ClickHouse/dbms/src/AggregateFunctions/AggregateFunctionStatisticsSimple.h

395 lines
12 KiB
C++
Raw Normal View History

#pragma once
#include <cmath>
#include <common/arithmeticOverflow.h>
#include <IO/WriteHelpers.h>
#include <IO/ReadHelpers.h>
#include <AggregateFunctions/IAggregateFunction.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypesDecimal.h>
2017-12-26 19:00:20 +00:00
#include <Columns/ColumnVector.h>
#include <Columns/ColumnDecimal.h>
/** This is simple, not numerically stable
* implementations of variance/covariance/correlation functions.
*
* It is about two times faster than stable variants.
* Numerical errors may occur during summation.
*
* This implementation is selected as default,
* because "you don't pay for what you don't need" principle.
*
* For more sophisticated implementation, look at AggregateFunctionStatistics.h
*/
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
extern const int DECIMAL_OVERFLOW;
}
template <typename T>
struct VarMoments
{
T m0{};
T m1{};
T m2{};
void add(T x)
{
++m0;
m1 += x;
m2 += x * x;
}
void merge(const VarMoments & rhs)
{
m0 += rhs.m0;
m1 += rhs.m1;
m2 += rhs.m2;
}
void write(WriteBuffer & buf) const
{
writePODBinary(*this, buf);
}
void read(ReadBuffer & buf)
{
readPODBinary(*this, buf);
}
2018-12-27 01:03:16 +00:00
T NO_SANITIZE_UNDEFINED getPopulation() const
{
return (m2 - m1 * m1 / m0) / m0;
}
2018-12-27 01:03:16 +00:00
T NO_SANITIZE_UNDEFINED getSample() const
{
if (m0 == 0)
return std::numeric_limits<T>::quiet_NaN();
return (m2 - m1 * m1 / m0) / (m0 - 1);
}
T get() const { throw Exception("Unexpected call", ErrorCodes::LOGICAL_ERROR); }
};
template <typename T>
struct VarMomentsDecimal
{
using NativeType = typename T::NativeType;
UInt64 m0{};
NativeType m1{};
NativeType m2{};
void add(NativeType x)
{
++m0;
m1 += x;
NativeType tmp; /// scale' = 2 * scale
if (common::mulOverflow(x, x, tmp) || common::addOverflow(m2, tmp, m2))
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
}
void merge(const VarMomentsDecimal & rhs)
{
m0 += rhs.m0;
m1 += rhs.m1;
if (common::addOverflow(m2, rhs.m2, m2))
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
}
void write(WriteBuffer & buf) const { writePODBinary(*this, buf); }
void read(ReadBuffer & buf) { readPODBinary(*this, buf); }
Float64 getPopulation(UInt32 scale) const
{
2018-09-26 12:38:36 +00:00
if (m0 == 0)
return std::numeric_limits<Float64>::infinity();
NativeType tmp;
if (common::mulOverflow(m1, m1, tmp) ||
2018-09-26 12:38:36 +00:00
common::subOverflow(m2, NativeType(tmp / m0), tmp))
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
return convertFromDecimal<DataTypeDecimal<T>, DataTypeNumber<Float64>>(tmp / m0, scale);
}
Float64 getSample(UInt32 scale) const
{
if (m0 == 0)
2018-09-26 12:38:36 +00:00
return std::numeric_limits<Float64>::quiet_NaN();
if (m0 == 1)
return std::numeric_limits<Float64>::infinity();
NativeType tmp;
if (common::mulOverflow(m1, m1, tmp) ||
2018-09-26 12:38:36 +00:00
common::subOverflow(m2, NativeType(tmp / m0), tmp))
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
return convertFromDecimal<DataTypeDecimal<T>, DataTypeNumber<Float64>>(tmp / (m0 - 1), scale);
}
Float64 get() const { throw Exception("Unexpected call", ErrorCodes::LOGICAL_ERROR); }
};
template <typename T>
struct CovarMoments
{
T m0{};
T x1{};
T y1{};
T xy{};
void add(T x, T y)
{
++m0;
x1 += x;
y1 += y;
xy += x * y;
}
void merge(const CovarMoments & rhs)
{
m0 += rhs.m0;
x1 += rhs.x1;
y1 += rhs.y1;
xy += rhs.xy;
}
void write(WriteBuffer & buf) const
{
writePODBinary(*this, buf);
}
void read(ReadBuffer & buf)
{
readPODBinary(*this, buf);
}
2018-12-27 01:03:16 +00:00
T NO_SANITIZE_UNDEFINED getPopulation() const
{
return (xy - x1 * y1 / m0) / m0;
}
2018-12-27 01:03:16 +00:00
T NO_SANITIZE_UNDEFINED getSample() const
{
if (m0 == 0)
return std::numeric_limits<T>::quiet_NaN();
return (xy - x1 * y1 / m0) / (m0 - 1);
}
T get() const { throw Exception("Unexpected call", ErrorCodes::LOGICAL_ERROR); }
};
template <typename T>
struct CorrMoments
{
T m0{};
T x1{};
T y1{};
T xy{};
T x2{};
T y2{};
void add(T x, T y)
{
++m0;
x1 += x;
y1 += y;
xy += x * y;
x2 += x * x;
y2 += y * y;
}
void merge(const CorrMoments & rhs)
{
m0 += rhs.m0;
x1 += rhs.x1;
y1 += rhs.y1;
xy += rhs.xy;
x2 += rhs.x2;
y2 += rhs.y2;
}
void write(WriteBuffer & buf) const
{
writePODBinary(*this, buf);
}
void read(ReadBuffer & buf)
{
readPODBinary(*this, buf);
}
2018-12-27 01:03:16 +00:00
T NO_SANITIZE_UNDEFINED get() const
{
return (m0 * xy - x1 * y1) / sqrt((m0 * x2 - x1 * x1) * (m0 * y2 - y1 * y1));
}
T getPopulation() const { throw Exception("Unexpected call", ErrorCodes::LOGICAL_ERROR); }
T getSample() const { throw Exception("Unexpected call", ErrorCodes::LOGICAL_ERROR); }
};
enum class StatisticsFunctionKind
{
varPop, varSamp,
stddevPop, stddevSamp,
covarPop, covarSamp,
corr
};
template <typename T, StatisticsFunctionKind _kind>
struct StatFuncOneArg
{
using Type1 = T;
using Type2 = T;
using ResultType = std::conditional_t<std::is_same_v<T, Float32>, Float32, Float64>;
using Data = std::conditional_t<IsDecimalNumber<T>, VarMomentsDecimal<Decimal128>, VarMoments<ResultType>>;
static constexpr StatisticsFunctionKind kind = _kind;
static constexpr UInt32 num_args = 1;
};
template <typename T1, typename T2, StatisticsFunctionKind _kind>
struct StatFuncTwoArg
{
using Type1 = T1;
using Type2 = T2;
using ResultType = std::conditional_t<std::is_same_v<T1, T2> && std::is_same_v<T1, Float32>, Float32, Float64>;
using Data = std::conditional_t<_kind == StatisticsFunctionKind::corr, CorrMoments<ResultType>, CovarMoments<ResultType>>;
static constexpr StatisticsFunctionKind kind = _kind;
static constexpr UInt32 num_args = 2;
};
template <typename StatFunc>
class AggregateFunctionVarianceSimple final
: public IAggregateFunctionDataHelper<typename StatFunc::Data, AggregateFunctionVarianceSimple<StatFunc>>
{
public:
using T1 = typename StatFunc::Type1;
using T2 = typename StatFunc::Type2;
using ColVecT1 = std::conditional_t<IsDecimalNumber<T1>, ColumnDecimal<T1>, ColumnVector<T1>>;
using ColVecT2 = std::conditional_t<IsDecimalNumber<T2>, ColumnDecimal<T2>, ColumnVector<T2>>;
using ResultType = typename StatFunc::ResultType;
using ColVecResult = ColumnVector<ResultType>;
AggregateFunctionVarianceSimple(const DataTypes & argument_types_)
: IAggregateFunctionDataHelper<typename StatFunc::Data, AggregateFunctionVarianceSimple<StatFunc>>(argument_types_, {})
2019-02-11 19:26:32 +00:00
, src_scale(0)
{}
AggregateFunctionVarianceSimple(const IDataType & data_type, const DataTypes & argument_types_)
: IAggregateFunctionDataHelper<typename StatFunc::Data, AggregateFunctionVarianceSimple<StatFunc>>(argument_types_, {})
2019-02-11 19:26:32 +00:00
, src_scale(getDecimalScale(data_type))
{}
String getName() const override
{
switch (StatFunc::kind)
{
case StatisticsFunctionKind::varPop: return "varPop";
case StatisticsFunctionKind::varSamp: return "varSamp";
case StatisticsFunctionKind::stddevPop: return "stddevPop";
case StatisticsFunctionKind::stddevSamp: return "stddevSamp";
case StatisticsFunctionKind::covarPop: return "covarPop";
case StatisticsFunctionKind::covarSamp: return "covarSamp";
case StatisticsFunctionKind::corr: return "corr";
}
__builtin_unreachable();
}
DataTypePtr getReturnType() const override
{
return std::make_shared<DataTypeNumber<ResultType>>();
}
void add(AggregateDataPtr place, const IColumn ** columns, size_t row_num, Arena *) const override
{
if constexpr (StatFunc::num_args == 2)
this->data(place).add(
static_cast<const ColVecT1 &>(*columns[0]).getData()[row_num],
static_cast<const ColVecT2 &>(*columns[1]).getData()[row_num]);
else
this->data(place).add(
static_cast<const ColVecT1 &>(*columns[0]).getData()[row_num]);
}
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena *) const override
{
this->data(place).merge(this->data(rhs));
}
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).write(buf);
}
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
{
this->data(place).read(buf);
}
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
{
const auto & data = this->data(place);
auto & dst = static_cast<ColVecResult &>(to).getData();
if constexpr (IsDecimalNumber<T1>)
{
switch (StatFunc::kind)
{
case StatisticsFunctionKind::varPop: dst.push_back(data.getPopulation(src_scale * 2)); break;
case StatisticsFunctionKind::varSamp: dst.push_back(data.getSample(src_scale * 2)); break;
case StatisticsFunctionKind::stddevPop: dst.push_back(sqrt(data.getPopulation(src_scale * 2))); break;
case StatisticsFunctionKind::stddevSamp: dst.push_back(sqrt(data.getSample(src_scale * 2))); break;
2018-09-14 10:15:56 +00:00
default:
__builtin_unreachable();
}
}
else
{
switch (StatFunc::kind)
{
case StatisticsFunctionKind::varPop: dst.push_back(data.getPopulation()); break;
case StatisticsFunctionKind::varSamp: dst.push_back(data.getSample()); break;
case StatisticsFunctionKind::stddevPop: dst.push_back(sqrt(data.getPopulation())); break;
case StatisticsFunctionKind::stddevSamp: dst.push_back(sqrt(data.getSample())); break;
case StatisticsFunctionKind::covarPop: dst.push_back(data.getPopulation()); break;
case StatisticsFunctionKind::covarSamp: dst.push_back(data.getSample()); break;
case StatisticsFunctionKind::corr: dst.push_back(data.get()); break;
}
}
}
const char * getHeaderFilePath() const override { return __FILE__; }
private:
UInt32 src_scale;
};
template <typename T> using AggregateFunctionVarPopSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::varPop>>;
template <typename T> using AggregateFunctionVarSampSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::varSamp>>;
template <typename T> using AggregateFunctionStddevPopSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::stddevPop>>;
template <typename T> using AggregateFunctionStddevSampSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::stddevSamp>>;
template <typename T1, typename T2> using AggregateFunctionCovarPopSimple = AggregateFunctionVarianceSimple<StatFuncTwoArg<T1, T2, StatisticsFunctionKind::covarPop>>;
template <typename T1, typename T2> using AggregateFunctionCovarSampSimple = AggregateFunctionVarianceSimple<StatFuncTwoArg<T1, T2, StatisticsFunctionKind::covarSamp>>;
template <typename T1, typename T2> using AggregateFunctionCorrSimple = AggregateFunctionVarianceSimple<StatFuncTwoArg<T1, T2, StatisticsFunctionKind::corr>>;
}