ClickHouse/src/Interpreters/evaluateConstantExpression.cpp
Alexey Milovidov 7915ba253b Better version
2023-07-17 04:49:04 +02:00

474 lines
16 KiB
C++

#include <Interpreters/evaluateConstantExpression.h>
#include <Columns/ColumnConst.h>
#include <Core/Block.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/FieldToDataType.h>
#include <Interpreters/Context.h>
#include <Interpreters/convertFieldToType.h>
#include <Interpreters/ExpressionAnalyzer.h>
#include <Interpreters/TreeRewriter.h>
#include <Parsers/ASTFunction.h>
#include <Parsers/ASTIdentifier.h>
#include <Parsers/ASTLiteral.h>
#include <Parsers/ASTSubquery.h>
#include <TableFunctions/TableFunctionFactory.h>
#include <Common/typeid_cast.h>
#include <Interpreters/FunctionNameNormalizer.h>
#include <Interpreters/ReplaceQueryParameterVisitor.h>
#include <unordered_map>
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
extern const int BAD_ARGUMENTS;
}
static std::pair<Field, std::shared_ptr<const IDataType>> getFieldAndDataTypeFromLiteral(ASTLiteral * literal)
{
auto type = applyVisitor(FieldToDataType(), literal->value);
/// In case of Array field nested fields can have different types.
/// Example: Array [1, 2.3] will have 2 fields with types UInt64 and Float64
/// when result type is Array(Float64).
/// So, we need to convert this field to the result type.
Field res = convertFieldToType(literal->value, *type);
return {res, type};
}
std::pair<Field, std::shared_ptr<const IDataType>> evaluateConstantExpression(const ASTPtr & node, const ContextPtr & context)
{
if (ASTLiteral * literal = node->as<ASTLiteral>())
return getFieldAndDataTypeFromLiteral(literal);
NamesAndTypesList source_columns = {{ "_dummy", std::make_shared<DataTypeUInt8>() }};
auto ast = node->clone();
if (ast->as<ASTSubquery>() != nullptr)
{
/** For subqueries getColumnName if there are no alias will return __subquery_ + 'hash'.
* If there is alias getColumnName for subquery will return alias.
* In result block name of subquery after QueryAliasesVisitor pass will be _subquery1.
* We specify alias for subquery, because we need to get column from result block.
*/
ast->setAlias("constant_expression");
}
ReplaceQueryParameterVisitor param_visitor(context->getQueryParameters());
param_visitor.visit(ast);
/// Notice: function name normalization is disabled when it's a secondary query, because queries are either
/// already normalized on initiator node, or not normalized and should remain unnormalized for
/// compatibility.
if (context->getClientInfo().query_kind != ClientInfo::QueryKind::SECONDARY_QUERY && context->getSettingsRef().normalize_function_names)
FunctionNameNormalizer().visit(ast.get());
auto syntax_result = TreeRewriter(context).analyze(ast, source_columns);
/// AST potentially could be transformed to literal during TreeRewriter analyze.
/// For example if we have SQL user defined function that return literal AS subquery.
if (ASTLiteral * literal = ast->as<ASTLiteral>())
return getFieldAndDataTypeFromLiteral(literal);
auto actions = ExpressionAnalyzer(ast, syntax_result, context).getConstActionsDAG();
ColumnPtr result_column;
DataTypePtr result_type;
String result_name = ast->getColumnName();
for (const auto & action_node : actions->getOutputs())
{
if ((action_node->result_name == result_name) && action_node->column)
{
result_column = action_node->column;
result_type = action_node->result_type;
break;
}
}
if (!result_column)
throw Exception(ErrorCodes::BAD_ARGUMENTS,
"Element of set in IN, VALUES, or LIMIT, or aggregate function parameter, or a table function argument "
"is not a constant expression (result column not found): {}", result_name);
if (result_column->empty())
throw Exception(ErrorCodes::LOGICAL_ERROR,
"Logical error: empty result column after evaluation "
"of constant expression for IN, VALUES, or LIMIT, or aggregate function parameter, or a table function argument");
/// Expressions like rand() or now() are not constant
if (!isColumnConst(*result_column))
throw Exception(ErrorCodes::BAD_ARGUMENTS,
"Element of set in IN, VALUES, or LIMIT, or aggregate function parameter, or a table function argument "
"is not a constant expression (result column is not const): {}", result_name);
return std::make_pair((*result_column)[0], result_type);
}
ASTPtr evaluateConstantExpressionAsLiteral(const ASTPtr & node, const ContextPtr & context)
{
/// If it's already a literal.
if (node->as<ASTLiteral>())
return node;
return std::make_shared<ASTLiteral>(evaluateConstantExpression(node, context).first);
}
ASTPtr evaluateConstantExpressionOrIdentifierAsLiteral(const ASTPtr & node, const ContextPtr & context)
{
if (const auto * id = node->as<ASTIdentifier>())
return std::make_shared<ASTLiteral>(id->name());
return evaluateConstantExpressionAsLiteral(node, context);
}
ASTPtr evaluateConstantExpressionForDatabaseName(const ASTPtr & node, const ContextPtr & context)
{
ASTPtr res = evaluateConstantExpressionOrIdentifierAsLiteral(node, context);
auto & literal = res->as<ASTLiteral &>();
if (literal.value.safeGet<String>().empty())
{
String current_database = context->getCurrentDatabase();
if (current_database.empty())
{
/// Table was created on older version of ClickHouse and CREATE contains not folded expression.
/// Current database is not set yet during server startup, so we cannot evaluate it correctly.
literal.value = context->getConfigRef().getString("default_database", "default");
}
else
literal.value = current_database;
}
return res;
}
namespace
{
using Conjunction = ColumnsWithTypeAndName;
using Disjunction = std::vector<Conjunction>;
Disjunction analyzeEquals(const ASTIdentifier * identifier, const Field & value, const ExpressionActionsPtr & expr)
{
if (!identifier || value.isNull())
{
return {};
}
for (const auto & name_and_type : expr->getRequiredColumnsWithTypes())
{
const auto & name = name_and_type.name;
const auto & type = name_and_type.type;
if (name == identifier->name())
{
ColumnWithTypeAndName column;
Field converted = convertFieldToType(value, *type);
if (converted.isNull())
return {};
column.column = type->createColumnConst(1, converted);
column.name = name;
column.type = type;
return {{std::move(column)}};
}
}
return {};
}
Disjunction analyzeEquals(const ASTIdentifier * identifier, const ASTLiteral * literal, const ExpressionActionsPtr & expr)
{
if (!identifier || !literal)
{
return {};
}
return analyzeEquals(identifier, literal->value, expr);
}
Disjunction andDNF(const Disjunction & left, const Disjunction & right)
{
if (left.empty())
{
return right;
}
Disjunction result;
for (const auto & conjunct1 : left)
{
for (const auto & conjunct2 : right)
{
Conjunction new_conjunct{conjunct1};
new_conjunct.insert(new_conjunct.end(), conjunct2.begin(), conjunct2.end());
result.emplace_back(new_conjunct);
}
}
return result;
}
Disjunction analyzeFunction(const ASTFunction * fn, const ExpressionActionsPtr & expr, size_t & limit)
{
if (!fn || !limit)
{
return {};
}
// TODO: enumerate all possible function names!
if (fn->name == "equals")
{
const auto * left = fn->arguments->children.front().get();
const auto * right = fn->arguments->children.back().get();
const auto * identifier = left->as<ASTIdentifier>() ? left->as<ASTIdentifier>() : right->as<ASTIdentifier>();
const auto * literal = left->as<ASTLiteral>() ? left->as<ASTLiteral>() : right->as<ASTLiteral>();
--limit;
return analyzeEquals(identifier, literal, expr);
}
else if (fn->name == "in")
{
const auto * left = fn->arguments->children.front().get();
const auto * right = fn->arguments->children.back().get();
const auto * identifier = left->as<ASTIdentifier>();
Disjunction result;
auto add_dnf = [&](const auto & dnf)
{
if (dnf.size() > limit)
{
result.clear();
return false;
}
result.insert(result.end(), dnf.begin(), dnf.end());
limit -= dnf.size();
return true;
};
if (const auto * tuple_func = right->as<ASTFunction>(); tuple_func && tuple_func->name == "tuple")
{
const auto * tuple_elements = tuple_func->children.front()->as<ASTExpressionList>();
for (const auto & child : tuple_elements->children)
{
const auto * literal = child->as<ASTLiteral>();
const auto dnf = analyzeEquals(identifier, literal, expr);
if (dnf.empty())
{
return {};
}
if (!add_dnf(dnf))
{
return {};
}
}
}
else if (const auto * tuple_literal = right->as<ASTLiteral>(); tuple_literal)
{
if (tuple_literal->value.getType() == Field::Types::Tuple)
{
const auto & tuple = tuple_literal->value.get<const Tuple &>();
for (const auto & child : tuple)
{
const auto dnf = analyzeEquals(identifier, child, expr);
if (dnf.empty())
{
return {};
}
if (!add_dnf(dnf))
{
return {};
}
}
}
else
return analyzeEquals(identifier, tuple_literal, expr);
}
else
{
return {};
}
return result;
}
else if (fn->name == "or")
{
const auto * args = fn->children.front()->as<ASTExpressionList>();
if (!args)
{
return {};
}
Disjunction result;
for (const auto & arg : args->children)
{
const auto dnf = analyzeFunction(arg->as<ASTFunction>(), expr, limit);
if (dnf.empty())
{
return {};
}
/// limit accounted in analyzeFunction()
result.insert(result.end(), dnf.begin(), dnf.end());
}
return result;
}
else if (fn->name == "and")
{
const auto * args = fn->children.front()->as<ASTExpressionList>();
if (!args)
{
return {};
}
Disjunction result;
for (const auto & arg : args->children)
{
const auto dnf = analyzeFunction(arg->as<ASTFunction>(), expr, limit);
if (dnf.empty())
{
continue;
}
/// limit accounted in analyzeFunction()
result = andDNF(result, dnf);
}
return result;
}
return {};
}
}
std::optional<Blocks> evaluateExpressionOverConstantCondition(const ASTPtr & node, const ExpressionActionsPtr & target_expr, size_t & limit)
{
Blocks result;
if (const auto * fn = node->as<ASTFunction>())
{
std::unordered_map<std::string, bool> always_false_map;
const auto dnf = analyzeFunction(fn, target_expr, limit);
if (dnf.empty() || !limit)
{
return {};
}
auto has_required_columns = [&target_expr](const Block & block) -> bool
{
for (const auto & name : target_expr->getRequiredColumns())
{
bool has_column = false;
for (const auto & column_name : block.getNames())
{
if (column_name == name)
{
has_column = true;
break;
}
}
if (!has_column)
return false;
}
return true;
};
for (const auto & conjunct : dnf)
{
Block block;
for (const auto & elem : conjunct)
{
if (!block.has(elem.name))
{
block.insert(elem);
}
else
{
/// Conjunction of condition on column equality to distinct values can never be satisfied.
const ColumnWithTypeAndName & prev = block.getByName(elem.name);
if (isColumnConst(*prev.column) && isColumnConst(*elem.column))
{
Field prev_value = assert_cast<const ColumnConst &>(*prev.column).getField();
Field curr_value = assert_cast<const ColumnConst &>(*elem.column).getField();
if (!always_false_map.contains(elem.name))
{
always_false_map[elem.name] = prev_value != curr_value;
}
else
{
auto & always_false = always_false_map[elem.name];
/// If at least one of conjunct is not always false, we should preserve this.
if (always_false)
{
always_false = prev_value != curr_value;
}
}
}
}
}
// Block should contain all required columns from `target_expr`
if (!has_required_columns(block))
{
return {};
}
target_expr->execute(block);
if (block.rows() == 1)
{
result.push_back(block);
}
else if (block.rows() == 0)
{
// filter out cases like "WHERE a = 1 AND a = 2"
continue;
}
else
{
// FIXME: shouldn't happen
return {};
}
}
bool any_always_false = std::any_of(always_false_map.begin(), always_false_map.end(), [](const auto & v) { return v.second; });
if (any_always_false)
return Blocks{};
}
else if (const auto * literal = node->as<ASTLiteral>())
{
// Check if it's always true or false.
if (literal->value.getType() == Field::Types::UInt64 && literal->value.get<UInt64>() == 0)
return {result};
else
return {};
}
return {result};
}
}