;
|
|
bool is_running = false;
|
|
|
|
UInt64 nanoseconds() const { return clock_gettime_ns_adjusted(start_ns, clock_type); }
|
|
};
|
|
|
|
using StopwatchUniquePtr = std::unique_ptr<Stopwatch>;
|
|
|
|
|
|
/// Allows to obtain the elapsed time concurrently with restarting the stopwatch.
|
|
/// Allows to atomically compare the elapsed time with a threshold and restart the watch if the elapsed time is not less.
|
|
class AtomicStopwatch
|
|
{
|
|
public:
|
|
explicit AtomicStopwatch(clockid_t clock_type_ = STOPWATCH_DEFAULT_CLOCK) : clock_type(clock_type_) { restart(); }
|
|
|
|
void restart() { start_ns = nanoseconds(0); }
|
|
UInt64 elapsed() const
|
|
{
|
|
UInt64 current_start_ns = start_ns;
|
|
return nanoseconds(current_start_ns) - current_start_ns;
|
|
}
|
|
UInt64 elapsedMilliseconds() const { return elapsed() / 1000000UL; }
|
|
double elapsedSeconds() const { return static_cast<double>(elapsed()) / 1000000000ULL; }
|
|
|
|
/** If specified amount of time has passed, then restarts timer and returns true.
|
|
* Otherwise returns false.
|
|
* This is done atomically.
|
|
*/
|
|
bool compareAndRestart(double seconds)
|
|
{
|
|
UInt64 threshold = static_cast<UInt64>(seconds * 1000000000.0);
|
|
UInt64 current_start_ns = start_ns;
|
|
UInt64 current_ns = nanoseconds(current_start_ns);
|
|
|
|
while (true)
|
|
{
|
|
if (current_ns < current_start_ns + threshold)
|
|
return false;
|
|
|
|
if (start_ns.compare_exchange_weak(current_start_ns, current_ns))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
struct Lock
|
|
{
|
|
AtomicStopwatch * parent = nullptr;
|
|
|
|
Lock() = default;
|
|
|
|
explicit operator bool() const { return parent != nullptr; }
|
|
|
|
explicit Lock(AtomicStopwatch * parent_) : parent(parent_) {}
|
|
|
|
Lock(Lock &&) = default;
|
|
|
|
~Lock()
|
|
{
|
|
if (parent)
|
|
parent->restart();
|
|
}
|
|
};
|
|
|
|
/** If specified amount of time has passed and timer is not locked right now, then returns Lock object,
|
|
* which locks timer and, on destruction, restarts timer and releases the lock.
|
|
* Otherwise returns object, that is implicitly casting to false.
|
|
* This is done atomically.
|
|
*
|
|
* Usage:
|
|
* if (auto lock = timer.compareAndRestartDeferred(1))
|
|
* /// do some work, that must be done in one thread and not more frequently than each second.
|
|
*/
|
|
Lock compareAndRestartDeferred(double seconds)
|
|
{
|
|
UInt64 threshold = UInt64(seconds * 1000000000.0);
|
|
UInt64 current_start_ns = start_ns;
|
|
UInt64 current_ns = nanoseconds(current_start_ns);
|
|
|
|
while (true)
|
|
{
|
|
if ((current_start_ns & 0x8000000000000000ULL))
|
|
return {};
|
|
|
|
if (current_ns < current_start_ns + threshold)
|
|
return {};
|
|
|
|
if (start_ns.compare_exchange_weak(current_start_ns, current_ns | 0x8000000000000000ULL))
|
|
return Lock(this);
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::atomic<UInt64> start_ns;
|
|
std::atomic<bool> lock {false};
|
|
clockid_t clock_type;
|
|
|
|
/// Most significant bit is a lock. When it is set, compareAndRestartDeferred method will return false.
|
|
UInt64 nanoseconds(UInt64 prev_time) const { return clock_gettime_ns_adjusted(prev_time, clock_type) & 0x7FFFFFFFFFFFFFFFULL; }
|
|
};
|