ClickHouse/dbms/src/AggregateFunctions/AggregateFunctionMinMaxAny.h

737 lines
18 KiB
C++

#pragma once
#include <IO/WriteHelpers.h>
#include <IO/ReadHelpers.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnString.h>
#include <DataTypes/IDataType.h>
#include <common/StringRef.h>
#include <Common/assert_cast.h>
#include <AggregateFunctions/IAggregateFunction.h>
namespace DB
{
/** Aggregate functions that store one of passed values.
* For example: min, max, any, anyLast.
*/
/// For numeric values.
template <typename T>
struct SingleValueDataFixed
{
private:
using Self = SingleValueDataFixed;
bool has_value = false; /// We need to remember if at least one value has been passed. This is necessary for AggregateFunctionIf.
T value;
public:
bool has() const
{
return has_value;
}
void insertResultInto(IColumn & to) const
{
if (has())
assert_cast<ColumnVector<T> &>(to).getData().push_back(value);
else
assert_cast<ColumnVector<T> &>(to).insertDefault();
}
void write(WriteBuffer & buf, const IDataType & /*data_type*/) const
{
writeBinary(has(), buf);
if (has())
writeBinary(value, buf);
}
void read(ReadBuffer & buf, const IDataType & /*data_type*/, Arena *)
{
readBinary(has_value, buf);
if (has())
readBinary(value, buf);
}
void change(const IColumn & column, size_t row_num, Arena *)
{
has_value = true;
value = assert_cast<const ColumnVector<T> &>(column).getData()[row_num];
}
/// Assuming to.has()
void change(const Self & to, Arena *)
{
has_value = true;
value = to.value;
}
bool changeFirstTime(const IColumn & column, size_t row_num, Arena * arena)
{
if (!has())
{
change(column, row_num, arena);
return true;
}
else
return false;
}
bool changeFirstTime(const Self & to, Arena * arena)
{
if (!has() && to.has())
{
change(to, arena);
return true;
}
else
return false;
}
bool changeEveryTime(const IColumn & column, size_t row_num, Arena * arena)
{
change(column, row_num, arena);
return true;
}
bool changeEveryTime(const Self & to, Arena * arena)
{
if (to.has())
{
change(to, arena);
return true;
}
else
return false;
}
bool changeIfLess(const IColumn & column, size_t row_num, Arena * arena)
{
if (!has() || assert_cast<const ColumnVector<T> &>(column).getData()[row_num] < value)
{
change(column, row_num, arena);
return true;
}
else
return false;
}
bool changeIfLess(const Self & to, Arena * arena)
{
if (to.has() && (!has() || to.value < value))
{
change(to, arena);
return true;
}
else
return false;
}
bool changeIfGreater(const IColumn & column, size_t row_num, Arena * arena)
{
if (!has() || assert_cast<const ColumnVector<T> &>(column).getData()[row_num] > value)
{
change(column, row_num, arena);
return true;
}
else
return false;
}
bool changeIfGreater(const Self & to, Arena * arena)
{
if (to.has() && (!has() || to.value > value))
{
change(to, arena);
return true;
}
else
return false;
}
bool isEqualTo(const Self & to) const
{
return has() && to.value == value;
}
bool isEqualTo(const IColumn & column, size_t row_num) const
{
return has() && assert_cast<const ColumnVector<T> &>(column).getData()[row_num] == value;
}
};
/** For strings. Short strings are stored in the object itself, and long strings are allocated separately.
* NOTE It could also be suitable for arrays of numbers.
*/
struct SingleValueDataString
{
private:
using Self = SingleValueDataString;
Int32 size = -1; /// -1 indicates that there is no value.
Int32 capacity = 0; /// power of two or zero
char * large_data;
public:
static constexpr Int32 AUTOMATIC_STORAGE_SIZE = 64;
static constexpr Int32 MAX_SMALL_STRING_SIZE = AUTOMATIC_STORAGE_SIZE - sizeof(size) - sizeof(capacity) - sizeof(large_data);
private:
char small_data[MAX_SMALL_STRING_SIZE]; /// Including the terminating zero.
public:
bool has() const
{
return size >= 0;
}
const char * getData() const
{
return size <= MAX_SMALL_STRING_SIZE ? small_data : large_data;
}
StringRef getStringRef() const
{
return StringRef(getData(), size);
}
void insertResultInto(IColumn & to) const
{
if (has())
assert_cast<ColumnString &>(to).insertDataWithTerminatingZero(getData(), size);
else
assert_cast<ColumnString &>(to).insertDefault();
}
void write(WriteBuffer & buf, const IDataType & /*data_type*/) const
{
writeBinary(size, buf);
if (has())
buf.write(getData(), size);
}
void read(ReadBuffer & buf, const IDataType & /*data_type*/, Arena * arena)
{
Int32 rhs_size;
readBinary(rhs_size, buf);
if (rhs_size >= 0)
{
if (rhs_size <= MAX_SMALL_STRING_SIZE)
{
/// Don't free large_data here.
size = rhs_size;
if (size > 0)
buf.read(small_data, size);
}
else
{
if (capacity < rhs_size)
{
capacity = static_cast<UInt32>(roundUpToPowerOfTwoOrZero(rhs_size));
/// Don't free large_data here.
large_data = arena->alloc(capacity);
}
size = rhs_size;
buf.read(large_data, size);
}
}
else
{
/// Don't free large_data here.
size = rhs_size;
}
}
/// Assuming to.has()
void changeImpl(StringRef value, Arena * arena)
{
Int32 value_size = value.size;
if (value_size <= MAX_SMALL_STRING_SIZE)
{
/// Don't free large_data here.
size = value_size;
if (size > 0)
memcpy(small_data, value.data, size);
}
else
{
if (capacity < value_size)
{
/// Don't free large_data here.
capacity = roundUpToPowerOfTwoOrZero(value_size);
large_data = arena->alloc(capacity);
}
size = value_size;
memcpy(large_data, value.data, size);
}
}
void change(const IColumn & column, size_t row_num, Arena * arena)
{
changeImpl(assert_cast<const ColumnString &>(column).getDataAtWithTerminatingZero(row_num), arena);
}
void change(const Self & to, Arena * arena)
{
changeImpl(to.getStringRef(), arena);
}
bool changeFirstTime(const IColumn & column, size_t row_num, Arena * arena)
{
if (!has())
{
change(column, row_num, arena);
return true;
}
else
return false;
}
bool changeFirstTime(const Self & to, Arena * arena)
{
if (!has() && to.has())
{
change(to, arena);
return true;
}
else
return false;
}
bool changeEveryTime(const IColumn & column, size_t row_num, Arena * arena)
{
change(column, row_num, arena);
return true;
}
bool changeEveryTime(const Self & to, Arena * arena)
{
if (to.has())
{
change(to, arena);
return true;
}
else
return false;
}
bool changeIfLess(const IColumn & column, size_t row_num, Arena * arena)
{
if (!has() || assert_cast<const ColumnString &>(column).getDataAtWithTerminatingZero(row_num) < getStringRef())
{
change(column, row_num, arena);
return true;
}
else
return false;
}
bool changeIfLess(const Self & to, Arena * arena)
{
if (to.has() && (!has() || to.getStringRef() < getStringRef()))
{
change(to, arena);
return true;
}
else
return false;
}
bool changeIfGreater(const IColumn & column, size_t row_num, Arena * arena)
{
if (!has() || assert_cast<const ColumnString &>(column).getDataAtWithTerminatingZero(row_num) > getStringRef())
{
change(column, row_num, arena);
return true;
}
else
return false;
}
bool changeIfGreater(const Self & to, Arena * arena)
{
if (to.has() && (!has() || to.getStringRef() > getStringRef()))
{
change(to, arena);
return true;
}
else
return false;
}
bool isEqualTo(const Self & to) const
{
return has() && to.getStringRef() == getStringRef();
}
bool isEqualTo(const IColumn & column, size_t row_num) const
{
return has() && assert_cast<const ColumnString &>(column).getDataAtWithTerminatingZero(row_num) == getStringRef();
}
};
static_assert(
sizeof(SingleValueDataString) == SingleValueDataString::AUTOMATIC_STORAGE_SIZE,
"Incorrect size of SingleValueDataString struct");
/// For any other value types.
struct SingleValueDataGeneric
{
private:
using Self = SingleValueDataGeneric;
Field value;
public:
bool has() const
{
return !value.isNull();
}
void insertResultInto(IColumn & to) const
{
if (has())
to.insert(value);
else
to.insertDefault();
}
void write(WriteBuffer & buf, const IDataType & data_type) const
{
if (!value.isNull())
{
writeBinary(true, buf);
data_type.serializeBinary(value, buf);
}
else
writeBinary(false, buf);
}
void read(ReadBuffer & buf, const IDataType & data_type, Arena *)
{
bool is_not_null;
readBinary(is_not_null, buf);
if (is_not_null)
data_type.deserializeBinary(value, buf);
}
void change(const IColumn & column, size_t row_num, Arena *)
{
column.get(row_num, value);
}
void change(const Self & to, Arena *)
{
value = to.value;
}
bool changeFirstTime(const IColumn & column, size_t row_num, Arena * arena)
{
if (!has())
{
change(column, row_num, arena);
return true;
}
else
return false;
}
bool changeFirstTime(const Self & to, Arena * arena)
{
if (!has() && to.has())
{
change(to, arena);
return true;
}
else
return false;
}
bool changeEveryTime(const IColumn & column, size_t row_num, Arena * arena)
{
change(column, row_num, arena);
return true;
}
bool changeEveryTime(const Self & to, Arena * arena)
{
if (to.has())
{
change(to, arena);
return true;
}
else
return false;
}
bool changeIfLess(const IColumn & column, size_t row_num, Arena * arena)
{
if (!has())
{
change(column, row_num, arena);
return true;
}
else
{
Field new_value;
column.get(row_num, new_value);
if (new_value < value)
{
value = new_value;
return true;
}
else
return false;
}
}
bool changeIfLess(const Self & to, Arena * arena)
{
if (to.has() && (!has() || to.value < value))
{
change(to, arena);
return true;
}
else
return false;
}
bool changeIfGreater(const IColumn & column, size_t row_num, Arena * arena)
{
if (!has())
{
change(column, row_num, arena);
return true;
}
else
{
Field new_value;
column.get(row_num, new_value);
if (new_value > value)
{
value = new_value;
return true;
}
else
return false;
}
}
bool changeIfGreater(const Self & to, Arena * arena)
{
if (to.has() && (!has() || to.value > value))
{
change(to, arena);
return true;
}
else
return false;
}
bool isEqualTo(const IColumn & column, size_t row_num) const
{
return has() && value == column[row_num];
}
bool isEqualTo(const Self & to) const
{
return has() && to.value == value;
}
};
/** What is the difference between the aggregate functions min, max, any, anyLast
* (the condition that the stored value is replaced by a new one,
* as well as, of course, the name).
*/
template <typename Data>
struct AggregateFunctionMinData : Data
{
using Self = AggregateFunctionMinData;
bool changeIfBetter(const IColumn & column, size_t row_num, Arena * arena) { return this->changeIfLess(column, row_num, arena); }
bool changeIfBetter(const Self & to, Arena * arena) { return this->changeIfLess(to, arena); }
static const char * name() { return "min"; }
};
template <typename Data>
struct AggregateFunctionMaxData : Data
{
using Self = AggregateFunctionMaxData;
bool changeIfBetter(const IColumn & column, size_t row_num, Arena * arena) { return this->changeIfGreater(column, row_num, arena); }
bool changeIfBetter(const Self & to, Arena * arena) { return this->changeIfGreater(to, arena); }
static const char * name() { return "max"; }
};
template <typename Data>
struct AggregateFunctionAnyData : Data
{
using Self = AggregateFunctionAnyData;
bool changeIfBetter(const IColumn & column, size_t row_num, Arena * arena) { return this->changeFirstTime(column, row_num, arena); }
bool changeIfBetter(const Self & to, Arena * arena) { return this->changeFirstTime(to, arena); }
static const char * name() { return "any"; }
};
template <typename Data>
struct AggregateFunctionAnyLastData : Data
{
using Self = AggregateFunctionAnyLastData;
bool changeIfBetter(const IColumn & column, size_t row_num, Arena * arena) { return this->changeEveryTime(column, row_num, arena); }
bool changeIfBetter(const Self & to, Arena * arena) { return this->changeEveryTime(to, arena); }
static const char * name() { return "anyLast"; }
};
/** Implement 'heavy hitters' algorithm.
* Selects most frequent value if its frequency is more than 50% in each thread of execution.
* Otherwise, selects some arbitrary value.
* http://www.cs.umd.edu/~samir/498/karp.pdf
*/
template <typename Data>
struct AggregateFunctionAnyHeavyData : Data
{
size_t counter = 0;
using Self = AggregateFunctionAnyHeavyData;
bool changeIfBetter(const IColumn & column, size_t row_num, Arena * arena)
{
if (this->isEqualTo(column, row_num))
{
++counter;
}
else
{
if (counter == 0)
{
this->change(column, row_num, arena);
++counter;
return true;
}
else
--counter;
}
return false;
}
bool changeIfBetter(const Self & to, Arena * arena)
{
if (this->isEqualTo(to))
{
counter += to.counter;
}
else
{
if ((!this->has() && to.has()) || counter < to.counter)
{
this->change(to, arena);
return true;
}
else
counter -= to.counter;
}
return false;
}
void write(WriteBuffer & buf, const IDataType & data_type) const
{
Data::write(buf, data_type);
writeBinary(counter, buf);
}
void read(ReadBuffer & buf, const IDataType & data_type, Arena * arena)
{
Data::read(buf, data_type, arena);
readBinary(counter, buf);
}
static const char * name() { return "anyHeavy"; }
};
template <typename Data, bool AllocatesMemoryInArena>
class AggregateFunctionsSingleValue final : public IAggregateFunctionDataHelper<Data, AggregateFunctionsSingleValue<Data, AllocatesMemoryInArena>>
{
private:
DataTypePtr & type;
public:
AggregateFunctionsSingleValue(const DataTypePtr & type_)
: IAggregateFunctionDataHelper<Data, AggregateFunctionsSingleValue<Data, AllocatesMemoryInArena>>({type_}, {})
, type(this->argument_types[0])
{
if (StringRef(Data::name()) == StringRef("min")
|| StringRef(Data::name()) == StringRef("max"))
{
if (!type->isComparable())
throw Exception("Illegal type " + type->getName() + " of argument of aggregate function " + getName()
+ " because the values of that data type are not comparable", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
}
String getName() const override { return Data::name(); }
DataTypePtr getReturnType() const override
{
return type;
}
void add(AggregateDataPtr place, const IColumn ** columns, size_t row_num, Arena * arena) const override
{
this->data(place).changeIfBetter(*columns[0], row_num, arena);
}
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena * arena) const override
{
this->data(place).changeIfBetter(this->data(rhs), arena);
}
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).write(buf, *type.get());
}
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena * arena) const override
{
this->data(place).read(buf, *type.get(), arena);
}
bool allocatesMemoryInArena() const override
{
return AllocatesMemoryInArena;
}
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
{
this->data(place).insertResultInto(to);
}
const char * getHeaderFilePath() const override { return __FILE__; }
};
}