ClickHouse/dbms/src/Dictionaries/ComplexKeyCacheDictionary.h

743 lines
27 KiB
C++

#pragma once
#include <atomic>
#include <chrono>
#include <map>
#include <tuple>
#include <vector>
#include <shared_mutex>
#include <Columns/ColumnString.h>
#include <Common/ArenaWithFreeLists.h>
#include <Common/HashTable/HashMap.h>
#include <Common/ProfilingScopedRWLock.h>
#include <Common/SmallObjectPool.h>
#include <Dictionaries/DictionaryStructure.h>
#include <Dictionaries/IDictionary.h>
#include <Dictionaries/IDictionarySource.h>
#include <common/StringRef.h>
#include <ext/bit_cast.h>
#include <ext/map.h>
#include <ext/scope_guard.h>
#include <pcg_random.hpp>
namespace ProfileEvents
{
extern const Event DictCacheKeysRequested;
extern const Event DictCacheKeysRequestedMiss;
extern const Event DictCacheKeysRequestedFound;
extern const Event DictCacheKeysExpired;
extern const Event DictCacheKeysNotFound;
extern const Event DictCacheKeysHit;
extern const Event DictCacheRequestTimeNs;
extern const Event DictCacheLockWriteNs;
extern const Event DictCacheLockReadNs;
}
namespace DB
{
class ComplexKeyCacheDictionary final : public IDictionaryBase
{
public:
ComplexKeyCacheDictionary(const std::string & name,
const DictionaryStructure & dict_struct,
DictionarySourcePtr source_ptr,
const DictionaryLifetime dict_lifetime,
const size_t size);
ComplexKeyCacheDictionary(const ComplexKeyCacheDictionary & other);
std::string getKeyDescription() const
{
return key_description;
}
std::exception_ptr getCreationException() const override
{
return {};
}
std::string getName() const override
{
return name;
}
std::string getTypeName() const override
{
return "ComplexKeyCache";
}
size_t getBytesAllocated() const override
{
return bytes_allocated + (key_size_is_fixed ? fixed_size_keys_pool->size() : keys_pool->size())
+ (string_arena ? string_arena->size() : 0);
}
size_t getQueryCount() const override
{
return query_count.load(std::memory_order_relaxed);
}
double getHitRate() const override
{
return static_cast<double>(hit_count.load(std::memory_order_acquire)) / query_count.load(std::memory_order_relaxed);
}
size_t getElementCount() const override
{
return element_count.load(std::memory_order_relaxed);
}
double getLoadFactor() const override
{
return static_cast<double>(element_count.load(std::memory_order_relaxed)) / size;
}
bool isCached() const override
{
return true;
}
std::unique_ptr<IExternalLoadable> clone() const override
{
return std::make_unique<ComplexKeyCacheDictionary>(*this);
}
const IDictionarySource * getSource() const override
{
return source_ptr.get();
}
const DictionaryLifetime & getLifetime() const override
{
return dict_lifetime;
}
const DictionaryStructure & getStructure() const override
{
return dict_struct;
}
std::chrono::time_point<std::chrono::system_clock> getCreationTime() const override
{
return creation_time;
}
bool isInjective(const std::string & attribute_name) const override
{
return dict_struct.attributes[&getAttribute(attribute_name) - attributes.data()].injective;
}
/// In all functions below, key_columns must be full (non-constant) columns.
/// See the requirement in IDataType.h for text-serialization functions.
#define DECLARE(TYPE) \
void get##TYPE( \
const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types, PaddedPODArray<TYPE> & out) const;
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(UInt128)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void getString(const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types, ColumnString * out) const;
#define DECLARE(TYPE) \
void get##TYPE(const std::string & attribute_name, \
const Columns & key_columns, \
const DataTypes & key_types, \
const PaddedPODArray<TYPE> & def, \
PaddedPODArray<TYPE> & out) const;
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(UInt128)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void getString(const std::string & attribute_name,
const Columns & key_columns,
const DataTypes & key_types,
const ColumnString * const def,
ColumnString * const out) const;
#define DECLARE(TYPE) \
void get##TYPE(const std::string & attribute_name, \
const Columns & key_columns, \
const DataTypes & key_types, \
const TYPE def, \
PaddedPODArray<TYPE> & out) const;
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(UInt128)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void getString(const std::string & attribute_name,
const Columns & key_columns,
const DataTypes & key_types,
const String & def,
ColumnString * const out) const;
void has(const Columns & key_columns, const DataTypes & key_types, PaddedPODArray<UInt8> & out) const;
BlockInputStreamPtr getBlockInputStream(const Names & column_names, size_t max_block_size) const override;
private:
template <typename Value>
using MapType = HashMapWithSavedHash<StringRef, Value, StringRefHash>;
template <typename Value>
using ContainerType = Value[];
template <typename Value>
using ContainerPtrType = std::unique_ptr<ContainerType<Value>>;
struct CellMetadata final
{
using time_point_t = std::chrono::system_clock::time_point;
using time_point_rep_t = time_point_t::rep;
using time_point_urep_t = std::make_unsigned_t<time_point_rep_t>;
static constexpr UInt64 EXPIRES_AT_MASK = std::numeric_limits<time_point_rep_t>::max();
static constexpr UInt64 IS_DEFAULT_MASK = ~EXPIRES_AT_MASK;
StringRef key;
decltype(StringRefHash{}(key)) hash;
/// Stores both expiration time and `is_default` flag in the most significant bit
time_point_urep_t data;
/// Sets expiration time, resets `is_default` flag to false
time_point_t expiresAt() const
{
return ext::safe_bit_cast<time_point_t>(data & EXPIRES_AT_MASK);
}
void setExpiresAt(const time_point_t & t)
{
data = ext::safe_bit_cast<time_point_urep_t>(t);
}
bool isDefault() const
{
return (data & IS_DEFAULT_MASK) == IS_DEFAULT_MASK;
}
void setDefault()
{
data |= IS_DEFAULT_MASK;
}
};
struct Attribute final
{
AttributeUnderlyingType type;
std::tuple<UInt8, UInt16, UInt32, UInt64, UInt128, Int8, Int16, Int32, Int64, Float32, Float64, String> null_values;
std::tuple<ContainerPtrType<UInt8>,
ContainerPtrType<UInt16>,
ContainerPtrType<UInt32>,
ContainerPtrType<UInt64>,
ContainerPtrType<UInt128>,
ContainerPtrType<Int8>,
ContainerPtrType<Int16>,
ContainerPtrType<Int32>,
ContainerPtrType<Int64>,
ContainerPtrType<Float32>,
ContainerPtrType<Float64>,
ContainerPtrType<StringRef>>
arrays;
};
void createAttributes();
Attribute createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value);
template <typename OutputType, typename DefaultGetter>
void getItemsNumber(
Attribute & attribute, const Columns & key_columns, PaddedPODArray<OutputType> & out, DefaultGetter && get_default) const
{
if (false)
{
}
#define DISPATCH(TYPE) \
else if (attribute.type == AttributeUnderlyingType::TYPE) \
getItemsNumberImpl<TYPE, OutputType>(attribute, key_columns, out, std::forward<DefaultGetter>(get_default));
DISPATCH(UInt8)
DISPATCH(UInt16)
DISPATCH(UInt32)
DISPATCH(UInt64)
DISPATCH(UInt128)
DISPATCH(Int8)
DISPATCH(Int16)
DISPATCH(Int32)
DISPATCH(Int64)
DISPATCH(Float32)
DISPATCH(Float64)
#undef DISPATCH
else throw Exception("Unexpected type of attribute: " + toString(attribute.type), ErrorCodes::LOGICAL_ERROR);
}
template <typename AttributeType, typename OutputType, typename DefaultGetter>
void getItemsNumberImpl(
Attribute & attribute, const Columns & key_columns, PaddedPODArray<OutputType> & out, DefaultGetter && get_default) const
{
/// Mapping: <key> -> { all indices `i` of `key_columns` such that `key_columns[i]` = <key> }
MapType<std::vector<size_t>> outdated_keys;
auto & attribute_array = std::get<ContainerPtrType<AttributeType>>(attribute.arrays);
const auto rows_num = key_columns.front()->size();
const auto keys_size = dict_struct.key->size();
StringRefs keys(keys_size);
Arena temporary_keys_pool;
PODArray<StringRef> keys_array(rows_num);
size_t cache_expired = 0, cache_not_found = 0, cache_hit = 0;
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, decide which ones require update
for (const auto row : ext::range(0, rows_num))
{
const StringRef key = placeKeysInPool(row, key_columns, keys, *dict_struct.key, temporary_keys_pool);
keys_array[row] = key;
const auto find_result = findCellIdx(key, now);
/** cell should be updated if either:
* 1. keys (or hash) do not match,
* 2. cell has expired,
* 3. explicit defaults were specified and cell was set default. */
if (!find_result.valid)
{
outdated_keys[key].push_back(row);
if (find_result.outdated)
++cache_expired;
else
++cache_not_found;
}
else
{
++cache_hit;
const auto & cell_idx = find_result.cell_idx;
const auto & cell = cells[cell_idx];
out[row] = cell.isDefault() ? get_default(row) : static_cast<OutputType>(attribute_array[cell_idx]);
}
}
}
ProfileEvents::increment(ProfileEvents::DictCacheKeysExpired, cache_expired);
ProfileEvents::increment(ProfileEvents::DictCacheKeysNotFound, cache_not_found);
ProfileEvents::increment(ProfileEvents::DictCacheKeysHit, cache_hit);
query_count.fetch_add(rows_num, std::memory_order_relaxed);
hit_count.fetch_add(rows_num - outdated_keys.size(), std::memory_order_release);
if (outdated_keys.empty())
return;
std::vector<size_t> required_rows(outdated_keys.size());
std::transform(
std::begin(outdated_keys), std::end(outdated_keys), std::begin(required_rows), [](auto & pair) { return pair.second.front(); });
/// request new values
update(key_columns,
keys_array,
required_rows,
[&](const StringRef key, const size_t cell_idx)
{
for (const auto row : outdated_keys[key])
out[row] = static_cast<OutputType>(attribute_array[cell_idx]);
},
[&](const StringRef key, const size_t)
{
for (const auto row : outdated_keys[key])
out[row] = get_default(row);
});
}
template <typename DefaultGetter>
void getItemsString(Attribute & attribute, const Columns & key_columns, ColumnString * out, DefaultGetter && get_default) const
{
const auto rows_num = key_columns.front()->size();
/// save on some allocations
out->getOffsets().reserve(rows_num);
const auto keys_size = dict_struct.key->size();
StringRefs keys(keys_size);
Arena temporary_keys_pool;
auto & attribute_array = std::get<ContainerPtrType<StringRef>>(attribute.arrays);
auto found_outdated_values = false;
/// perform optimistic version, fallback to pessimistic if failed
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, discard on fail
for (const auto row : ext::range(0, rows_num))
{
const StringRef key = placeKeysInPool(row, key_columns, keys, *dict_struct.key, temporary_keys_pool);
SCOPE_EXIT(temporary_keys_pool.rollback(key.size));
const auto find_result = findCellIdx(key, now);
if (!find_result.valid)
{
found_outdated_values = true;
break;
}
else
{
const auto & cell_idx = find_result.cell_idx;
const auto & cell = cells[cell_idx];
const auto string_ref = cell.isDefault() ? get_default(row) : attribute_array[cell_idx];
out->insertData(string_ref.data, string_ref.size);
}
}
}
/// optimistic code completed successfully
if (!found_outdated_values)
{
query_count.fetch_add(rows_num, std::memory_order_relaxed);
hit_count.fetch_add(rows_num, std::memory_order_release);
return;
}
/// now onto the pessimistic one, discard possible partial results from the optimistic path
out->getChars().resize_assume_reserved(0);
out->getOffsets().resize_assume_reserved(0);
/// Mapping: <key> -> { all indices `i` of `key_columns` such that `key_columns[i]` = <key> }
MapType<std::vector<size_t>> outdated_keys;
/// we are going to store every string separately
MapType<StringRef> map;
PODArray<StringRef> keys_array(rows_num);
size_t total_length = 0;
size_t cache_expired = 0, cache_not_found = 0, cache_hit = 0;
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
const auto now = std::chrono::system_clock::now();
for (const auto row : ext::range(0, rows_num))
{
const StringRef key = placeKeysInPool(row, key_columns, keys, *dict_struct.key, temporary_keys_pool);
keys_array[row] = key;
const auto find_result = findCellIdx(key, now);
if (!find_result.valid)
{
outdated_keys[key].push_back(row);
if (find_result.outdated)
++cache_expired;
else
++cache_not_found;
}
else
{
++cache_hit;
const auto & cell_idx = find_result.cell_idx;
const auto & cell = cells[cell_idx];
const auto string_ref = cell.isDefault() ? get_default(row) : attribute_array[cell_idx];
if (!cell.isDefault())
map[key] = copyIntoArena(string_ref, temporary_keys_pool);
total_length += string_ref.size + 1;
}
}
}
ProfileEvents::increment(ProfileEvents::DictCacheKeysExpired, cache_expired);
ProfileEvents::increment(ProfileEvents::DictCacheKeysNotFound, cache_not_found);
ProfileEvents::increment(ProfileEvents::DictCacheKeysHit, cache_hit);
query_count.fetch_add(rows_num, std::memory_order_relaxed);
hit_count.fetch_add(rows_num - outdated_keys.size(), std::memory_order_release);
/// request new values
if (!outdated_keys.empty())
{
std::vector<size_t> required_rows(outdated_keys.size());
std::transform(std::begin(outdated_keys), std::end(outdated_keys), std::begin(required_rows), [](auto & pair)
{
return pair.second.front();
});
update(key_columns,
keys_array,
required_rows,
[&](const StringRef key, const size_t cell_idx)
{
const StringRef attribute_value = attribute_array[cell_idx];
/// We must copy key and value to own memory, because it may be replaced with another
/// in next iterations of inner loop of update.
const StringRef copied_key = copyIntoArena(key, temporary_keys_pool);
const StringRef copied_value = copyIntoArena(attribute_value, temporary_keys_pool);
map[copied_key] = copied_value;
total_length += (attribute_value.size + 1) * outdated_keys[key].size();
},
[&](const StringRef key, const size_t)
{
for (const auto row : outdated_keys[key])
total_length += get_default(row).size + 1;
});
}
out->getChars().reserve(total_length);
for (const auto row : ext::range(0, ext::size(keys_array)))
{
const StringRef key = keys_array[row];
const auto it = map.find(key);
const auto string_ref = it != std::end(map) ? it->second : get_default(row);
out->insertData(string_ref.data, string_ref.size);
}
}
template <typename PresentKeyHandler, typename AbsentKeyHandler>
void update(const Columns & in_key_columns,
const PODArray<StringRef> & in_keys,
const std::vector<size_t> & in_requested_rows,
PresentKeyHandler && on_cell_updated,
AbsentKeyHandler && on_key_not_found) const
{
MapType<bool> remaining_keys{in_requested_rows.size()};
for (const auto row : in_requested_rows)
remaining_keys.insert({in_keys[row], false});
std::uniform_int_distribution<UInt64> distribution(dict_lifetime.min_sec, dict_lifetime.max_sec);
const ProfilingScopedWriteRWLock write_lock{rw_lock, ProfileEvents::DictCacheLockWriteNs};
{
Stopwatch watch;
auto stream = source_ptr->loadKeys(in_key_columns, in_requested_rows);
stream->readPrefix();
const auto keys_size = dict_struct.key->size();
StringRefs keys(keys_size);
const auto attributes_size = attributes.size();
const auto now = std::chrono::system_clock::now();
while (const auto block = stream->read())
{
/// cache column pointers
const auto key_columns = ext::map<Columns>(
ext::range(0, keys_size), [&](const size_t attribute_idx) { return block.safeGetByPosition(attribute_idx).column; });
const auto attribute_columns = ext::map<Columns>(ext::range(0, attributes_size),
[&](const size_t attribute_idx) { return block.safeGetByPosition(keys_size + attribute_idx).column; });
const auto rows_num = block.rows();
for (const auto row : ext::range(0, rows_num))
{
auto key = allocKey(row, key_columns, keys);
const auto hash = StringRefHash{}(key);
const auto find_result = findCellIdx(key, now, hash);
const auto & cell_idx = find_result.cell_idx;
auto & cell = cells[cell_idx];
for (const auto attribute_idx : ext::range(0, attributes.size()))
{
const auto & attribute_column = *attribute_columns[attribute_idx];
auto & attribute = attributes[attribute_idx];
setAttributeValue(attribute, cell_idx, attribute_column[row]);
}
/// if cell id is zero and zero does not map to this cell, then the cell is unused
if (cell.key == StringRef{} && cell_idx != zero_cell_idx)
element_count.fetch_add(1, std::memory_order_relaxed);
/// handle memory allocated for old key
if (key == cell.key)
{
freeKey(key);
key = cell.key;
}
else
{
/// new key is different from the old one
if (cell.key.data)
freeKey(cell.key);
cell.key = key;
}
cell.hash = hash;
if (dict_lifetime.min_sec != 0 && dict_lifetime.max_sec != 0)
cell.setExpiresAt(std::chrono::system_clock::now() + std::chrono::seconds{distribution(rnd_engine)});
else
cell.setExpiresAt(std::chrono::time_point<std::chrono::system_clock>::max());
/// inform caller
on_cell_updated(key, cell_idx);
/// mark corresponding id as found
remaining_keys[key] = true;
}
}
stream->readSuffix();
ProfileEvents::increment(ProfileEvents::DictCacheKeysRequested, in_requested_rows.size());
ProfileEvents::increment(ProfileEvents::DictCacheRequestTimeNs, watch.elapsed());
}
size_t found_num = 0;
size_t not_found_num = 0;
const auto now = std::chrono::system_clock::now();
/// Check which ids have not been found and require setting null_value
for (const auto & key_found_pair : remaining_keys)
{
if (key_found_pair.second)
{
++found_num;
continue;
}
++not_found_num;
auto key = key_found_pair.first;
const auto hash = StringRefHash{}(key);
const auto find_result = findCellIdx(key, now, hash);
const auto & cell_idx = find_result.cell_idx;
auto & cell = cells[cell_idx];
/// Set null_value for each attribute
for (auto & attribute : attributes)
setDefaultAttributeValue(attribute, cell_idx);
/// Check if cell had not been occupied before and increment element counter if it hadn't
if (cell.key == StringRef{} && cell_idx != zero_cell_idx)
element_count.fetch_add(1, std::memory_order_relaxed);
if (key == cell.key)
key = cell.key;
else
{
if (cell.key.data)
freeKey(cell.key);
/// copy key from temporary pool
key = copyKey(key);
cell.key = key;
}
cell.hash = hash;
if (dict_lifetime.min_sec != 0 && dict_lifetime.max_sec != 0)
cell.setExpiresAt(std::chrono::system_clock::now() + std::chrono::seconds{distribution(rnd_engine)});
else
cell.setExpiresAt(std::chrono::time_point<std::chrono::system_clock>::max());
cell.setDefault();
/// inform caller that the cell has not been found
on_key_not_found(key, cell_idx);
}
ProfileEvents::increment(ProfileEvents::DictCacheKeysRequestedMiss, found_num);
ProfileEvents::increment(ProfileEvents::DictCacheKeysRequestedMiss, not_found_num);
}
UInt64 getCellIdx(const StringRef key) const;
void setDefaultAttributeValue(Attribute & attribute, const size_t idx) const;
void setAttributeValue(Attribute & attribute, const size_t idx, const Field & value) const;
Attribute & getAttribute(const std::string & attribute_name) const;
StringRef allocKey(const size_t row, const Columns & key_columns, StringRefs & keys) const;
void freeKey(const StringRef key) const;
template <typename Arena>
static StringRef placeKeysInPool(const size_t row,
const Columns & key_columns,
StringRefs & keys,
const std::vector<DictionaryAttribute> & key_attributes,
Arena & pool);
StringRef placeKeysInFixedSizePool(const size_t row, const Columns & key_columns) const;
static StringRef copyIntoArena(StringRef src, Arena & arena);
StringRef copyKey(const StringRef key) const;
struct FindResult
{
const size_t cell_idx;
const bool valid;
const bool outdated;
};
FindResult findCellIdx(const StringRef & key, const CellMetadata::time_point_t now, const size_t hash) const;
FindResult findCellIdx(const StringRef & key, const CellMetadata::time_point_t now) const
{
const auto hash = StringRefHash{}(key);
return findCellIdx(key, now, hash);
}
bool isEmptyCell(const UInt64 idx) const;
const std::string name;
const DictionaryStructure dict_struct;
const DictionarySourcePtr source_ptr;
const DictionaryLifetime dict_lifetime;
const std::string key_description{dict_struct.getKeyDescription()};
mutable std::shared_mutex rw_lock;
/// Actual size will be increased to match power of 2
const size_t size;
/// all bits to 1 mask (size - 1) (0b1000 - 1 = 0b111)
const size_t size_overlap_mask;
/// Max tries to find cell, overlaped with mask: if size = 16 and start_cell=10: will try cells: 10,11,12,13,14,15,0,1,2,3
static constexpr size_t max_collision_length = 10;
const UInt64 zero_cell_idx{getCellIdx(StringRef{})};
std::map<std::string, size_t> attribute_index_by_name;
mutable std::vector<Attribute> attributes;
mutable std::vector<CellMetadata> cells{size};
const bool key_size_is_fixed{dict_struct.isKeySizeFixed()};
size_t key_size{key_size_is_fixed ? dict_struct.getKeySize() : 0};
std::unique_ptr<ArenaWithFreeLists> keys_pool = key_size_is_fixed ? nullptr : std::make_unique<ArenaWithFreeLists>();
std::unique_ptr<SmallObjectPool> fixed_size_keys_pool = key_size_is_fixed ? std::make_unique<SmallObjectPool>(key_size) : nullptr;
std::unique_ptr<ArenaWithFreeLists> string_arena;
mutable pcg64 rnd_engine;
mutable size_t bytes_allocated = 0;
mutable std::atomic<size_t> element_count{0};
mutable std::atomic<size_t> hit_count{0};
mutable std::atomic<size_t> query_count{0};
const std::chrono::time_point<std::chrono::system_clock> creation_time = std::chrono::system_clock::now();
};
}