ClickHouse/dbms/src/Functions/greatCircleDistance.cpp
2019-10-16 20:43:44 +03:00

280 lines
10 KiB
C++

#include <DataTypes/DataTypesNumber.h>
#include <Columns/ColumnsNumber.h>
#include <Columns/ColumnConst.h>
#include <Common/typeid_cast.h>
#include <Common/assert_cast.h>
#include <Functions/IFunction.h>
#include <Functions/FunctionHelpers.h>
#include <Functions/FunctionFactory.h>
#include <ext/range.h>
#include <math.h>
#include <array>
#define DEGREES_IN_RADIANS (M_PI / 180.0)
#define EARTH_RADIUS_IN_METERS 6372797.560856
namespace DB
{
namespace ErrorCodes
{
extern const int ARGUMENT_OUT_OF_BOUND;
extern const int ILLEGAL_COLUMN;
extern const int LOGICAL_ERROR;
}
static inline Float64 degToRad(Float64 angle) { return angle * DEGREES_IN_RADIANS; }
static const double PI = 3.14159265358979323846;
static const double TO_RAD = PI / 180.0;
static const double TO_RAD2 = PI / 360.0;
static const double TO_DEG = 180.0 / PI;
static const float TO_RADF = static_cast<float>(PI / 180.0);
static const float TO_RADF2 = static_cast<float>(PI / 360.0);
static const float TO_DEGF = static_cast<float>(180.0 / PI);
const int GEODIST_TABLE_COS = 1024; // maxerr 0.00063%
const int GEODIST_TABLE_ASIN = 512;
const int GEODIST_TABLE_K = 1024;
static float g_GeoCos[GEODIST_TABLE_COS + 1]; ///< cos(x) table
static float g_GeoAsin[GEODIST_TABLE_ASIN + 1]; ///< asin(sqrt(x)) table
static float g_GeoFlatK[GEODIST_TABLE_K + 1][2]; ///< GeodistAdaptive() flat ellipsoid method k1,k2 coeffs table
inline double sqr(double v)
{
return v*v;
}
inline float fsqr(float v)
{
return v*v;
}
void GeodistInit()
{
for (int i = 0; i <= GEODIST_TABLE_COS; i++)
g_GeoCos[i] = (float) cos(2 * PI * i / GEODIST_TABLE_COS); // [0, 2pi] -> [0, COSTABLE]
for (int i = 0; i <= GEODIST_TABLE_ASIN; i++)
g_GeoAsin[i] = (float) asin(sqrt(double(i) / GEODIST_TABLE_ASIN)); // [0, 1] -> [0, ASINTABLE]
for (int i = 0; i <= GEODIST_TABLE_K; i++)
{
double x = PI * i / GEODIST_TABLE_K - PI * 0.5; // [-pi/2, pi/2] -> [0, KTABLE]
g_GeoFlatK[i][0] = (float) sqr(111132.09 - 566.05 * cos(2 * x) + 1.20 * cos(4 * x));
g_GeoFlatK[i][1] = (float) sqr(111415.13 * cos(x) - 94.55 * cos(3 * x) + 0.12 * cos(5 * x));
}
}
static inline float GeodistDegDiff(float f)
{
f = (float) fabs(f);
while (f > 360)
f -= 360;
if (f > 180)
f = 360 - f;
return f;
}
static inline float GeodistFastCos(float x)
{
float y = (float) (fabs(x) * GEODIST_TABLE_COS / PI / 2);
int i = int(y);
y -= i;
i &= (GEODIST_TABLE_COS - 1);
return g_GeoCos[i] + (g_GeoCos[i + 1] - g_GeoCos[i]) * y;
}
static inline float GeodistFastSin(float x)
{
float y = float(fabs(x) * GEODIST_TABLE_COS / PI / 2);
int i = int(y);
y -= i;
i = (i - GEODIST_TABLE_COS / 4) & (GEODIST_TABLE_COS - 1); // cos(x-pi/2)=sin(x), costable/4=pi/2
return g_GeoCos[i] + (g_GeoCos[i + 1] - g_GeoCos[i]) * y;
}
/// fast implementation of asin(sqrt(x))
/// max error in floats 0.00369%, in doubles 0.00072%
static inline float GeodistFastAsinSqrt(float x)
{
if (x < 0.122)
{
// distance under 4546km, Taylor error under 0.00072%
float y = (float) sqrt(x);
return y + x * y * 0.166666666666666f + x * x * y * 0.075f + x * x * x * y * 0.044642857142857f;
}
if (x < 0.948)
{
// distance under 17083km, 512-entry LUT error under 0.00072%
x *= GEODIST_TABLE_ASIN;
int i = int(x);
return g_GeoAsin[i] + (g_GeoAsin[i + 1] - g_GeoAsin[i]) * (x - i);
}
return (float) asin(sqrt(x)); // distance over 17083km, just compute honestly
}
/**
* The function calculates distance in meters between two points on Earth specified by longitude and latitude in degrees.
* The function uses great circle distance formula https://en.wikipedia.org/wiki/Great-circle_distance.
* Throws exception when one or several input values are not within reasonable bounds.
* Latitude must be in [-90, 90], longitude must be [-180, 180]
*
*/
class FunctionGreatCircleDistance : public IFunction
{
public:
static constexpr auto name = "greatCircleDistance";
static FunctionPtr create(const Context &) { GeodistInit(); return std::make_shared<FunctionGreatCircleDistance>(); }
private:
enum class instr_type : uint8_t
{
get_float_64,
get_const_float_64
};
using instr_t = std::pair<instr_type, const IColumn *>;
using instrs_t = std::array<instr_t, 4>;
String getName() const override { return name; }
size_t getNumberOfArguments() const override { return 4; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
for (const auto arg_idx : ext::range(0, arguments.size()))
{
const auto arg = arguments[arg_idx].get();
if (!WhichDataType(arg).isFloat64())
throw Exception(
"Illegal type " + arg->getName() + " of argument " + std::to_string(arg_idx + 1) + " of function " + getName() + ". Must be Float64",
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
return std::make_shared<DataTypeFloat64>();
}
instrs_t getInstructions(const Block & block, const ColumnNumbers & arguments, bool & out_const)
{
instrs_t result;
out_const = true;
for (const auto arg_idx : ext::range(0, arguments.size()))
{
const auto column = block.getByPosition(arguments[arg_idx]).column.get();
if (const auto col = checkAndGetColumn<ColumnVector<Float64>>(column))
{
out_const = false;
result[arg_idx] = instr_t{instr_type::get_float_64, col};
}
else if (const auto col_const = checkAndGetColumnConst<ColumnVector<Float64>>(column))
{
result[arg_idx] = instr_t{instr_type::get_const_float_64, col_const};
}
else
throw Exception("Illegal column " + column->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
}
return result;
}
/// https://en.wikipedia.org/wiki/Great-circle_distance
Float64 greatCircleDistance(Float64 lon1Deg, Float64 lat1Deg, Float64 lon2Deg, Float64 lat2Deg)
{
if (lon1Deg < -180 || lon1Deg > 180 ||
lon2Deg < -180 || lon2Deg > 180 ||
lat1Deg < -90 || lat1Deg > 90 ||
lat2Deg < -90 || lat2Deg > 90)
{
throw Exception("Arguments values out of bounds for function " + getName(),
ErrorCodes::ARGUMENT_OUT_OF_BOUND);
}
float dlat = GeodistDegDiff(lat1Deg - lat2Deg);
float dlon = GeodistDegDiff(lon1Deg - lon2Deg);
if (dlon < 13)
{
// points are close enough; use flat ellipsoid model
// interpolate sqr(k1), sqr(k2) coefficients using latitudes midpoint
float m = (lat1Deg + lat2Deg + 180) * GEODIST_TABLE_K / 360; // [-90, 90] degrees -> [0, KTABLE] indexes
int i = int(m);
i &= (GEODIST_TABLE_K - 1);
float kk1 = g_GeoFlatK[i][0] + (g_GeoFlatK[i + 1][0] - g_GeoFlatK[i][0]) * (m - i);
float kk2 = g_GeoFlatK[i][1] + (g_GeoFlatK[i + 1][1] - g_GeoFlatK[i][1]) * (m - i);
return (float) sqrt(kk1 * dlat * dlat + kk2 * dlon * dlon);
}
// points too far away; use haversine
static const float D = 2 * 6371000;
float a = fsqr(GeodistFastSin(dlat * TO_RADF2)) +
GeodistFastCos(lat1Deg * TO_RADF) * GeodistFastCos(lat2Deg * TO_RADF) *
fsqr(GeodistFastSin(dlon * TO_RADF2));
return (float) (D * GeodistFastAsinSqrt(a));
// Float64 lon1Rad = degToRad(lon1Deg);
// Float64 lat1Rad = degToRad(lat1Deg);
// Float64 lon2Rad = degToRad(lon2Deg);
// Float64 lat2Rad = degToRad(lat2Deg);
// Float64 u = sin((lat2Rad - lat1Rad) / 2);
// Float64 v = sin((lon2Rad - lon1Rad) / 2);
// return 2.0 * EARTH_RADIUS_IN_METERS * asin(sqrt(u * u + cos(lat1Rad) * cos(lat2Rad) * v * v));
}
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) override
{
const auto size = input_rows_count;
bool result_is_const{};
auto instrs = getInstructions(block, arguments, result_is_const);
if (result_is_const)
{
const auto & colLon1 = assert_cast<const ColumnConst *>(block.getByPosition(arguments[0]).column.get())->getValue<Float64>();
const auto & colLat1 = assert_cast<const ColumnConst *>(block.getByPosition(arguments[1]).column.get())->getValue<Float64>();
const auto & colLon2 = assert_cast<const ColumnConst *>(block.getByPosition(arguments[2]).column.get())->getValue<Float64>();
const auto & colLat2 = assert_cast<const ColumnConst *>(block.getByPosition(arguments[3]).column.get())->getValue<Float64>();
Float64 res = greatCircleDistance(colLon1, colLat1, colLon2, colLat2);
block.getByPosition(result).column = block.getByPosition(result).type->createColumnConst(size, res);
}
else
{
auto dst = ColumnVector<Float64>::create();
auto & dst_data = dst->getData();
dst_data.resize(size);
Float64 vals[instrs.size()];
for (const auto row : ext::range(0, size))
{
for (const auto idx : ext::range(0, instrs.size()))
{
if (instr_type::get_float_64 == instrs[idx].first)
vals[idx] = assert_cast<const ColumnVector<Float64> *>(instrs[idx].second)->getData()[row];
else if (instr_type::get_const_float_64 == instrs[idx].first)
vals[idx] = assert_cast<const ColumnConst *>(instrs[idx].second)->getValue<Float64>();
else
throw Exception{"Unknown instruction type in implementation of greatCircleDistance function", ErrorCodes::LOGICAL_ERROR};
}
dst_data[row] = greatCircleDistance(vals[0], vals[1], vals[2], vals[3]);
}
block.getByPosition(result).column = std::move(dst);
}
}
};
void registerFunctionGreatCircleDistance(FunctionFactory & factory)
{
factory.registerFunction<FunctionGreatCircleDistance>();
}
}