ClickHouse applies this setting when the query contains the product of distributed tables, i.e.when the query for a distributed table contains a non-GLOBAL subquery for the distributed table.
If `enable_optimize_predicate_expression = 1`, then the execution time of these queries is equal because ClickHouse applies `WHERE` to the subquery when processing it.
If `enable_optimize_predicate_expression = 0`, then the execution time of the second query is much longer, because the `WHERE` clause applies to all the data after the subquery finishes.
Forces a query to an out-of-date replica if updated data is not available. See [Replication](../../engines/table_engines/mergetree_family/replication.md).
If `force_index_by_date=1`, ClickHouse checks whether the query has a date key condition that can be used for restricting data ranges. If there is no suitable condition, it throws an exception. However, it does not check whether the condition reduces the amount of data to read. For example, the condition `Date != ' 2000-01-01 '` is acceptable even when it matches all the data in the table (i.e., running the query requires a full scan). For more information about ranges of data in MergeTree tables, see [MergeTree](../../engines/table_engines/mergetree_family/mergetree.md).
If `force_primary_key=1`, ClickHouse checks to see if the query has a primary key condition that can be used for restricting data ranges. If there is no suitable condition, it throws an exception. However, it does not check whether the condition reduces the amount of data to read. For more information about data ranges in MergeTree tables, see [MergeTree](../../engines/table_engines/mergetree_family/mergetree.md).
This parameter is useful when you are using formats that require a schema definition, such as [Cap’n Proto](https://capnproto.org/) or [Protobuf](https://developers.google.com/protocol-buffers/). The value depends on the format.
Enables or disables checksum verification when decompressing the HTTP POST data from the client. Used only for ClickHouse native compression format (not used with `gzip` or `deflate`).
Limits the maximum number of HTTP GET redirect hops for [URL](../../engines/table_engines/special/url.md)-engine tables. The setting applies to both types of tables: those created by the [CREATE TABLE](../../sql_reference/statements/create.md#create-table-query) query and by the [url](../../sql_reference/table_functions/url.md) table function.
If an error occurred while reading rows but the error counter is still less than `input_format_allow_errors_num`, ClickHouse ignores the row and moves on to the next one.
If an error occurred while reading rows but the error counter is still less than `input_format_allow_errors_ratio`, ClickHouse ignores the row and moves on to the next one.
Enables or disables the full SQL parser if the fast stream parser can’t parse the data. This setting is used only for the [Values](../../interfaces/formats.md#data-format-values) format at the data insertion. For more information about syntax parsing, see the [Syntax](../../sql_reference/syntax.md) section.
In this case, you can use an SQL expression as a value, but data insertion is much slower this way. If you insert only formatted data, then ClickHouse behaves as if the setting value is 0.
Enables or disables template deduction for an SQL expressions in [Values](../../interfaces/formats.md#data-format-values) format. It allows to parse and interpret expressions in `Values` much faster if expressions in consecutive rows have the same structure. ClickHouse will try to deduce template of an expression, parse the following rows using this template and evaluate the expression on a batch of successfully parsed rows. For the following query:
- if `input_format_values_interpret_expressions=1` and `format_values_deduce_templates_of_expressions=0` expressions will be interpreted separately for each row (this is very slow for large number of rows)
- if `input_format_values_interpret_expressions=0` and `format_values_deduce_templates_of_expressions=1` expressions in the first, second and third rows will be parsed using template `lower(String)` and interpreted together, expression is the forth row will be parsed with another template (`upper(String)`)
- if `input_format_values_interpret_expressions=1` and `format_values_deduce_templates_of_expressions=1` - the same as in previous case, but also allows fallback to interpreting expressions separately if it’s not possible to deduce template.
This setting is used only when `input_format_values_deduce_templates_of_expressions = 1`. It can happen, that expressions for some column have the same structure, but contain numeric literals of different types, e.g
When this setting is enabled, ClickHouse will check the actual type of literal and will use an expression template of the corresponding type. In some cases, it may significantly slow down expression evaluation in `Values`.
When disabled, ClickHouse may use more general type for some literals (e.g.`Float64` or `Int64` instead of `UInt64` for `42`), but it may cause overflow and precision issues.
When performing `INSERT` queries, replace omitted input column values with default values of the respective columns. This option only applies to [JSONEachRow](../../interfaces/formats.md#jsoneachrow), [CSV](../../interfaces/formats.md#csv) and [TabSeparated](../../interfaces/formats.md#tabseparated) formats.
When this option is enabled, extended table metadata are sent from server to client. It consumes additional computing resources on the server and can reduce performance.
When enabled, replace empty input fields in TSV with default values. For complex default expressions `input_format_defaults_for_omitted_fields` must be enabled too.
Enables or disables using default values if input data contain `NULL`, but data type of the corresponding column in not `Nullable(T)` (for text input formats).
When writing data, ClickHouse throws an exception if input data contain columns that do not exist in the target table. If skipping is enabled, ClickHouse doesn’t insert extra data and doesn’t throw an exception.
To improve insert performance, we recommend disabling this check if you are sure that the column order of the input data is the same as in the target table.
ClickHouse can parse the basic `YYYY-MM-DD HH:MM:SS` format and all [ISO 8601](https://en.wikipedia.org/wiki/ISO_8601) date and time formats. For example, `'2018-06-08T01:02:03.000Z'`.
-`ALL` — If the right table has several matching rows, ClickHouse creates a [Cartesian product](https://en.wikipedia.org/wiki/Cartesian_product) from matching rows. This is the normal `JOIN` behaviour from standard SQL.
-`ANY` — If the right table has several matching rows, only the first one found is joined. If the right table has only one matching row, the results of `ANY` and `ALL` are the same.
-`ASOF` — For joining sequences with an uncertain match.
-`Empty string` — If `ALL` or `ANY` is not specified in the query, ClickHouse throws an exception.
Sets the type of [JOIN](../../sql_reference/statements/select.md) behavior. When merging tables, empty cells may appear. ClickHouse fills them differently based on this setting.
- 1 — `JOIN` behaves the same way as in standard SQL. The type of the corresponding field is converted to [Nullable](../../sql_reference/data_types/nullable.md#data_type-nullable), and empty cells are filled with [NULL](../../sql_reference/syntax.md).
In ClickHouse, data is processed by blocks (sets of column parts). The internal processing cycles for a single block are efficient enough, but there are noticeable expenditures on each block. The `max_block_size` setting is a recommendation for what size of the block (in a count of rows) to load from tables. The block size shouldn’t be too small, so that the expenditures on each block are still noticeable, but not too large so that the query with LIMIT that is completed after the first block is processed quickly. The goal is to avoid consuming too much memory when extracting a large number of columns in multiple threads and to preserve at least some cache locality.
Blocks the size of `max_block_size` are not always loaded from the table. If it is obvious that less data needs to be retrieved, a smaller block is processed.
If the number of rows to be read from a file of a [MergeTree](../../engines/table_engines/mergetree_family/mergetree.md) table exceeds `merge_tree_min_rows_for_concurrent_read` then ClickHouse tries to perform a concurrent reading from this file on several threads.
If the number of bytes to read from one file of a [MergeTree](../../engines/table_engines/mergetree_family/mergetree.md)-engine table exceeds `merge_tree_min_bytes_for_concurrent_read`, then ClickHouse tries to concurrently read from this file in several threads.
If the distance between two data blocks to be read in one file is less than `merge_tree_min_rows_for_seek` rows, then ClickHouse does not seek through the file but reads the data sequentially.
If the distance between two data blocks to be read in one file is less than `merge_tree_min_bytes_for_seek` bytes, then ClickHouse sequentially reads a range of file that contains both blocks, thus avoiding extra seek.
When searching for data, ClickHouse checks the data marks in the index file. If ClickHouse finds that required keys are in some range, it divides this range into `merge_tree_coarse_index_granularity` subranges and searches the required keys there recursively.
The cache of uncompressed blocks stores data extracted for queries. ClickHouse uses this cache to speed up responses to repeated small queries. This setting protects the cache from trashing by queries that read a large amount of data. The [uncompressed\_cache\_size](../server_configuration_parameters/settings.md#server-settings-uncompressed_cache_size) server setting defines the size of the cache of uncompressed blocks.
The cache of uncompressed blocks stores data extracted for queries. ClickHouse uses this cache to speed up responses to repeated small queries. This setting protects the cache from trashing by queries that read a large amount of data. The [uncompressed\_cache\_size](../server_configuration_parameters/settings.md#server-settings-uncompressed_cache_size) server setting defines the size of the cache of uncompressed blocks.
ClickHouse uses this setting when reading data from tables. If the total storage volume of all the data to be read exceeds `min_bytes_to_use_direct_io` bytes, then ClickHouse reads the data from the storage disk with the `O_DIRECT` option.
Queries sent to ClickHouse with this setup are logged according to the rules in the [query\_log](../server_configuration_parameters/settings.md#server_configuration_parameters-query-log) server configuration parameter.
Queries’ threads runned by ClickHouse with this setup are logged according to the rules in the [query\_thread\_log](../server_configuration_parameters/settings.md#server_configuration_parameters-query-thread-log) server configuration parameter.
But when using clickhouse-client, the client parses the data itself, and the ‘max\_insert\_block\_size’ setting on the server doesn’t affect the size of the inserted blocks.
The setting also doesn’t have a purpose when using INSERT SELECT, since data is inserted using the same blocks that are formed after SELECT.
The default is slightly more than `max_block_size`. The reason for this is because certain table engines (`*MergeTree`) form a data part on the disk for each inserted block, which is a fairly large entity. Similarly, `*MergeTree` tables sort data during insertion and a large enough block size allow sorting more data in RAM.
The maximum number of query processing threads, excluding threads for retrieving data from remote servers (see the ‘max\_distributed\_connections’ parameter).
For example, when reading from a table, if it is possible to evaluate expressions with functions, filter with WHERE and pre-aggregate for GROUP BY in parallel using at least ‘max\_threads’ number of threads, then ‘max\_threads’ are used.
If less than one SELECT query is normally run on a server at a time, set this parameter to a value slightly less than the actual number of processor cores.
For queries that are completed quickly because of a LIMIT, you can set a lower ‘max\_threads’. For example, if the necessary number of entries are located in every block and max\_threads = 8, then 8 blocks are retrieved, although it would have been enough to read just one.
The maximum size of blocks of uncompressed data before compressing for writing to a table. By default, 1,048,576 (1 MiB). If the size is reduced, the compression rate is significantly reduced, the compression and decompression speed increases slightly due to cache locality, and memory consumption is reduced. There usually isn’t any reason to change this setting.
For [MergeTree](../../engines/table_engines/mergetree_family/mergetree.md)" tables. In order to reduce latency when processing queries, a block is compressed when writing the next mark if its size is at least ‘min\_compress\_block\_size’. By default, 65,536.
The actual size of the block, if the uncompressed data is less than ‘max\_compress\_block\_size’, is no less than this value and no less than the volume of data for one mark.
We are writing a UInt32-type column (4 bytes per value). When writing 8192 rows, the total will be 32 KB of data. Since min\_compress\_block\_size = 65,536, a compressed block will be formed for every two marks.
We are writing a URL column with the String type (average size of 60 bytes per value). When writing 8192 rows, the average will be slightly less than 500 KB of data. Since this is more than 65,536, a compressed block will be formed for each mark. In this case, when reading data from the disk in the range of a single mark, extra data won’t be decompressed.
The maximum part of a query that can be taken to RAM for parsing with the SQL parser.
The INSERT query also contains data for INSERT that is processed by a separate stream parser (that consumes O(1) RAM), which is not included in this restriction.
The maximum number of simultaneous connections with remote servers for distributed processing of a single query to a single Distributed table. We recommend setting a value no less than the number of servers in the cluster.
The following parameters are only used when creating Distributed tables (and when launching a server), so there is no reason to change them at runtime.
The maximum number of simultaneous connections with remote servers for distributed processing of all queries to a single Distributed table. We recommend setting a value no less than the number of servers in the cluster.
The timeout in milliseconds for connecting to a remote server for a Distributed table engine, if the ‘shard’ and ‘replica’ sections are used in the cluster definition.
Using the uncompressed cache (only for tables in the MergeTree family) can significantly reduce latency and increase throughput when working with a large number of short queries. Enable this setting for users who send frequent short requests. Also pay attention to the [uncompressed\_cache\_size](../server_configuration_parameters/settings.md#server-settings-uncompressed_cache_size) configuration parameter (only set in the config file) – the size of uncompressed cache blocks. By default, it is 8 GiB. The uncompressed cache is filled in as needed and the least-used data is automatically deleted.
For queries that read at least a somewhat large volume of data (one million rows or more), the uncompressed cache is disabled automatically to save space for truly small queries. This means that you can keep the ‘use\_uncompressed\_cache’ setting always set to 1.
Yandex.Metrica uses this parameter set to 1 for implementing suggestions for segmentation conditions. After entering the next character, if the old query hasn’t finished yet, it should be cancelled.
The number of errors is counted for each replica. The query is sent to the replica with the fewest errors, and if there are several of these, to anyone of them.
The number of errors is counted for each replica. Every 5 minutes, the number of errors is integrally divided by 2. Thus, the number of errors is calculated for a recent time with exponential smoothing. If there is one replica with a minimal number of errors (i.e.errors occurred recently on the other replicas), the query is sent to it. If there are multiple replicas with the same minimal number of errors, the query is sent to the replica with a hostname that is most similar to the server’s hostname in the config file (for the number of different characters in identical positions, up to the minimum length of both hostnames).
This method might seem primitive, but it doesn’t require external data about network topology, and it doesn’t compare IP addresses, which would be complicated for our IPv6 addresses.
Thus, if there are equivalent replicas, the closest one by name is preferred.
We can also assume that when sending a query to the same server, in the absence of failures, a distributed query will also go to the same servers. So even if different data is placed on the replicas, the query will return mostly the same results.
This algorithm chooses the first replica in the set or a random replica if the first is unavailable. It’s effective in cross-replication topology setups, but useless in other configurations.
The `first_or_random` algorithm solves the problem of the `in_order` algorithm. With `in_order`, if one replica goes down, the next one gets a double load while the remaining replicas handle the usual amount of traffic. When using the `first_or_random` algorithm, the load is evenly distributed among replicas that are still available.
If this portion of the pipeline was compiled, the query may run faster due to deployment of short cycles and inlining aggregate function calls. The maximum performance improvement (up to four times faster in rare cases) is seen for queries with multiple simple aggregate functions. Typically, the performance gain is insignificant. In very rare cases, it may slow down query execution.
For testing, the value can be set to 0: compilation runs synchronously and the query waits for the end of the compilation process before continuing execution. For all other cases, use values starting with 1. Compilation normally takes about 5-10 seconds.
If the value is 1 or more, compilation occurs asynchronously in a separate thread. The result will be used as soon as it is ready, including queries that are currently running.
The results of the compilation are saved in the build directory in the form of .so files. There is no restriction on the number of compilation results since they don’t use very much space. Old results will be used after server restarts, except in the case of a server upgrade – in this case, the old results are deleted.
If the value is true, integers appear in quotes when using JSON\* Int64 and UInt64 formats (for compatibility with most JavaScript implementations); otherwise, integers are output without the quotes.
`INSERT` succeeds only when ClickHouse manages to correctly write data to the `insert_quorum` of replicas during the `insert_quorum_timeout`. If for any reason the number of replicas with successful writes does not reach the `insert_quorum`, the write is considered failed and ClickHouse will delete the inserted block from all the replicas where data has already been written.
All the replicas in the quorum are consistent, i.e., they contain data from all previous `INSERT` queries. The `INSERT` sequence is linearized.
When reading the data written from the `insert_quorum`, you can use the [select\_sequential\_consistency](#settings-select_sequential_consistency) option.
- If the number of available replicas at the time of the query is less than the `insert_quorum`.
- At an attempt to write data when the previous block has not yet been inserted in the `insert_quorum` of replicas. This situation may occur if the user tries to perform an `INSERT` before the previous one with the `insert_quorum` is completed.
Write to quorum timeout in seconds. If the timeout has passed and no write has taken place yet, ClickHouse will generate an exception and the client must repeat the query to write the same block to the same or any other replica.
When sequential consistency is enabled, ClickHouse allows the client to execute the `SELECT` query only for those replicas that contain data from all previous `INSERT` queries executed with `insert_quorum`. If the client refers to a partial replica, ClickHouse will generate an exception. The SELECT query will not include data that has not yet been written to the quorum of replicas.
By default, blocks inserted into replicated tables by the `INSERT` statement are deduplicated (see \[Data Replication\] (../engines/table\_engines/mergetree_family/replication.md).
By default, deduplication is not performed for materialized views but is done upstream, in the source table.
If an INSERTed block is skipped due to deduplication in the source table, there will be no insertion into attached materialized views. This behaviour exists to enable insertion of highly aggregated data into materialized views, for cases where inserted blocks are the same after materialized view aggregation but derived from different INSERTs into the source table.
At the same time, this behaviour “breaks” `INSERT` idempotency. If an `INSERT` into the main table was successful and `INSERT` into a materialized view failed (e.g.because of communication failure with Zookeeper) a client will get an error and can retry the operation. However, the materialized view won’t receive the second insert because it will be discarded by deduplication in the main (source) table. The setting `deduplicate_blocks_in_dependent_materialized_views` allows for changing this behaviour. On retry, a materialized view will receive the repeat insert and will perform deduplication check by itself,
Limits the data volume (in bytes) that is received or transmitted over the network when executing a query. This setting applies to every individual query.
Limits the speed of the data exchange over the network in bytes per second. This setting applies to all concurrently running queries performed by a single user.
Limits the speed that data is exchanged at over the network in bytes per second. This setting applies to all concurrently running queries on the server.
Specifies which of the `uniq*` functions should be used to perform the [COUNT(DISTINCT …)](../../sql_reference/aggregate_functions/reference.md#agg_function-count) construction.
- Replica’s host has no DNS record. It can occur in systems with dynamic DNS, for example, [Kubernetes](https://kubernetes.io), where nodes can be unresolvable during downtime, and this is not an error.
Enables or disables skipping of unused shards for SELECT queries that have sharding key condition in PREWHERE/WHERE (assumes that the data is distributed by sharding key, otherwise do nothing).
Enables or disables query execution if [`optimize_skip_unused_shards`](#settings-optimize_skip_unused_shards) enabled and skipping of unused shards is not possible. If the skipping is not possible and the setting is enabled exception will be thrown.
Enables or disables throwing an exception if an [OPTIMIZE](../../sql_reference/statements/misc.md#misc_operations-optimize) query didn’t perform a merge.
By default, `OPTIMIZE` returns successfully even if it didn’t do anything. This setting lets you differentiate these situations and get the reason in an exception message.
Controls how fast errors in distributed tables are zeroed. If a replica is unavailable for some time, accumulates 5 errors, and distributed\_replica\_error\_half\_life is set to 1 second, then the replica is considered normal 3 seconds after last error.
Base interval for the [Distributed](../../engines/table_engines/special/distributed.md) table engine to send data. The actual interval grows exponentially in the event of errors.
Maximum interval for the [Distributed](../../engines/table_engines/special/distributed.md) table engine to send data. Limits exponential growth of the interval set in the [distributed\_directory\_monitor\_sleep\_time\_ms](#distributed_directory_monitor_sleep_time_ms) setting.
When batch sending is enabled, the [Distributed](../../engines/table_engines/special/distributed.md) table engine tries to send multiple files of inserted data in one operation instead of sending them separately. Batch sending improves cluster performance by better-utilizing server and network resources.
Sets the priority ([nice](https://en.wikipedia.org/wiki/Nice_(Unix))) for threads that execute queries. The OS scheduler considers this priority when choosing the next thread to run on each available CPU core.
To use this setting, you need to set the `CAP_SYS_NICE` capability. The `clickhouse-server` package sets it up during installation. Some virtual environments don’t allow you to set the `CAP_SYS_NICE` capability. In this case, `clickhouse-server` shows a message about it at the start.
Lower values mean higher priority. Threads with low `nice` priority values are executed more frequently than threads with high values. High values are preferable for long-running non-interactive queries because it allows them to quickly give up resources in favour of short interactive queries when they arrive.
Sets the period for a real clock timer of the [query profiler](../../operations/optimizing_performance/sampling_query_profiler.md). Real clock timer counts wall-clock time.
Sets the period for a CPU clock timer of the [query profiler](../../operations/optimizing_performance/sampling_query_profiler.md). This timer counts only CPU time.