2015-11-15 06:11:58 +00:00
# pragma once
# include <limits>
# include <algorithm>
# include <climits>
# include <sstream>
# include <common/Common.h>
# include <DB/IO/ReadBuffer.h>
# include <DB/IO/ReadHelpers.h>
# include <DB/IO/WriteHelpers.h>
# include <DB/Common/PODArray.h>
# include <Poco/Exception.h>
# include <boost/random.hpp>
2017-03-09 00:56:38 +00:00
/// Implementing the Reservoir Sampling algorithm. Incrementally selects from the added objects a random subset of the sample_count size.
/// Can approximately get quantiles.
/// Call `quantile` takes O(sample_count log sample_count), if after the previous call `quantile` there was at least one call `insert`. Otherwise O(1).
/// That is, it makes sense to first add, then get quantiles without adding.
2015-11-15 06:11:58 +00:00
const size_t DEFAULT_SAMPLE_COUNT = 8192 ;
2017-03-09 00:56:38 +00:00
/// What if there is not a single value - throw an exception, or return 0 or NaN in the case of double?
2015-11-15 06:11:58 +00:00
namespace ReservoirSamplerOnEmpty
{
enum Enum
{
THROW ,
RETURN_NAN_OR_ZERO ,
} ;
}
template < typename ResultType , bool IsFloatingPoint >
struct NanLikeValueConstructor
{
static ResultType getValue ( )
{
return std : : numeric_limits < ResultType > : : quiet_NaN ( ) ;
}
} ;
template < typename ResultType >
struct NanLikeValueConstructor < ResultType , false >
{
static ResultType getValue ( )
{
return ResultType ( ) ;
}
} ;
template < typename T , ReservoirSamplerOnEmpty : : Enum OnEmpty = ReservoirSamplerOnEmpty : : THROW , typename Comparer = std : : less < T > >
class ReservoirSampler
{
public :
ReservoirSampler ( size_t sample_count_ = DEFAULT_SAMPLE_COUNT )
: sample_count ( sample_count_ )
{
rng . seed ( 123456 ) ;
}
void clear ( )
{
samples . clear ( ) ;
sorted = false ;
total_values = 0 ;
rng . seed ( 123456 ) ;
}
void insert ( const T & v )
{
sorted = false ;
+ + total_values ;
if ( samples . size ( ) < sample_count )
{
samples . push_back ( v ) ;
}
else
{
UInt64 rnd = genRandom ( total_values ) ;
if ( rnd < sample_count )
samples [ rnd ] = v ;
}
}
size_t size ( ) const
{
return total_values ;
}
T quantileNearest ( double level )
{
if ( samples . empty ( ) )
return onEmpty < T > ( ) ;
sortIfNeeded ( ) ;
double index = level * ( samples . size ( ) - 1 ) ;
size_t int_index = static_cast < size_t > ( index + 0.5 ) ;
int_index = std : : max ( 0LU , std : : min ( samples . size ( ) - 1 , int_index ) ) ;
return samples [ int_index ] ;
}
2017-03-09 00:56:38 +00:00
/** If T is not a numeric type, using this method causes a compilation error,
2017-03-09 04:26:17 +00:00
* but use of error class does not . SFINAE .
2015-11-15 06:11:58 +00:00
*/
double quantileInterpolated ( double level )
{
if ( samples . empty ( ) )
return onEmpty < double > ( ) ;
sortIfNeeded ( ) ;
double index = std : : max ( 0. , std : : min ( samples . size ( ) - 1. , level * ( samples . size ( ) - 1 ) ) ) ;
2017-03-09 04:26:17 +00:00
/// To get the value of a fractional index, we linearly interpolate between neighboring values.
2015-11-15 06:11:58 +00:00
size_t left_index = static_cast < size_t > ( index ) ;
size_t right_index = left_index + 1 ;
if ( right_index = = samples . size ( ) )
return samples [ left_index ] ;
double left_coef = right_index - index ;
double right_coef = index - left_index ;
return samples [ left_index ] * left_coef + samples [ right_index ] * right_coef ;
}
void merge ( const ReservoirSampler < T , OnEmpty > & b )
{
if ( sample_count ! = b . sample_count )
throw Poco : : Exception ( " Cannot merge ReservoirSampler's with different sample_count " ) ;
sorted = false ;
if ( b . total_values < = sample_count )
{
for ( size_t i = 0 ; i < b . samples . size ( ) ; + + i )
insert ( b . samples [ i ] ) ;
}
else if ( total_values < = sample_count )
{
Array from = std : : move ( samples ) ;
samples . assign ( b . samples . begin ( ) , b . samples . end ( ) ) ;
total_values = b . total_values ;
for ( size_t i = 0 ; i < from . size ( ) ; + + i )
insert ( from [ i ] ) ;
}
else
{
randomShuffle ( samples ) ;
total_values + = b . total_values ;
for ( size_t i = 0 ; i < sample_count ; + + i )
{
UInt64 rnd = genRandom ( total_values ) ;
if ( rnd < b . total_values )
samples [ i ] = b . samples [ i ] ;
}
}
}
void read ( DB : : ReadBuffer & buf )
{
DB : : readIntBinary < size_t > ( sample_count , buf ) ;
DB : : readIntBinary < size_t > ( total_values , buf ) ;
samples . resize ( std : : min ( total_values , sample_count ) ) ;
std : : string rng_string ;
DB : : readStringBinary ( rng_string , buf ) ;
std : : istringstream rng_stream ( rng_string ) ;
rng_stream > > rng ;
for ( size_t i = 0 ; i < samples . size ( ) ; + + i )
DB : : readBinary ( samples [ i ] , buf ) ;
sorted = false ;
}
void write ( DB : : WriteBuffer & buf ) const
{
DB : : writeIntBinary < size_t > ( sample_count , buf ) ;
DB : : writeIntBinary < size_t > ( total_values , buf ) ;
std : : ostringstream rng_stream ;
rng_stream < < rng ;
DB : : writeStringBinary ( rng_stream . str ( ) , buf ) ;
for ( size_t i = 0 ; i < std : : min ( sample_count , total_values ) ; + + i )
DB : : writeBinary ( samples [ i ] , buf ) ;
}
private :
2015-11-15 07:05:01 +00:00
friend void qdigest_test ( int normal_size , UInt64 value_limit , const std : : vector < UInt64 > & values , int queries_count , bool verbose ) ;
friend void rs_perf_test ( ) ;
2017-03-09 04:26:17 +00:00
/// We allocate a little memory on the stack - to avoid allocations when there are many objects with a small number of elements.
2015-11-15 06:11:58 +00:00
static constexpr size_t bytes_on_stack = 64 ;
using Array = DB : : PODArray < T , bytes_on_stack / sizeof ( T ) , AllocatorWithStackMemory < Allocator < false > , bytes_on_stack > > ;
size_t sample_count ;
size_t total_values = 0 ;
Array samples ;
boost : : taus88 rng ;
bool sorted = false ;
UInt64 genRandom ( size_t lim )
{
2017-03-09 04:26:17 +00:00
/// With a large number of values, we will generate random numbers several times slower.
2015-11-15 06:11:58 +00:00
if ( lim < = static_cast < UInt64 > ( rng . max ( ) ) )
return static_cast < UInt32 > ( rng ( ) ) % static_cast < UInt32 > ( lim ) ;
else
return ( static_cast < UInt64 > ( rng ( ) ) * ( static_cast < UInt64 > ( rng . max ( ) ) + 1ULL ) + static_cast < UInt64 > ( rng ( ) ) ) % lim ;
}
void randomShuffle ( Array & v )
{
for ( size_t i = 1 ; i < v . size ( ) ; + + i )
{
size_t j = genRandom ( i + 1 ) ;
std : : swap ( v [ i ] , v [ j ] ) ;
}
}
void sortIfNeeded ( )
{
if ( sorted )
return ;
sorted = true ;
std : : sort ( samples . begin ( ) , samples . end ( ) , Comparer ( ) ) ;
}
template < typename ResultType >
ResultType onEmpty ( ) const
{
if ( OnEmpty = = ReservoirSamplerOnEmpty : : THROW )
throw Poco : : Exception ( " Quantile of empty ReservoirSampler " ) ;
else
return NanLikeValueConstructor < ResultType , std : : is_floating_point < ResultType > : : value > : : getValue ( ) ;
}
} ;