mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-01 20:12:02 +00:00
376 lines
11 KiB
C++
376 lines
11 KiB
C++
#pragma once
|
|
|
|
#include <Common/Arena.h>
|
|
#include <Common/NaNUtils.h>
|
|
|
|
#include <Columns/ColumnVector.h>
|
|
#include <Columns/ColumnTuple.h>
|
|
#include <Columns/ColumnArray.h>
|
|
#include <Common/assert_cast.h>
|
|
|
|
#include <DataTypes/DataTypesNumber.h>
|
|
#include <DataTypes/DataTypeArray.h>
|
|
#include <DataTypes/DataTypeTuple.h>
|
|
|
|
#include <IO/WriteBuffer.h>
|
|
#include <IO/ReadBuffer.h>
|
|
#include <IO/WriteHelpers.h>
|
|
#include <IO/ReadHelpers.h>
|
|
#include <IO/VarInt.h>
|
|
|
|
#include <AggregateFunctions/IAggregateFunction.h>
|
|
|
|
#include <math.h>
|
|
#include <queue>
|
|
#include <stddef.h>
|
|
|
|
namespace DB
|
|
{
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int TOO_LARGE_ARRAY_SIZE;
|
|
extern const int INCORRECT_DATA;
|
|
}
|
|
|
|
/**
|
|
* distance compression algorithm implementation
|
|
* http://jmlr.org/papers/volume11/ben-haim10a/ben-haim10a.pdf
|
|
*/
|
|
class AggregateFunctionHistogramData
|
|
{
|
|
public:
|
|
using Mean = Float64;
|
|
using Weight = Float64;
|
|
|
|
constexpr static size_t bins_count_limit = 250;
|
|
|
|
private:
|
|
struct WeightedValue
|
|
{
|
|
Mean mean;
|
|
Weight weight;
|
|
|
|
WeightedValue operator+ (const WeightedValue & other)
|
|
{
|
|
return {mean + other.weight * (other.mean - mean) / (other.weight + weight), other.weight + weight};
|
|
}
|
|
};
|
|
|
|
private:
|
|
// quantity of stored weighted-values
|
|
UInt32 size;
|
|
|
|
// calculated lower and upper bounds of seen points
|
|
Mean lower_bound;
|
|
Mean upper_bound;
|
|
|
|
// Weighted values representation of histogram.
|
|
WeightedValue points[0];
|
|
|
|
private:
|
|
void sort()
|
|
{
|
|
std::sort(points, points + size,
|
|
[](const WeightedValue & first, const WeightedValue & second)
|
|
{
|
|
return first.mean < second.mean;
|
|
});
|
|
}
|
|
|
|
template <typename T>
|
|
struct PriorityQueueStorage
|
|
{
|
|
size_t size = 0;
|
|
T * data_ptr;
|
|
|
|
PriorityQueueStorage(T * value)
|
|
: data_ptr(value)
|
|
{
|
|
}
|
|
|
|
void push_back(T val)
|
|
{
|
|
data_ptr[size] = std::move(val);
|
|
++size;
|
|
}
|
|
|
|
void pop_back() { --size; }
|
|
T * begin() { return data_ptr; }
|
|
T * end() const { return data_ptr + size; }
|
|
bool empty() const { return size == 0; }
|
|
T & front() { return *data_ptr; }
|
|
const T & front() const { return *data_ptr; }
|
|
|
|
using value_type = T;
|
|
using reference = T&;
|
|
using const_reference = const T&;
|
|
using size_type = size_t;
|
|
};
|
|
|
|
/**
|
|
* Repeatedly fuse most close values until max_bins bins left
|
|
*/
|
|
void compress(UInt32 max_bins)
|
|
{
|
|
sort();
|
|
auto new_size = size;
|
|
if (size <= max_bins)
|
|
return;
|
|
|
|
// Maintain doubly-linked list of "active" points
|
|
// and store neighbour pairs in priority queue by distance
|
|
UInt32 previous[size + 1];
|
|
UInt32 next[size + 1];
|
|
bool active[size + 1];
|
|
std::fill(active, active + size, true);
|
|
active[size] = false;
|
|
|
|
auto delete_node = [&](UInt32 i)
|
|
{
|
|
previous[next[i]] = previous[i];
|
|
next[previous[i]] = next[i];
|
|
active[i] = false;
|
|
};
|
|
|
|
for (size_t i = 0; i <= size; ++i)
|
|
{
|
|
previous[i] = i - 1;
|
|
next[i] = i + 1;
|
|
}
|
|
|
|
next[size] = 0;
|
|
previous[0] = size;
|
|
|
|
using QueueItem = std::pair<Mean, UInt32>;
|
|
|
|
QueueItem storage[2 * size - max_bins];
|
|
|
|
std::priority_queue<
|
|
QueueItem,
|
|
PriorityQueueStorage<QueueItem>,
|
|
std::greater<QueueItem>>
|
|
queue{std::greater<QueueItem>(),
|
|
PriorityQueueStorage<QueueItem>(storage)};
|
|
|
|
auto quality = [&](UInt32 i) { return points[next[i]].mean - points[i].mean; };
|
|
|
|
for (size_t i = 0; i + 1 < size; ++i)
|
|
queue.push({quality(i), i});
|
|
|
|
while (new_size > max_bins && !queue.empty())
|
|
{
|
|
auto min_item = queue.top();
|
|
queue.pop();
|
|
auto left = min_item.second;
|
|
auto right = next[left];
|
|
|
|
if (!active[left] || !active[right] || quality(left) > min_item.first)
|
|
continue;
|
|
|
|
points[left] = points[left] + points[right];
|
|
|
|
delete_node(right);
|
|
if (active[next[left]])
|
|
queue.push({quality(left), left});
|
|
if (active[previous[left]])
|
|
queue.push({quality(previous[left]), previous[left]});
|
|
|
|
--new_size;
|
|
}
|
|
|
|
size_t left = 0;
|
|
for (size_t right = 0; right < size; ++right)
|
|
{
|
|
if (active[right])
|
|
{
|
|
points[left] = points[right];
|
|
++left;
|
|
}
|
|
}
|
|
size = new_size;
|
|
}
|
|
|
|
/***
|
|
* Delete too close points from histogram.
|
|
* Assumes that points are sorted.
|
|
*/
|
|
void unique()
|
|
{
|
|
if (size == 0)
|
|
return;
|
|
|
|
size_t left = 0;
|
|
|
|
for (auto right = left + 1; right < size; ++right)
|
|
{
|
|
// Fuse points if their text representations differ only in last digit
|
|
auto min_diff = 10 * (points[left].mean + points[right].mean) * std::numeric_limits<Mean>::epsilon();
|
|
if (points[left].mean + min_diff >= points[right].mean)
|
|
{
|
|
points[left] = points[left] + points[right];
|
|
}
|
|
else
|
|
{
|
|
++left;
|
|
points[left] = points[right];
|
|
}
|
|
}
|
|
size = left + 1;
|
|
}
|
|
|
|
public:
|
|
AggregateFunctionHistogramData()
|
|
: size(0)
|
|
, lower_bound(std::numeric_limits<Mean>::max())
|
|
, upper_bound(std::numeric_limits<Mean>::lowest())
|
|
{
|
|
static_assert(offsetof(AggregateFunctionHistogramData, points) == sizeof(AggregateFunctionHistogramData), "points should be last member");
|
|
}
|
|
|
|
static size_t structSize(size_t max_bins)
|
|
{
|
|
return sizeof(AggregateFunctionHistogramData) + max_bins * 2 * sizeof(WeightedValue);
|
|
}
|
|
|
|
void insertResultInto(ColumnVector<Mean> & to_lower, ColumnVector<Mean> & to_upper, ColumnVector<Weight> & to_weights, UInt32 max_bins)
|
|
{
|
|
compress(max_bins);
|
|
unique();
|
|
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
to_lower.insertValue((i == 0) ? lower_bound : (points[i].mean + points[i - 1].mean) / 2);
|
|
to_upper.insertValue((i + 1 == size) ? upper_bound : (points[i].mean + points[i + 1].mean) / 2);
|
|
|
|
// linear density approximation
|
|
Weight lower_weight = (i == 0) ? points[i].weight : ((points[i - 1].weight) + points[i].weight * 3) / 4;
|
|
Weight upper_weight = (i + 1 == size) ? points[i].weight : (points[i + 1].weight + points[i].weight * 3) / 4;
|
|
to_weights.insertValue((lower_weight + upper_weight) / 2);
|
|
}
|
|
}
|
|
|
|
void add(Mean value, Weight weight, UInt32 max_bins)
|
|
{
|
|
// nans break sort and compression
|
|
// infs don't fit in bins partition method
|
|
if (!isFinite(value))
|
|
throw Exception("Invalid value (inf or nan) for aggregation by 'histogram' function", ErrorCodes::INCORRECT_DATA);
|
|
|
|
points[size] = {value, weight};
|
|
++size;
|
|
lower_bound = std::min(lower_bound, value);
|
|
upper_bound = std::max(upper_bound, value);
|
|
|
|
if (size >= max_bins * 2)
|
|
compress(max_bins);
|
|
}
|
|
|
|
void merge(const AggregateFunctionHistogramData & other, UInt32 max_bins)
|
|
{
|
|
lower_bound = std::min(lower_bound, other.lower_bound);
|
|
upper_bound = std::max(upper_bound, other.upper_bound);
|
|
for (size_t i = 0; i < other.size; i++)
|
|
add(other.points[i].mean, other.points[i].weight, max_bins);
|
|
}
|
|
|
|
void write(WriteBuffer & buf) const
|
|
{
|
|
writeBinary(lower_bound, buf);
|
|
writeBinary(upper_bound, buf);
|
|
|
|
writeVarUInt(size, buf);
|
|
buf.write(reinterpret_cast<const char *>(points), size * sizeof(WeightedValue));
|
|
}
|
|
|
|
void read(ReadBuffer & buf, UInt32 max_bins)
|
|
{
|
|
readBinary(lower_bound, buf);
|
|
readBinary(upper_bound, buf);
|
|
|
|
readVarUInt(size, buf);
|
|
if (size > max_bins * 2)
|
|
throw Exception("Too many bins", ErrorCodes::TOO_LARGE_ARRAY_SIZE);
|
|
|
|
buf.read(reinterpret_cast<char *>(points), size * sizeof(WeightedValue));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class AggregateFunctionHistogram final: public IAggregateFunctionDataHelper<AggregateFunctionHistogramData, AggregateFunctionHistogram<T>>
|
|
{
|
|
private:
|
|
using Data = AggregateFunctionHistogramData;
|
|
|
|
const UInt32 max_bins;
|
|
|
|
public:
|
|
AggregateFunctionHistogram(UInt32 max_bins_, const DataTypes & arguments, const Array & params)
|
|
: IAggregateFunctionDataHelper<AggregateFunctionHistogramData, AggregateFunctionHistogram<T>>(arguments, params)
|
|
, max_bins(max_bins_)
|
|
{
|
|
}
|
|
|
|
size_t sizeOfData() const override
|
|
{
|
|
return Data::structSize(max_bins);
|
|
}
|
|
DataTypePtr getReturnType() const override
|
|
{
|
|
DataTypes types;
|
|
auto mean = std::make_shared<DataTypeNumber<Data::Mean>>();
|
|
auto weight = std::make_shared<DataTypeNumber<Data::Weight>>();
|
|
|
|
// lower bound
|
|
types.emplace_back(mean);
|
|
// upper bound
|
|
types.emplace_back(mean);
|
|
// weight
|
|
types.emplace_back(weight);
|
|
|
|
auto tuple = std::make_shared<DataTypeTuple>(types);
|
|
return std::make_shared<DataTypeArray>(tuple);
|
|
}
|
|
|
|
void add(AggregateDataPtr __restrict place, const IColumn ** columns, size_t row_num, Arena *) const override
|
|
{
|
|
auto val = assert_cast<const ColumnVector<T> &>(*columns[0]).getData()[row_num];
|
|
this->data(place).add(static_cast<Data::Mean>(val), 1, max_bins);
|
|
}
|
|
|
|
void merge(AggregateDataPtr __restrict place, ConstAggregateDataPtr rhs, Arena *) const override
|
|
{
|
|
this->data(place).merge(this->data(rhs), max_bins);
|
|
}
|
|
|
|
void serialize(ConstAggregateDataPtr __restrict place, WriteBuffer & buf) const override
|
|
{
|
|
this->data(place).write(buf);
|
|
}
|
|
|
|
void deserialize(AggregateDataPtr __restrict place, ReadBuffer & buf, Arena *) const override
|
|
{
|
|
this->data(place).read(buf, max_bins);
|
|
}
|
|
|
|
void insertResultInto(AggregateDataPtr __restrict place, IColumn & to, Arena *) const override
|
|
{
|
|
auto & data = this->data(place);
|
|
|
|
auto & to_array = assert_cast<ColumnArray &>(to);
|
|
ColumnArray::Offsets & offsets_to = to_array.getOffsets();
|
|
auto & to_tuple = assert_cast<ColumnTuple &>(to_array.getData());
|
|
|
|
auto & to_lower = assert_cast<ColumnVector<Data::Mean> &>(to_tuple.getColumn(0));
|
|
auto & to_upper = assert_cast<ColumnVector<Data::Mean> &>(to_tuple.getColumn(1));
|
|
auto & to_weights = assert_cast<ColumnVector<Data::Weight> &>(to_tuple.getColumn(2));
|
|
data.insertResultInto(to_lower, to_upper, to_weights, max_bins);
|
|
|
|
offsets_to.push_back(to_tuple.size());
|
|
}
|
|
|
|
String getName() const override { return "histogram"; }
|
|
};
|
|
|
|
}
|