ClickHouse/src/Functions/if.cpp
2023-11-06 02:57:26 +01:00

1166 lines
49 KiB
C++

#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypesDecimal.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/DataTypeFixedString.h>
#include <DataTypes/DataTypeTuple.h>
#include <DataTypes/DataTypeNullable.h>
#include <DataTypes/NumberTraits.h>
#include <DataTypes/getLeastSupertype.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnDecimal.h>
#include <Columns/ColumnString.h>
#include <Columns/ColumnConst.h>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnFixedString.h>
#include <Columns/ColumnTuple.h>
#include <Columns/ColumnNullable.h>
#include <Columns/MaskOperations.h>
#include <Common/typeid_cast.h>
#include <Common/assert_cast.h>
#include <Functions/IFunction.h>
#include <Functions/FunctionHelpers.h>
#include <Functions/GatherUtils/Algorithms.h>
#include <Functions/FunctionIfBase.h>
#include <Interpreters/castColumn.h>
#include <Functions/FunctionFactory.h>
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_COLUMN;
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int NOT_IMPLEMENTED;
}
namespace
{
using namespace GatherUtils;
/** Selection function by condition: if(cond, then, else).
* cond - UInt8
* then, else - numeric types for which there is a general type, or dates, datetimes, or strings, or arrays of these types.
*/
template <typename ArrayCond, typename ArrayA, typename ArrayB, typename ArrayResult, typename ResultType>
inline void fillVectorVector(const ArrayCond & cond, const ArrayA & a, const ArrayB & b, ArrayResult & res)
{
size_t size = cond.size();
bool a_is_short = a.size() < size;
bool b_is_short = b.size() < size;
if (a_is_short && b_is_short)
{
size_t a_index = 0, b_index = 0;
for (size_t i = 0; i < size; ++i)
res[i] = cond[i] ? static_cast<ResultType>(a[a_index++]) : static_cast<ResultType>(b[b_index++]);
}
else if (a_is_short)
{
size_t a_index = 0;
for (size_t i = 0; i < size; ++i)
res[i] = cond[i] ? static_cast<ResultType>(a[a_index++]) : static_cast<ResultType>(b[i]);
}
else if (b_is_short)
{
size_t b_index = 0;
for (size_t i = 0; i < size; ++i)
res[i] = cond[i] ? static_cast<ResultType>(a[i]) : static_cast<ResultType>(b[b_index++]);
}
else
{
for (size_t i = 0; i < size; ++i)
res[i] = cond[i] ? static_cast<ResultType>(a[i]) : static_cast<ResultType>(b[i]);
}
}
template <typename ArrayCond, typename ArrayA, typename B, typename ArrayResult, typename ResultType>
inline void fillVectorConstant(const ArrayCond & cond, const ArrayA & a, B b, ArrayResult & res)
{
size_t size = cond.size();
bool a_is_short = a.size() < size;
if (a_is_short)
{
size_t a_index = 0;
for (size_t i = 0; i < size; ++i)
res[i] = cond[i] ? static_cast<ResultType>(a[a_index++]) : static_cast<ResultType>(b);
}
else
{
for (size_t i = 0; i < size; ++i)
res[i] = cond[i] ? static_cast<ResultType>(a[i]) : static_cast<ResultType>(b);
}
}
template <typename ArrayCond, typename A, typename ArrayB, typename ArrayResult, typename ResultType>
inline void fillConstantVector(const ArrayCond & cond, A a, const ArrayB & b, ArrayResult & res)
{
size_t size = cond.size();
bool b_is_short = b.size() < size;
if (b_is_short)
{
size_t b_index = 0;
for (size_t i = 0; i < size; ++i)
res[i] = cond[i] ? static_cast<ResultType>(a) : static_cast<ResultType>(b[b_index++]);
}
else
{
for (size_t i = 0; i < size; ++i)
res[i] = cond[i] ? static_cast<ResultType>(a) : static_cast<ResultType>(b[i]);
}
}
template <typename A, typename B, typename ResultType>
struct NumIfImpl
{
using ArrayCond = PaddedPODArray<UInt8>;
using ArrayA = typename ColumnVector<A>::Container;
using ArrayB = typename ColumnVector<B>::Container;
using ColVecResult = ColumnVector<ResultType>;
using ArrayResult = typename ColVecResult::Container;
static ColumnPtr vectorVector(const ArrayCond & cond, const ArrayA & a, const ArrayB & b, UInt32)
{
size_t size = cond.size();
auto col_res = ColVecResult::create(size);
ArrayResult & res = col_res->getData();
fillVectorVector<ArrayCond, ArrayA, ArrayB, ArrayResult, ResultType>(cond, a, b, res);
return col_res;
}
static ColumnPtr vectorConstant(const ArrayCond & cond, const ArrayA & a, B b, UInt32)
{
size_t size = cond.size();
auto col_res = ColVecResult::create(size);
ArrayResult & res = col_res->getData();
fillVectorConstant<ArrayCond, ArrayA, B, ArrayResult, ResultType>(cond, a, b, res);
return col_res;
}
static ColumnPtr constantVector(const ArrayCond & cond, A a, const ArrayB & b, UInt32)
{
size_t size = cond.size();
auto col_res = ColVecResult::create(size);
ArrayResult & res = col_res->getData();
fillConstantVector<ArrayCond, A, ArrayB, ArrayResult, ResultType>(cond, a, b, res);
return col_res;
}
static ColumnPtr constantConstant(const ArrayCond & cond, A a, B b, UInt32)
{
size_t size = cond.size();
auto col_res = ColVecResult::create(size);
ArrayResult & res = col_res->getData();
for (size_t i = 0; i < size; ++i)
res[i] = cond[i] ? static_cast<ResultType>(a) : static_cast<ResultType>(b);
return col_res;
}
};
template <typename A, typename B, typename R>
struct NumIfImpl<Decimal<A>, Decimal<B>, Decimal<R>>
{
using ResultType = Decimal<R>;
using ArrayCond = PaddedPODArray<UInt8>;
using ArrayA = typename ColumnDecimal<Decimal<A>>::Container;
using ArrayB = typename ColumnDecimal<Decimal<B>>::Container;
using ColVecResult = ColumnDecimal<ResultType>;
using Block = ColumnsWithTypeAndName;
using ArrayResult = typename ColVecResult::Container;
static ColumnPtr vectorVector(const ArrayCond & cond, const ArrayA & a, const ArrayB & b, UInt32 scale)
{
size_t size = cond.size();
auto col_res = ColVecResult::create(size, scale);
ArrayResult & res = col_res->getData();
fillVectorVector<ArrayCond, ArrayA, ArrayB, ArrayResult, ResultType>(cond, a, b, res);
return col_res;
}
static ColumnPtr vectorConstant(const ArrayCond & cond, const ArrayA & a, B b, UInt32 scale)
{
size_t size = cond.size();
auto col_res = ColVecResult::create(size, scale);
ArrayResult & res = col_res->getData();
fillVectorConstant<ArrayCond, ArrayA, B, ArrayResult, ResultType>(cond, a, b, res);
return col_res;
}
static ColumnPtr constantVector(const ArrayCond & cond, A a, const ArrayB & b, UInt32 scale)
{
size_t size = cond.size();
auto col_res = ColVecResult::create(size, scale);
ArrayResult & res = col_res->getData();
fillConstantVector<ArrayCond, A, ArrayB, ArrayResult, ResultType>(cond, a, b, res);
return col_res;
}
static ColumnPtr constantConstant(const ArrayCond & cond, A a, B b, UInt32 scale)
{
size_t size = cond.size();
auto col_res = ColVecResult::create(size, scale);
ArrayResult & res = col_res->getData();
for (size_t i = 0; i < size; ++i)
res[i] = cond[i] ? static_cast<ResultType>(a) : static_cast<ResultType>(b);
return col_res;
}
};
class FunctionIf : public FunctionIfBase
{
public:
static constexpr auto name = "if";
static FunctionPtr create(ContextPtr) { return std::make_shared<FunctionIf>(); }
private:
template <typename T0, typename T1>
static UInt32 decimalScale(const ColumnsWithTypeAndName & arguments [[maybe_unused]])
{
if constexpr (is_decimal<T0> && is_decimal<T1>)
{
UInt32 left_scale = getDecimalScale(*arguments[1].type);
UInt32 right_scale = getDecimalScale(*arguments[2].type);
if (left_scale != right_scale)
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Conditional functions with different Decimal scales");
return left_scale;
}
else
return std::numeric_limits<UInt32>::max();
}
template <typename T0, typename T1, typename ColVecT0, typename ColVecT1>
ColumnPtr executeRightType(
[[maybe_unused]] const ColumnUInt8 * cond_col,
[[maybe_unused]] const ColumnsWithTypeAndName & arguments,
[[maybe_unused]] const ColVecT0 * col_left) const
{
using ResultType = typename NumberTraits::ResultOfIf<T0, T1>::Type;
if constexpr (std::is_same_v<ResultType, NumberTraits::Error>)
{
return nullptr;
}
else
{
const IColumn * col_right_untyped = arguments[2].column.get();
UInt32 scale = decimalScale<T0, T1>(arguments);
if (const auto * col_right_vec = checkAndGetColumn<ColVecT1>(col_right_untyped))
{
return NumIfImpl<T0, T1, ResultType>::vectorVector(
cond_col->getData(), col_left->getData(), col_right_vec->getData(), scale);
}
else if (const auto * col_right_const = checkAndGetColumnConst<ColVecT1>(col_right_untyped))
{
return NumIfImpl<T0, T1, ResultType>::vectorConstant(
cond_col->getData(), col_left->getData(), col_right_const->template getValue<T1>(), scale);
}
return nullptr;
}
}
template <typename T0, typename T1, typename ColVecT0, typename ColVecT1>
ColumnPtr executeConstRightType(
[[maybe_unused]] const ColumnUInt8 * cond_col,
[[maybe_unused]] const ColumnsWithTypeAndName & arguments,
[[maybe_unused]] const ColumnConst * col_left) const
{
using ResultType = typename NumberTraits::ResultOfIf<T0, T1>::Type;
if constexpr (std::is_same_v<ResultType, NumberTraits::Error>)
{
return nullptr;
}
else
{
const IColumn * col_right_untyped = arguments[2].column.get();
UInt32 scale = decimalScale<T0, T1>(arguments);
if (const auto * col_right_vec = checkAndGetColumn<ColVecT1>(col_right_untyped))
{
return NumIfImpl<T0, T1, ResultType>::constantVector(
cond_col->getData(), col_left->template getValue<T0>(), col_right_vec->getData(), scale);
}
else if (const auto * col_right_const = checkAndGetColumnConst<ColVecT1>(col_right_untyped))
{
return NumIfImpl<T0, T1, ResultType>::constantConstant(
cond_col->getData(), col_left->template getValue<T0>(), col_right_const->template getValue<T1>(), scale);
}
return nullptr;
}
}
template <typename T0, typename T1, typename ColVecT0, typename ColVecT1>
ColumnPtr executeRightTypeArray(
[[maybe_unused]] const ColumnUInt8 * cond_col,
[[maybe_unused]] const ColumnsWithTypeAndName & arguments,
[[maybe_unused]] const DataTypePtr result_type,
[[maybe_unused]] const ColumnArray * col_left_array,
[[maybe_unused]] size_t input_rows_count) const
{
using ResultType = typename NumberTraits::ResultOfIf<T0, T1>::Type;
if constexpr (std::is_same_v<ResultType, NumberTraits::Error>)
{
return nullptr;
}
else
{
const IColumn * col_right_untyped = arguments[2].column.get();
if (const auto * col_right_array = checkAndGetColumn<ColumnArray>(col_right_untyped))
{
const ColVecT1 * col_right_vec = checkAndGetColumn<ColVecT1>(&col_right_array->getData());
if (!col_right_vec)
return nullptr;
auto res = result_type->createColumn();
auto & arr_res = assert_cast<ColumnArray &>(*res);
conditional(
NumericArraySource<T0>(*col_left_array),
NumericArraySource<T1>(*col_right_array),
NumericArraySink<ResultType>(arr_res.getData(), arr_res.getOffsets(), input_rows_count),
cond_col->getData());
return res;
}
else if (const auto * col_right_const_array = checkAndGetColumnConst<ColumnArray>(col_right_untyped))
{
const ColumnArray * col_right_const_array_data = checkAndGetColumn<ColumnArray>(&col_right_const_array->getDataColumn());
if (!checkColumn<ColVecT1>(&col_right_const_array_data->getData()))
return nullptr;
auto res = result_type->createColumn();
auto & arr_res = assert_cast<ColumnArray &>(*res);
conditional(
NumericArraySource<T0>(*col_left_array),
ConstSource<NumericArraySource<T1>>(*col_right_const_array),
NumericArraySink<ResultType>(arr_res.getData(), arr_res.getOffsets(), input_rows_count),
cond_col->getData());
return res;
}
return nullptr;
}
}
template <typename T0, typename T1, typename ColVecT0, typename ColVecT1>
ColumnPtr executeConstRightTypeArray(
[[maybe_unused]] const ColumnUInt8 * cond_col,
[[maybe_unused]] const ColumnsWithTypeAndName & arguments,
[[maybe_unused]] const DataTypePtr & result_type,
[[maybe_unused]] const ColumnConst * col_left_const_array,
[[maybe_unused]] size_t input_rows_count) const
{
using ResultType = typename NumberTraits::ResultOfIf<T0, T1>::Type;
if constexpr (std::is_same_v<ResultType, NumberTraits::Error>)
{
return nullptr;
}
else
{
const IColumn * col_right_untyped = arguments[2].column.get();
if (const auto * col_right_array = checkAndGetColumn<ColumnArray>(col_right_untyped))
{
const ColVecT1 * col_right_vec = checkAndGetColumn<ColVecT1>(&col_right_array->getData());
if (!col_right_vec)
return nullptr;
auto res = result_type->createColumn();
auto & arr_res = assert_cast<ColumnArray &>(*res);
conditional(
ConstSource<NumericArraySource<T0>>(*col_left_const_array),
NumericArraySource<T1>(*col_right_array),
NumericArraySink<ResultType>(arr_res.getData(), arr_res.getOffsets(), input_rows_count),
cond_col->getData());
return res;
}
else if (const auto * col_right_const_array = checkAndGetColumnConst<ColumnArray>(col_right_untyped))
{
const ColumnArray * col_right_const_array_data = checkAndGetColumn<ColumnArray>(&col_right_const_array->getDataColumn());
if (!checkColumn<ColVecT1>(&col_right_const_array_data->getData()))
return nullptr;
auto res = result_type->createColumn();
auto & arr_res = assert_cast<ColumnArray &>(*res);
conditional(
ConstSource<NumericArraySource<T0>>(*col_left_const_array),
ConstSource<NumericArraySource<T1>>(*col_right_const_array),
NumericArraySink<ResultType>(arr_res.getData(), arr_res.getOffsets(), input_rows_count),
cond_col->getData());
return res;
}
return nullptr;
}
}
template <typename T0, typename T1>
ColumnPtr executeTyped(
const ColumnUInt8 * cond_col, const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const
{
using ColVecT0 = ColumnVectorOrDecimal<T0>;
using ColVecT1 = ColumnVectorOrDecimal<T1>;
const IColumn * col_left_untyped = arguments[1].column.get();
ColumnPtr right_column = nullptr;
if (const auto * col_left = checkAndGetColumn<ColVecT0>(col_left_untyped))
{
right_column = executeRightType<T0, T1, ColVecT0, ColVecT1>(cond_col, arguments, col_left);
}
else if (const auto * col_const_left = checkAndGetColumnConst<ColVecT0>(col_left_untyped))
{
right_column = executeConstRightType<T0, T1, ColVecT0, ColVecT1>(cond_col, arguments, col_const_left);
}
else if (const auto * col_arr_left = checkAndGetColumn<ColumnArray>(col_left_untyped))
{
if (auto col_arr_left_elems = checkAndGetColumn<ColVecT0>(&col_arr_left->getData()))
{
right_column = executeRightTypeArray<T0, T1, ColVecT0, ColVecT1>(
cond_col, arguments, result_type, col_arr_left, input_rows_count);
}
}
else if (const auto * col_const_arr_left = checkAndGetColumnConst<ColumnArray>(col_left_untyped))
{
if (checkColumn<ColVecT0>(&assert_cast<const ColumnArray &>(col_const_arr_left->getDataColumn()).getData()))
{
right_column = executeConstRightTypeArray<T0, T1, ColVecT0, ColVecT1>(
cond_col, arguments, result_type, col_const_arr_left, input_rows_count);
}
}
return right_column;
}
static ColumnPtr executeString(const ColumnUInt8 * cond_col, const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type)
{
const IColumn * col_then_untyped = arguments[1].column.get();
const IColumn * col_else_untyped = arguments[2].column.get();
const ColumnString * col_then = checkAndGetColumn<ColumnString>(col_then_untyped);
const ColumnString * col_else = checkAndGetColumn<ColumnString>(col_else_untyped);
const ColumnFixedString * col_then_fixed = checkAndGetColumn<ColumnFixedString>(col_then_untyped);
const ColumnFixedString * col_else_fixed = checkAndGetColumn<ColumnFixedString>(col_else_untyped);
const ColumnConst * col_then_const = checkAndGetColumnConst<ColumnString>(col_then_untyped);
const ColumnConst * col_else_const = checkAndGetColumnConst<ColumnString>(col_else_untyped);
const ColumnConst * col_then_const_fixed = checkAndGetColumnConst<ColumnFixedString>(col_then_untyped);
const ColumnConst * col_else_const_fixed = checkAndGetColumnConst<ColumnFixedString>(col_else_untyped);
const PaddedPODArray<UInt8> & cond_data = cond_col->getData();
size_t rows = cond_data.size();
if (isFixedString(result_type))
{
/// The result is FixedString.
auto col_res_untyped = result_type->createColumn();
ColumnFixedString * col_res = assert_cast<ColumnFixedString *>(col_res_untyped.get());
auto sink = FixedStringSink(*col_res, rows);
if (col_then_fixed && col_else_fixed)
conditional(FixedStringSource(*col_then_fixed), FixedStringSource(*col_else_fixed), sink, cond_data);
else if (col_then_fixed && col_else_const_fixed)
conditional(FixedStringSource(*col_then_fixed), ConstSource<FixedStringSource>(*col_else_const_fixed), sink, cond_data);
else if (col_then_const_fixed && col_else_fixed)
conditional(ConstSource<FixedStringSource>(*col_then_const_fixed), FixedStringSource(*col_else_fixed), sink, cond_data);
else if (col_then_const_fixed && col_else_const_fixed)
conditional(ConstSource<FixedStringSource>(*col_then_const_fixed),
ConstSource<FixedStringSource>(*col_else_const_fixed), sink, cond_data);
else
return nullptr;
return col_res_untyped;
}
if (isString(result_type))
{
/// The result is String.
auto col_res = ColumnString::create();
auto sink = StringSink(*col_res, rows);
if (col_then && col_else)
conditional(StringSource(*col_then), StringSource(*col_else), sink, cond_data);
else if (col_then && col_else_const)
conditional(StringSource(*col_then), ConstSource<StringSource>(*col_else_const), sink, cond_data);
else if (col_then_const && col_else)
conditional(ConstSource<StringSource>(*col_then_const), StringSource(*col_else), sink, cond_data);
else if (col_then_const && col_else_const)
conditional(ConstSource<StringSource>(*col_then_const), ConstSource<StringSource>(*col_else_const), sink, cond_data);
else if (col_then && col_else_fixed)
conditional(StringSource(*col_then), FixedStringSource(*col_else_fixed), sink, cond_data);
else if (col_then_fixed && col_else)
conditional(FixedStringSource(*col_then_fixed), StringSource(*col_else), sink, cond_data);
else if (col_then_const && col_else_fixed)
conditional(ConstSource<StringSource>(*col_then_const), FixedStringSource(*col_else_fixed), sink, cond_data);
else if (col_then_fixed && col_else_const)
conditional(FixedStringSource(*col_then_fixed), ConstSource<StringSource>(*col_else_const), sink, cond_data);
else if (col_then && col_else_const_fixed)
conditional(StringSource(*col_then), ConstSource<FixedStringSource>(*col_else_const_fixed), sink, cond_data);
else if (col_then_const_fixed && col_else)
conditional(ConstSource<FixedStringSource>(*col_then_const_fixed), StringSource(*col_else), sink, cond_data);
else if (col_then_const && col_else_const_fixed)
conditional(ConstSource<StringSource>(*col_then_const), ConstSource<FixedStringSource>(*col_else_const_fixed), sink, cond_data);
else if (col_then_const_fixed && col_else_const)
conditional(ConstSource<FixedStringSource>(*col_then_const_fixed), ConstSource<StringSource>(*col_else_const), sink, cond_data);
else if (col_then_fixed && col_else_fixed)
conditional(FixedStringSource(*col_then_fixed), FixedStringSource(*col_else_fixed), sink, cond_data);
else if (col_then_fixed && col_else_const_fixed)
conditional(FixedStringSource(*col_then_fixed), ConstSource<FixedStringSource>(*col_else_const_fixed), sink, cond_data);
else if (col_then_const_fixed && col_else_fixed)
conditional(ConstSource<FixedStringSource>(*col_then_const_fixed), FixedStringSource(*col_else_fixed), sink, cond_data);
else if (col_then_const_fixed && col_else_const_fixed)
conditional(ConstSource<FixedStringSource>(*col_then_const_fixed),
ConstSource<FixedStringSource>(*col_else_const_fixed), sink, cond_data);
else
return nullptr;
return col_res;
}
return nullptr;
}
static ColumnPtr executeGenericArray(const ColumnUInt8 * cond_col, const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type)
{
/// For generic implementation, arrays must be of same type.
if (!arguments[1].type->equals(*arguments[2].type))
return nullptr;
const IColumn * col_then_untyped = arguments[1].column.get();
const IColumn * col_else_untyped = arguments[2].column.get();
const ColumnArray * col_arr_then = checkAndGetColumn<ColumnArray>(col_then_untyped);
const ColumnArray * col_arr_else = checkAndGetColumn<ColumnArray>(col_else_untyped);
const ColumnConst * col_arr_then_const = checkAndGetColumnConst<ColumnArray>(col_then_untyped);
const ColumnConst * col_arr_else_const = checkAndGetColumnConst<ColumnArray>(col_else_untyped);
const PaddedPODArray<UInt8> & cond_data = cond_col->getData();
size_t rows = cond_data.size();
if ((col_arr_then || col_arr_then_const)
&& (col_arr_else || col_arr_else_const))
{
auto res = result_type->createColumn();
auto * col_res = assert_cast<ColumnArray *>(res.get());
if (col_arr_then && col_arr_else)
conditional(GenericArraySource(*col_arr_then), GenericArraySource(*col_arr_else), GenericArraySink(col_res->getData(), col_res->getOffsets(), rows), cond_data);
else if (col_arr_then && col_arr_else_const)
conditional(GenericArraySource(*col_arr_then), ConstSource<GenericArraySource>(*col_arr_else_const), GenericArraySink(col_res->getData(), col_res->getOffsets(), rows), cond_data);
else if (col_arr_then_const && col_arr_else)
conditional(ConstSource<GenericArraySource>(*col_arr_then_const), GenericArraySource(*col_arr_else), GenericArraySink(col_res->getData(), col_res->getOffsets(), rows), cond_data);
else if (col_arr_then_const && col_arr_else_const)
conditional(ConstSource<GenericArraySource>(*col_arr_then_const), ConstSource<GenericArraySource>(*col_arr_else_const), GenericArraySink(col_res->getData(), col_res->getOffsets(), rows), cond_data);
else
return nullptr;
return res;
}
return nullptr;
}
ColumnPtr executeTuple(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const
{
/// Calculate function for each corresponding elements of tuples.
const ColumnWithTypeAndName & arg1 = arguments[1];
const ColumnWithTypeAndName & arg2 = arguments[2];
Columns col1_contents;
Columns col2_contents;
if (const ColumnTuple * tuple1 = typeid_cast<const ColumnTuple *>(arg1.column.get()))
col1_contents = tuple1->getColumnsCopy();
else if (const ColumnConst * const_tuple = checkAndGetColumnConst<ColumnTuple>(arg1.column.get()))
col1_contents = convertConstTupleToConstantElements(*const_tuple);
else
return nullptr;
if (const ColumnTuple * tuple2 = typeid_cast<const ColumnTuple *>(arg2.column.get()))
col2_contents = tuple2->getColumnsCopy();
else if (const ColumnConst * const_tuple = checkAndGetColumnConst<ColumnTuple>(arg2.column.get()))
col2_contents = convertConstTupleToConstantElements(*const_tuple);
else
return nullptr;
const DataTypeTuple & type1 = static_cast<const DataTypeTuple &>(*arg1.type);
const DataTypeTuple & type2 = static_cast<const DataTypeTuple &>(*arg2.type);
const DataTypeTuple & tuple_result = static_cast<const DataTypeTuple &>(*result_type);
ColumnsWithTypeAndName temporary_columns(3);
temporary_columns[0] = arguments[0];
size_t tuple_size = type1.getElements().size();
Columns tuple_columns(tuple_size);
for (size_t i = 0; i < tuple_size; ++i)
{
temporary_columns[1] = {col1_contents[i], type1.getElements()[i], {}};
temporary_columns[2] = {col2_contents[i], type2.getElements()[i], {}};
tuple_columns[i] = executeImpl(temporary_columns, tuple_result.getElements()[i], input_rows_count);
}
return ColumnTuple::create(tuple_columns);
}
static ColumnPtr executeGeneric(
const ColumnUInt8 * cond_col, const ColumnsWithTypeAndName & arguments, size_t input_rows_count)
{
/// Convert both columns to the common type (if needed).
const ColumnWithTypeAndName & arg1 = arguments[1];
const ColumnWithTypeAndName & arg2 = arguments[2];
DataTypePtr common_type = getLeastSupertype(DataTypes{arg1.type, arg2.type});
ColumnPtr col_then = castColumn(arg1, common_type);
ColumnPtr col_else = castColumn(arg2, common_type);
MutableColumnPtr result_column = common_type->createColumn();
result_column->reserve(input_rows_count);
bool then_is_const = isColumnConst(*col_then);
bool else_is_const = isColumnConst(*col_else);
bool then_is_short = col_then->size() < cond_col->size();
bool else_is_short = col_else->size() < cond_col->size();
const auto & cond_array = cond_col->getData();
if (then_is_const && else_is_const)
{
const IColumn & then_nested_column = assert_cast<const ColumnConst &>(*col_then).getDataColumn();
const IColumn & else_nested_column = assert_cast<const ColumnConst &>(*col_else).getDataColumn();
for (size_t i = 0; i < input_rows_count; ++i)
{
if (cond_array[i])
result_column->insertFrom(then_nested_column, 0);
else
result_column->insertFrom(else_nested_column, 0);
}
}
else if (then_is_const)
{
const IColumn & then_nested_column = assert_cast<const ColumnConst &>(*col_then).getDataColumn();
size_t else_index = 0;
for (size_t i = 0; i < input_rows_count; ++i)
{
if (cond_array[i])
result_column->insertFrom(then_nested_column, 0);
else
result_column->insertFrom(*col_else, else_is_short ? else_index++ : i);
}
}
else if (else_is_const)
{
const IColumn & else_nested_column = assert_cast<const ColumnConst &>(*col_else).getDataColumn();
size_t then_index = 0;
for (size_t i = 0; i < input_rows_count; ++i)
{
if (cond_array[i])
result_column->insertFrom(*col_then, then_is_short ? then_index++ : i);
else
result_column->insertFrom(else_nested_column, 0);
}
}
else
{
size_t then_index = 0, else_index = 0;
for (size_t i = 0; i < input_rows_count; ++i)
{
if (cond_array[i])
result_column->insertFrom(*col_then, then_is_short ? then_index++ : i);
else
result_column->insertFrom(*col_else, else_is_short ? else_index++ : i);
}
}
return result_column;
}
ColumnPtr executeForConstAndNullableCondition(
const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t /*input_rows_count*/) const
{
const ColumnWithTypeAndName & arg_cond = arguments[0];
bool cond_is_null = arg_cond.column->onlyNull();
ColumnPtr not_const_condition = arg_cond.column;
bool cond_is_const = false;
bool cond_is_true = false;
bool cond_is_false = false;
if (const auto * const_arg = checkAndGetColumn<ColumnConst>(*arg_cond.column))
{
cond_is_const = true;
not_const_condition = const_arg->getDataColumnPtr();
ColumnPtr data_column = const_arg->getDataColumnPtr();
if (const auto * const_nullable_arg = checkAndGetColumn<ColumnNullable>(*data_column))
{
data_column = const_nullable_arg->getNestedColumnPtr();
if (!data_column->empty())
cond_is_null = const_nullable_arg->getNullMapData()[0];
}
if (!data_column->empty())
{
cond_is_true = !cond_is_null && checkAndGetColumn<ColumnUInt8>(*data_column)->getBool(0);
cond_is_false = !cond_is_null && !cond_is_true;
}
}
const auto & column1 = arguments[1];
const auto & column2 = arguments[2];
if (cond_is_true)
return castColumn(column1, result_type);
else if (cond_is_false || cond_is_null)
return castColumn(column2, result_type);
if (const auto * nullable = checkAndGetColumn<ColumnNullable>(*not_const_condition))
{
ColumnPtr new_cond_column = nullable->getNestedColumnPtr();
size_t column_size = arg_cond.column->size();
if (checkAndGetColumn<ColumnUInt8>(*new_cond_column))
{
auto nested_column_copy = new_cond_column->cloneResized(new_cond_column->size());
typeid_cast<ColumnUInt8 *>(nested_column_copy.get())->applyZeroMap(nullable->getNullMapData());
new_cond_column = std::move(nested_column_copy);
if (cond_is_const)
new_cond_column = ColumnConst::create(new_cond_column, column_size);
}
else
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of {} condition", arg_cond.column->getName(), getName());
ColumnsWithTypeAndName temporary_columns
{
{ new_cond_column, removeNullable(arg_cond.type), arg_cond.name },
column1,
column2,
};
return executeImpl(temporary_columns, result_type, new_cond_column->size());
}
return nullptr;
}
template <typename AnyColumnPtr>
static ColumnPtr materializeColumnIfConst(const AnyColumnPtr & column)
{
return column->convertToFullColumnIfConst();
}
static ColumnPtr makeNullableColumnIfNot(const ColumnPtr & column)
{
auto materialized = materializeColumnIfConst(column);
if (isColumnNullable(*materialized))
return materialized;
return ColumnNullable::create(materialized, ColumnUInt8::create(column->size(), 0));
}
/// Return nested column recursively removing Nullable, examples:
/// Nullable(size = 1, Int32(size = 1), UInt8(size = 1)) -> Int32(size = 1)
/// Const(size = 0, Nullable(size = 1, Int32(size = 1), UInt8(size = 1))) ->
/// Const(size = 0, Int32(size = 1))
static ColumnPtr recursiveGetNestedColumnWithoutNullable(const ColumnPtr & column)
{
if (const auto * nullable = checkAndGetColumn<ColumnNullable>(*column))
{
/// Nullable cannot contain Nullable
return nullable->getNestedColumnPtr();
}
else if (const auto * column_const = checkAndGetColumn<ColumnConst>(*column))
{
/// Save Constant, but remove Nullable
return ColumnConst::create(recursiveGetNestedColumnWithoutNullable(column_const->getDataColumnPtr()), column->size());
}
return column;
}
ColumnPtr executeForNullableThenElse(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const
{
const ColumnWithTypeAndName & arg_cond = arguments[0];
const ColumnWithTypeAndName & arg_then = arguments[1];
const ColumnWithTypeAndName & arg_else = arguments[2];
const auto * then_is_nullable = checkAndGetColumn<ColumnNullable>(*arg_then.column);
const auto * else_is_nullable = checkAndGetColumn<ColumnNullable>(*arg_else.column);
if (!then_is_nullable && !else_is_nullable)
return nullptr;
/** Calculate null mask of result and nested column separately.
*/
ColumnPtr result_null_mask;
{
ColumnsWithTypeAndName temporary_columns(
{
arg_cond,
{
then_is_nullable
? then_is_nullable->getNullMapColumnPtr()
: DataTypeUInt8().createColumnConstWithDefaultValue(input_rows_count),
std::make_shared<DataTypeUInt8>(),
""
},
{
else_is_nullable
? else_is_nullable->getNullMapColumnPtr()
: DataTypeUInt8().createColumnConstWithDefaultValue(input_rows_count),
std::make_shared<DataTypeUInt8>(),
""
}
});
result_null_mask = executeImpl(temporary_columns, std::make_shared<DataTypeUInt8>(), input_rows_count);
}
ColumnPtr result_nested_column;
{
ColumnsWithTypeAndName temporary_columns(
{
arg_cond,
{
recursiveGetNestedColumnWithoutNullable(arg_then.column),
removeNullable(arg_then.type),
""
},
{
recursiveGetNestedColumnWithoutNullable(arg_else.column),
removeNullable(arg_else.type),
""
}
});
result_nested_column = executeImpl(temporary_columns, removeNullable(result_type), temporary_columns.front().column->size());
}
return ColumnNullable::create(
materializeColumnIfConst(result_nested_column), materializeColumnIfConst(result_null_mask));
}
ColumnPtr executeForNullThenElse(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const
{
const ColumnWithTypeAndName & arg_cond = arguments[0];
const ColumnWithTypeAndName & arg_then = arguments[1];
const ColumnWithTypeAndName & arg_else = arguments[2];
bool then_is_null = arg_then.column->onlyNull();
bool else_is_null = arg_else.column->onlyNull();
if (!then_is_null && !else_is_null)
return nullptr;
if (then_is_null && else_is_null)
return result_type->createColumnConstWithDefaultValue(input_rows_count);
bool then_is_short = arg_then.column->size() < arg_cond.column->size();
bool else_is_short = arg_else.column->size() < arg_cond.column->size();
const ColumnUInt8 * cond_col = typeid_cast<const ColumnUInt8 *>(arg_cond.column.get());
const ColumnConst * cond_const_col = checkAndGetColumnConst<ColumnVector<UInt8>>(arg_cond.column.get());
/// If then is NULL, we create Nullable column with null mask OR-ed with condition.
if (then_is_null)
{
ColumnPtr arg_else_column;
/// In case when arg_else column type differs with result
/// column type we should cast it to result type.
if (removeNullable(arg_else.type)->getName() != removeNullable(result_type)->getName())
arg_else_column = castColumn(arg_else, result_type);
else
arg_else_column = arg_else.column;
if (cond_col)
{
arg_else_column = arg_else_column->convertToFullColumnIfConst();
auto result_column = IColumn::mutate(std::move(arg_else_column));
if (else_is_short)
result_column->expand(cond_col->getData(), true);
if (isColumnNullable(*result_column))
{
assert_cast<ColumnNullable &>(*result_column).applyNullMap(assert_cast<const ColumnUInt8 &>(*arg_cond.column));
return result_column;
}
else
return ColumnNullable::create(materializeColumnIfConst(result_column), arg_cond.column);
}
else if (cond_const_col)
{
if (cond_const_col->getValue<UInt8>())
return result_type->createColumn()->cloneResized(input_rows_count);
else
return makeNullableColumnIfNot(arg_else_column);
}
else
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}. "
"Must be ColumnUInt8 or ColumnConstUInt8.", arg_cond.column->getName(), getName());
}
/// If else is NULL, we create Nullable column with null mask OR-ed with negated condition.
if (else_is_null)
{
ColumnPtr arg_then_column;
/// In case when arg_then column type differs with result
/// column type we should cast it to result type.
if (removeNullable(arg_then.type)->getName() != removeNullable(result_type)->getName())
arg_then_column = castColumn(arg_then, result_type);
else
arg_then_column = arg_then.column;
if (cond_col)
{
arg_then_column = arg_then_column->convertToFullColumnIfConst();
auto result_column = IColumn::mutate(std::move(arg_then_column));
if (then_is_short)
result_column->expand(cond_col->getData(), false);
if (isColumnNullable(*result_column))
{
assert_cast<ColumnNullable &>(*result_column).applyNegatedNullMap(assert_cast<const ColumnUInt8 &>(*arg_cond.column));
return result_column;
}
else
{
size_t size = input_rows_count;
const auto & null_map_data = cond_col->getData();
auto negated_null_map = ColumnUInt8::create();
auto & negated_null_map_data = negated_null_map->getData();
negated_null_map_data.resize(size);
for (size_t i = 0; i < size; ++i)
negated_null_map_data[i] = !null_map_data[i];
return ColumnNullable::create(materializeColumnIfConst(result_column), std::move(negated_null_map));
}
}
else if (cond_const_col)
{
if (cond_const_col->getValue<UInt8>())
return makeNullableColumnIfNot(arg_then_column);
else
return result_type->createColumn()->cloneResized(input_rows_count);
}
else
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}. "
"Must be ColumnUInt8 or ColumnConstUInt8.", arg_cond.column->getName(), getName());
}
return nullptr;
}
static void executeShortCircuitArguments(ColumnsWithTypeAndName & arguments)
{
int last_short_circuit_argument_index = checkShortCircuitArguments(arguments);
if (last_short_circuit_argument_index == -1)
return;
executeColumnIfNeeded(arguments[0]);
/// Check if condition is const or null to not create full mask from it.
if ((isColumnConst(*arguments[0].column) || arguments[0].column->onlyNull()) && !arguments[0].column->empty())
{
bool value = arguments[0].column->getBool(0);
executeColumnIfNeeded(arguments[1], !value);
executeColumnIfNeeded(arguments[2], value);
return;
}
IColumn::Filter mask(arguments[0].column->size(), 1);
auto mask_info = extractMask(mask, arguments[0].column);
maskedExecute(arguments[1], mask, mask_info);
inverseMask(mask, mask_info);
maskedExecute(arguments[2], mask, mask_info);
}
public:
String getName() const override
{
return name;
}
size_t getNumberOfArguments() const override { return 3; }
bool useDefaultImplementationForNulls() const override { return false; }
bool useDefaultImplementationForNothing() const override { return false; }
bool isShortCircuit(ShortCircuitSettings & settings, size_t /*number_of_arguments*/) const override
{
settings.enable_lazy_execution_for_first_argument = false;
settings.enable_lazy_execution_for_common_descendants_of_arguments = false;
settings.force_enable_lazy_execution = false;
return true;
}
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return false; }
ColumnNumbers getArgumentsThatDontImplyNullableReturnType(size_t /*number_of_arguments*/) const override { return {0}; }
bool canBeExecutedOnLowCardinalityDictionary() const override { return false; }
/// Get result types by argument types. If the function does not apply to these arguments, throw an exception.
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
if (arguments[0]->onlyNull())
return arguments[2];
if (arguments[0]->isNullable())
return getReturnTypeImpl({
removeNullable(arguments[0]), arguments[1], arguments[2]});
if (!WhichDataType(arguments[0]).isUInt8())
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of first argument (condition) of function if. "
"Must be UInt8.", arguments[0]->getName());
return getLeastSupertype(DataTypes{arguments[1], arguments[2]});
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & args, const DataTypePtr & result_type, size_t input_rows_count) const override
{
ColumnsWithTypeAndName arguments = args;
executeShortCircuitArguments(arguments);
ColumnPtr res;
if ( (res = executeForConstAndNullableCondition(arguments, result_type, input_rows_count))
|| (res = executeForNullThenElse(arguments, result_type, input_rows_count))
|| (res = executeForNullableThenElse(arguments, result_type, input_rows_count)))
return res;
const ColumnWithTypeAndName & arg_cond = arguments[0];
const ColumnWithTypeAndName & arg_then = arguments[1];
const ColumnWithTypeAndName & arg_else = arguments[2];
/// A case for identical then and else (pointers are the same).
if (arg_then.column.get() == arg_else.column.get())
{
/// Just point result to them.
return arg_then.column;
}
const ColumnUInt8 * cond_col = typeid_cast<const ColumnUInt8 *>(arg_cond.column.get());
const ColumnConst * cond_const_col = checkAndGetColumnConst<ColumnVector<UInt8>>(arg_cond.column.get());
ColumnPtr materialized_cond_col;
if (cond_const_col)
{
if (arg_then.type->equals(*arg_else.type))
{
return cond_const_col->getValue<UInt8>()
? arg_then.column
: arg_else.column;
}
else
{
materialized_cond_col = cond_const_col->convertToFullColumn();
cond_col = typeid_cast<const ColumnUInt8 *>(&*materialized_cond_col);
}
}
if (!cond_col)
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}. "
"Must be ColumnUInt8 or ColumnConstUInt8.", arg_cond.column->getName(), getName());
auto call = [&](const auto & types) -> bool
{
using Types = std::decay_t<decltype(types)>;
using T0 = typename Types::LeftType;
using T1 = typename Types::RightType;
res = executeTyped<T0, T1>(cond_col, arguments, result_type, input_rows_count);
return res != nullptr;
};
DataTypePtr left_type = arg_then.type;
DataTypePtr right_type = arg_else.type;
if (const auto * left_array = checkAndGetDataType<DataTypeArray>(arg_then.type.get()))
left_type = left_array->getNestedType();
if (const auto * right_array = checkAndGetDataType<DataTypeArray>(arg_else.type.get()))
right_type = right_array->getNestedType();
/// Special case when one column is Integer and another is UInt64 that can be actually Int64.
/// The result type for this case is Int64 and we need to change UInt64 type to Int64
/// so the NumberTraits::ResultOfIf will return Int64 instead if Int128.
if (isNativeInteger(left_type) && isUInt64ThatCanBeInt64(right_type))
right_type = std::make_shared<DataTypeInt64>();
else if (isNativeInteger(right_type) && isUInt64ThatCanBeInt64(left_type))
left_type = std::make_shared<DataTypeInt64>();
TypeIndex left_id = left_type->getTypeId();
TypeIndex right_id = right_type->getTypeId();
if (!(callOnBasicTypes<true, true, true, false>(left_id, right_id, call)
|| (res = executeTyped<UUID, UUID>(cond_col, arguments, result_type, input_rows_count))
|| (res = executeString(cond_col, arguments, result_type))
|| (res = executeGenericArray(cond_col, arguments, result_type))
|| (res = executeTuple(arguments, result_type, input_rows_count))))
{
return executeGeneric(cond_col, arguments, input_rows_count);
}
return res;
}
ColumnPtr getConstantResultForNonConstArguments(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type) const override
{
const ColumnWithTypeAndName & arg_cond = arguments[0];
if (!arg_cond.column || !isColumnConst(*arg_cond.column))
return {};
const ColumnConst * cond_const_col = checkAndGetColumnConst<ColumnVector<UInt8>>(arg_cond.column.get());
if (!cond_const_col)
return {};
bool condition_value = cond_const_col->getValue<UInt8>();
const ColumnWithTypeAndName & arg_then = arguments[1];
const ColumnWithTypeAndName & arg_else = arguments[2];
const ColumnWithTypeAndName & potential_const_column = condition_value ? arg_then : arg_else;
if (!potential_const_column.column || !isColumnConst(*potential_const_column.column))
return {};
auto result = castColumn(potential_const_column, result_type);
if (!isColumnConst(*result))
return {};
return result;
}
};
}
REGISTER_FUNCTION(If)
{
factory.registerFunction<FunctionIf>({}, FunctionFactory::CaseInsensitive);
}
}