55 KiB
toc_priority | toc_title |
---|---|
60 | Settings |
Settings
distributed_product_mode
Changes the behavior of distributed subqueries.
ClickHouse applies this setting when the query contains the product of distributed tables, i.e. when the query for a distributed table contains a non-GLOBAL subquery for the distributed table.
Restrictions:
- Only applied for IN and JOIN subqueries.
- Only if the FROM section uses a distributed table containing more than one shard.
- If the subquery concerns a distributed table containing more than one shard.
- Not used for a table-valued remote function.
Possible values:
deny
— Default value. Prohibits using these types of subqueries (returns the “Double-distributed in/JOIN subqueries is denied” exception).local
— Replaces the database and table in the subquery with local ones for the destination server (shard), leaving the normalIN
/JOIN.
global
— Replaces theIN
/JOIN
query withGLOBAL IN
/GLOBAL JOIN.
allow
— Allows the use of these types of subqueries.
enable_optimize_predicate_expression
Turns on predicate pushdown in SELECT
queries.
Predicate pushdown may significantly reduce network traffic for distributed queries.
Possible values:
- 0 — Disabled.
- 1 — Enabled.
Default value: 1.
Usage
Consider the following queries:
SELECT count() FROM test_table WHERE date = '2018-10-10'
SELECT count() FROM (SELECT * FROM test_table) WHERE date = '2018-10-10'
If enable_optimize_predicate_expression = 1
, then the execution time of these queries is equal because ClickHouse applies WHERE
to the subquery when processing it.
If enable_optimize_predicate_expression = 0
, then the execution time of the second query is much longer, because the WHERE
clause applies to all the data after the subquery finishes.
fallback_to_stale_replicas_for_distributed_queries
Forces a query to an out-of-date replica if updated data is not available. See Replication.
ClickHouse selects the most relevant from the outdated replicas of the table.
Used when performing SELECT
from a distributed table that points to replicated tables.
By default, 1 (enabled).
force_index_by_date
Disables query execution if the index can’t be used by date.
Works with tables in the MergeTree family.
If force_index_by_date=1
, ClickHouse checks whether the query has a date key condition that can be used for restricting data ranges. If there is no suitable condition, it throws an exception. However, it does not check whether the condition reduces the amount of data to read. For example, the condition Date != ' 2000-01-01 '
is acceptable even when it matches all the data in the table (i.e., running the query requires a full scan). For more information about ranges of data in MergeTree tables, see MergeTree.
force_primary_key
Disables query execution if indexing by the primary key is not possible.
Works with tables in the MergeTree family.
If force_primary_key=1
, ClickHouse checks to see if the query has a primary key condition that can be used for restricting data ranges. If there is no suitable condition, it throws an exception. However, it does not check whether the condition reduces the amount of data to read. For more information about data ranges in MergeTree tables, see MergeTree.
format_schema
This parameter is useful when you are using formats that require a schema definition, such as Cap’n Proto or Protobuf. The value depends on the format.
fsync_metadata
Enables or disables fsync when writing .sql
files. Enabled by default.
It makes sense to disable it if the server has millions of tiny tables that are constantly being created and destroyed.
enable_http_compression
Enables or disables data compression in the response to an HTTP request.
For more information, read the HTTP interface description.
Possible values:
- 0 — Disabled.
- 1 — Enabled.
Default value: 0.
http_zlib_compression_level
Sets the level of data compression in the response to an HTTP request if enable_http_compression = 1.
Possible values: Numbers from 1 to 9.
Default value: 3.
http_native_compression_disable_checksumming_on_decompress
Enables or disables checksum verification when decompressing the HTTP POST data from the client. Used only for ClickHouse native compression format (not used with gzip
or deflate
).
For more information, read the HTTP interface description.
Possible values:
- 0 — Disabled.
- 1 — Enabled.
Default value: 0.
send_progress_in_http_headers
Enables or disables X-ClickHouse-Progress
HTTP response headers in clickhouse-server
responses.
For more information, read the HTTP interface description.
Possible values:
- 0 — Disabled.
- 1 — Enabled.
Default value: 0.
max_http_get_redirects
Limits the maximum number of HTTP GET redirect hops for URL-engine tables. The setting applies to both types of tables: those created by the CREATE TABLE query and by the url table function.
Possible values:
- Any positive integer number of hops.
- 0 — No hops allowed.
Default value: 0.
input_format_allow_errors_num
Sets the maximum number of acceptable errors when reading from text formats (CSV, TSV, etc.).
The default value is 0.
Always pair it with input_format_allow_errors_ratio
.
If an error occurred while reading rows but the error counter is still less than input_format_allow_errors_num
, ClickHouse ignores the row and moves on to the next one.
If both input_format_allow_errors_num
and input_format_allow_errors_ratio
are exceeded, ClickHouse throws an exception.
input_format_allow_errors_ratio
Sets the maximum percentage of errors allowed when reading from text formats (CSV, TSV, etc.). The percentage of errors is set as a floating-point number between 0 and 1.
The default value is 0.
Always pair it with input_format_allow_errors_num
.
If an error occurred while reading rows but the error counter is still less than input_format_allow_errors_ratio
, ClickHouse ignores the row and moves on to the next one.
If both input_format_allow_errors_num
and input_format_allow_errors_ratio
are exceeded, ClickHouse throws an exception.
input_format_values_interpret_expressions
Enables or disables the full SQL parser if the fast stream parser can’t parse the data. This setting is used only for the Values format at the data insertion. For more information about syntax parsing, see the Syntax section.
Possible values:
-
0 — Disabled.
In this case, you must provide formatted data. See the Formats section.
-
1 — Enabled.
In this case, you can use an SQL expression as a value, but data insertion is much slower this way. If you insert only formatted data, then ClickHouse behaves as if the setting value is 0.
Default value: 1.
Example of Use
Insert the DateTime type value with the different settings.
SET input_format_values_interpret_expressions = 0;
INSERT INTO datetime_t VALUES (now())
Exception on client:
Code: 27. DB::Exception: Cannot parse input: expected ) before: now()): (at row 1)
SET input_format_values_interpret_expressions = 1;
INSERT INTO datetime_t VALUES (now())
Ok.
The last query is equivalent to the following:
SET input_format_values_interpret_expressions = 0;
INSERT INTO datetime_t SELECT now()
Ok.
input_format_values_deduce_templates_of_expressions
Enables or disables template deduction for an SQL expressions in Values format. It allows to parse and interpret expressions in Values
much faster if expressions in consecutive rows have the same structure. ClickHouse will try to deduce template of an expression, parse the following rows using this template and evaluate the expression on a batch of successfully parsed rows. For the following query:
INSERT INTO test VALUES (lower('Hello')), (lower('world')), (lower('INSERT')), (upper('Values')), ...
- if
input_format_values_interpret_expressions=1
andformat_values_deduce_templates_of_expressions=0
expressions will be interpreted separately for each row (this is very slow for large number of rows) - if
input_format_values_interpret_expressions=0
andformat_values_deduce_templates_of_expressions=1
expressions in the first, second and third rows will be parsed using templatelower(String)
and interpreted together, expression is the forth row will be parsed with another template (upper(String)
) - if
input_format_values_interpret_expressions=1
andformat_values_deduce_templates_of_expressions=1
- the same as in previous case, but also allows fallback to interpreting expressions separately if it’s not possible to deduce template.
Enabled by default.
input_format_values_accurate_types_of_literals
This setting is used only when input_format_values_deduce_templates_of_expressions = 1
. It can happen, that expressions for some column have the same structure, but contain numeric literals of different types, e.g
(..., abs(0), ...), -- UInt64 literal
(..., abs(3.141592654), ...), -- Float64 literal
(..., abs(-1), ...), -- Int64 literal
When this setting is enabled, ClickHouse will check the actual type of literal and will use an expression template of the corresponding type. In some cases, it may significantly slow down expression evaluation in Values
.
When disabled, ClickHouse may use more general type for some literals (e.g. Float64
or Int64
instead of UInt64
for 42
), but it may cause overflow and precision issues.
Enabled by default.
input_format_defaults_for_omitted_fields
When performing INSERT
queries, replace omitted input column values with default values of the respective columns. This option only applies to JSONEachRow, CSV and TabSeparated formats.
!!! note "Note" When this option is enabled, extended table metadata are sent from server to client. It consumes additional computing resources on the server and can reduce performance.
Possible values:
- 0 — Disabled.
- 1 — Enabled.
Default value: 1.
input_format_tsv_empty_as_default
When enabled, replace empty input fields in TSV with default values. For complex default expressions input_format_defaults_for_omitted_fields
must be enabled too.
Disabled by default.
input_format_null_as_default
Enables or disables using default values if input data contain NULL
, but data type of the corresponding column in not Nullable(T)
(for text input formats).
input_format_skip_unknown_fields
Enables or disables skipping insertion of extra data.
When writing data, ClickHouse throws an exception if input data contain columns that do not exist in the target table. If skipping is enabled, ClickHouse doesn’t insert extra data and doesn’t throw an exception.
Supported formats:
Possible values:
- 0 — Disabled.
- 1 — Enabled.
Default value: 0.
input_format_import_nested_json
Enables or disables the insertion of JSON data with nested objects.
Supported formats:
Possible values:
- 0 — Disabled.
- 1 — Enabled.
Default value: 0.
See also:
- Usage of Nested Structures with the
JSONEachRow
format.
input_format_with_names_use_header
Enables or disables checking the column order when inserting data.
To improve insert performance, we recommend disabling this check if you are sure that the column order of the input data is the same as in the target table.
Supported formats:
Possible values:
- 0 — Disabled.
- 1 — Enabled.
Default value: 1.
date_time_input_format
Allows choosing a parser of the text representation of date and time.
The setting doesn’t apply to date and time functions.
Possible values:
-
'best_effort'
— Enables extended parsing.ClickHouse can parse the basic
YYYY-MM-DD HH:MM:SS
format and all ISO 8601 date and time formats. For example,'2018-06-08T01:02:03.000Z'
. -
'basic'
— Use basic parser.ClickHouse can parse only the basic
YYYY-MM-DD HH:MM:SS
format. For example,'2019-08-20 10:18:56'
.
Default value: 'basic'
.
See also:
join_default_strictness
Sets default strictness for JOIN clauses.
Possible values:
ALL
— If the right table has several matching rows, ClickHouse creates a Cartesian product from matching rows. This is the normalJOIN
behaviour from standard SQL.ANY
— If the right table has several matching rows, only the first one found is joined. If the right table has only one matching row, the results ofANY
andALL
are the same.ASOF
— For joining sequences with an uncertain match.Empty string
— IfALL
orANY
is not specified in the query, ClickHouse throws an exception.
Default value: ALL
.
join_any_take_last_row
Changes behaviour of join operations with ANY
strictness.
!!! warning "Attention"
This setting applies only for JOIN
operations with Join engine tables.
Possible values:
- 0 — If the right table has more than one matching row, only the first one found is joined.
- 1 — If the right table has more than one matching row, only the last one found is joined.
Default value: 0.
See also:
join_use_nulls
Sets the type of JOIN behavior. When merging tables, empty cells may appear. ClickHouse fills them differently based on this setting.
Possible values:
- 0 — The empty cells are filled with the default value of the corresponding field type.
- 1 —
JOIN
behaves the same way as in standard SQL. The type of the corresponding field is converted to Nullable, and empty cells are filled with NULL.
Default value: 0.
max_block_size
In ClickHouse, data is processed by blocks (sets of column parts). The internal processing cycles for a single block are efficient enough, but there are noticeable expenditures on each block. The max_block_size
setting is a recommendation for what size of the block (in a count of rows) to load from tables. The block size shouldn’t be too small, so that the expenditures on each block are still noticeable, but not too large so that the query with LIMIT that is completed after the first block is processed quickly. The goal is to avoid consuming too much memory when extracting a large number of columns in multiple threads and to preserve at least some cache locality.
Default value: 65,536.
Blocks the size of max_block_size
are not always loaded from the table. If it is obvious that less data needs to be retrieved, a smaller block is processed.
preferred_block_size_bytes
Used for the same purpose as max_block_size
, but it sets the recommended block size in bytes by adapting it to the number of rows in the block.
However, the block size cannot be more than max_block_size
rows.
By default: 1,000,000. It only works when reading from MergeTree engines.
merge_tree_min_rows_for_concurrent_read
If the number of rows to be read from a file of a MergeTree table exceeds merge_tree_min_rows_for_concurrent_read
then ClickHouse tries to perform a concurrent reading from this file on several threads.
Possible values:
- Any positive integer.
Default value: 163840.
merge_tree_min_bytes_for_concurrent_read
If the number of bytes to read from one file of a MergeTree-engine table exceeds merge_tree_min_bytes_for_concurrent_read
, then ClickHouse tries to concurrently read from this file in several threads.
Possible value:
- Any positive integer.
Default value: 251658240.
merge_tree_min_rows_for_seek
If the distance between two data blocks to be read in one file is less than merge_tree_min_rows_for_seek
rows, then ClickHouse does not seek through the file but reads the data sequentially.
Possible values:
- Any positive integer.
Default value: 0.
merge_tree_min_bytes_for_seek
If the distance between two data blocks to be read in one file is less than merge_tree_min_bytes_for_seek
bytes, then ClickHouse sequentially reads a range of file that contains both blocks, thus avoiding extra seek.
Possible values:
- Any positive integer.
Default value: 0.
merge_tree_coarse_index_granularity
When searching for data, ClickHouse checks the data marks in the index file. If ClickHouse finds that required keys are in some range, it divides this range into merge_tree_coarse_index_granularity
subranges and searches the required keys there recursively.
Possible values:
- Any positive even integer.
Default value: 8.
merge_tree_max_rows_to_use_cache
If ClickHouse should read more than merge_tree_max_rows_to_use_cache
rows in one query, it doesn’t use the cache of uncompressed blocks.
The cache of uncompressed blocks stores data extracted for queries. ClickHouse uses this cache to speed up responses to repeated small queries. This setting protects the cache from trashing by queries that read a large amount of data. The uncompressed_cache_size server setting defines the size of the cache of uncompressed blocks.
Possible values:
- Any positive integer.
Default value: 128 ✕ 8192.
merge_tree_max_bytes_to_use_cache
If ClickHouse should read more than merge_tree_max_bytes_to_use_cache
bytes in one query, it doesn’t use the cache of uncompressed blocks.
The cache of uncompressed blocks stores data extracted for queries. ClickHouse uses this cache to speed up responses to repeated small queries. This setting protects the cache from trashing by queries that read a large amount of data. The uncompressed_cache_size server setting defines the size of the cache of uncompressed blocks.
Possible value:
- Any positive integer.
Default value: 2013265920.
min_bytes_to_use_direct_io
The minimum data volume required for using direct I/O access to the storage disk.
ClickHouse uses this setting when reading data from tables. If the total storage volume of all the data to be read exceeds min_bytes_to_use_direct_io
bytes, then ClickHouse reads the data from the storage disk with the O_DIRECT
option.
Possible values:
- 0 — Direct I/O is disabled.
- Positive integer.
Default value: 0.
log_queries
Setting up query logging.
Queries sent to ClickHouse with this setup are logged according to the rules in the query_log server configuration parameter.
Example:
log_queries=1
log_query_threads
Setting up query threads logging.
Queries’ threads runned by ClickHouse with this setup are logged according to the rules in the query_thread_log server configuration parameter.
Example:
log_query_threads=1
max_insert_block_size
The size of blocks to form for insertion into a table. This setting only applies in cases when the server forms the blocks. For example, for an INSERT via the HTTP interface, the server parses the data format and forms blocks of the specified size. But when using clickhouse-client, the client parses the data itself, and the ‘max_insert_block_size’ setting on the server doesn’t affect the size of the inserted blocks. The setting also doesn’t have a purpose when using INSERT SELECT, since data is inserted using the same blocks that are formed after SELECT.
Default value: 1,048,576.
The default is slightly more than max_block_size
. The reason for this is because certain table engines (*MergeTree
) form a data part on the disk for each inserted block, which is a fairly large entity. Similarly, *MergeTree
tables sort data during insertion and a large enough block size allow sorting more data in RAM.
max_replica_delay_for_distributed_queries
Disables lagging replicas for distributed queries. See Replication.
Sets the time in seconds. If a replica lags more than the set value, this replica is not used.
Default value: 300.
Used when performing SELECT
from a distributed table that points to replicated tables.
max_threads
The maximum number of query processing threads, excluding threads for retrieving data from remote servers (see the ‘max_distributed_connections’ parameter).
This parameter applies to threads that perform the same stages of the query processing pipeline in parallel. For example, when reading from a table, if it is possible to evaluate expressions with functions, filter with WHERE and pre-aggregate for GROUP BY in parallel using at least ‘max_threads’ number of threads, then ‘max_threads’ are used.
Default value: the number of physical CPU cores.
If less than one SELECT query is normally run on a server at a time, set this parameter to a value slightly less than the actual number of processor cores.
For queries that are completed quickly because of a LIMIT, you can set a lower ‘max_threads’. For example, if the necessary number of entries are located in every block and max_threads = 8, then 8 blocks are retrieved, although it would have been enough to read just one.
The smaller the max_threads
value, the less memory is consumed.
max_insert_threads
The maximum number of threads to execute the INSERT SELECT
query.
Possible values:
- 0 (or 1) —
INSERT SELECT
no parallel execution. - Positive integer. Bigger than 1.
Default value: 0.
Parallel INSERT SELECT
has effect only if the SELECT
part is executed in parallel, see max_threads setting.
Higher values will lead to higher memory usage.
max_compress_block_size
The maximum size of blocks of uncompressed data before compressing for writing to a table. By default, 1,048,576 (1 MiB). If the size is reduced, the compression rate is significantly reduced, the compression and decompression speed increases slightly due to cache locality, and memory consumption is reduced. There usually isn’t any reason to change this setting.
Don’t confuse blocks for compression (a chunk of memory consisting of bytes) with blocks for query processing (a set of rows from a table).
min_compress_block_size
For MergeTree" tables. In order to reduce latency when processing queries, a block is compressed when writing the next mark if its size is at least ‘min_compress_block_size’. By default, 65,536.
The actual size of the block, if the uncompressed data is less than ‘max_compress_block_size’, is no less than this value and no less than the volume of data for one mark.
Let’s look at an example. Assume that ‘index_granularity’ was set to 8192 during table creation.
We are writing a UInt32-type column (4 bytes per value). When writing 8192 rows, the total will be 32 KB of data. Since min_compress_block_size = 65,536, a compressed block will be formed for every two marks.
We are writing a URL column with the String type (average size of 60 bytes per value). When writing 8192 rows, the average will be slightly less than 500 KB of data. Since this is more than 65,536, a compressed block will be formed for each mark. In this case, when reading data from the disk in the range of a single mark, extra data won’t be decompressed.
There usually isn’t any reason to change this setting.
max_query_size
The maximum part of a query that can be taken to RAM for parsing with the SQL parser. The INSERT query also contains data for INSERT that is processed by a separate stream parser (that consumes O(1) RAM), which is not included in this restriction.
Default value: 256 KiB.
interactive_delay
The interval in microseconds for checking whether request execution has been cancelled and sending the progress.
Default value: 100,000 (checks for cancelling and sends the progress ten times per second).
connect_timeout, receive_timeout, send_timeout
Timeouts in seconds on the socket used for communicating with the client.
Default value: 10, 300, 300.
cancel_http_readonly_queries_on_client_close
Cancels HTTP read-only queries (e.g. SELECT) when a client closes the connection without waiting for the response.
Default value: 0
poll_interval
Lock in a wait loop for the specified number of seconds.
Default value: 10.
max_distributed_connections
The maximum number of simultaneous connections with remote servers for distributed processing of a single query to a single Distributed table. We recommend setting a value no less than the number of servers in the cluster.
Default value: 1024.
The following parameters are only used when creating Distributed tables (and when launching a server), so there is no reason to change them at runtime.
distributed_connections_pool_size
The maximum number of simultaneous connections with remote servers for distributed processing of all queries to a single Distributed table. We recommend setting a value no less than the number of servers in the cluster.
Default value: 1024.
connect_timeout_with_failover_ms
The timeout in milliseconds for connecting to a remote server for a Distributed table engine, if the ‘shard’ and ‘replica’ sections are used in the cluster definition. If unsuccessful, several attempts are made to connect to various replicas.
Default value: 50.
connections_with_failover_max_tries
The maximum number of connection attempts with each replica for the Distributed table engine.
Default value: 3.
extremes
Whether to count extreme values (the minimums and maximums in columns of a query result). Accepts 0 or 1. By default, 0 (disabled). For more information, see the section “Extreme values”.
use_uncompressed_cache
Whether to use a cache of uncompressed blocks. Accepts 0 or 1. By default, 0 (disabled). Using the uncompressed cache (only for tables in the MergeTree family) can significantly reduce latency and increase throughput when working with a large number of short queries. Enable this setting for users who send frequent short requests. Also pay attention to the uncompressed_cache_size configuration parameter (only set in the config file) – the size of uncompressed cache blocks. By default, it is 8 GiB. The uncompressed cache is filled in as needed and the least-used data is automatically deleted.
For queries that read at least a somewhat large volume of data (one million rows or more), the uncompressed cache is disabled automatically to save space for truly small queries. This means that you can keep the ‘use_uncompressed_cache’ setting always set to 1.
replace_running_query
When using the HTTP interface, the ‘query_id’ parameter can be passed. This is any string that serves as the query identifier. If a query from the same user with the same ‘query_id’ already exists at this time, the behaviour depends on the ‘replace_running_query’ parameter.
0
(default) – Throw an exception (don’t allow the query to run if a query with the same ‘query_id’ is already running).
1
– Cancel the old query and start running the new one.
Yandex.Metrica uses this parameter set to 1 for implementing suggestions for segmentation conditions. After entering the next character, if the old query hasn’t finished yet, it should be cancelled.
stream_flush_interval_ms
Works for tables with streaming in the case of a timeout, or when a thread generates max_insert_block_size rows.
The default value is 7500.
The smaller the value, the more often data is flushed into the table. Setting the value too low leads to poor performance.
load_balancing
Specifies the algorithm of replicas selection that is used for distributed query processing.
ClickHouse supports the following algorithms of choosing replicas:
- Random (by default)
- Nearest hostname
- In order
- First or random
Random (by Default)
load_balancing = random
The number of errors is counted for each replica. The query is sent to the replica with the fewest errors, and if there are several of these, to anyone of them. Disadvantages: Server proximity is not accounted for; if the replicas have different data, you will also get different data.
Nearest Hostname
load_balancing = nearest_hostname
The number of errors is counted for each replica. Every 5 minutes, the number of errors is integrally divided by 2. Thus, the number of errors is calculated for a recent time with exponential smoothing. If there is one replica with a minimal number of errors (i.e. errors occurred recently on the other replicas), the query is sent to it. If there are multiple replicas with the same minimal number of errors, the query is sent to the replica with a hostname that is most similar to the server’s hostname in the config file (for the number of different characters in identical positions, up to the minimum length of both hostnames).
For instance, example01-01-1 and example01-01-2.yandex.ru are different in one position, while example01-01-1 and example01-02-2 differ in two places. This method might seem primitive, but it doesn’t require external data about network topology, and it doesn’t compare IP addresses, which would be complicated for our IPv6 addresses.
Thus, if there are equivalent replicas, the closest one by name is preferred. We can also assume that when sending a query to the same server, in the absence of failures, a distributed query will also go to the same servers. So even if different data is placed on the replicas, the query will return mostly the same results.
In Order
load_balancing = in_order
Replicas with the same number of errors are accessed in the same order as they are specified in the configuration. This method is appropriate when you know exactly which replica is preferable.
First or Random
load_balancing = first_or_random
This algorithm chooses the first replica in the set or a random replica if the first is unavailable. It’s effective in cross-replication topology setups, but useless in other configurations.
The first_or_random
algorithm solves the problem of the in_order
algorithm. With in_order
, if one replica goes down, the next one gets a double load while the remaining replicas handle the usual amount of traffic. When using the first_or_random
algorithm, the load is evenly distributed among replicas that are still available.
prefer_localhost_replica
Enables/disables preferable using the localhost replica when processing distributed queries.
Possible values:
- 1 — ClickHouse always sends a query to the localhost replica if it exists.
- 0 — ClickHouse uses the balancing strategy specified by the load_balancing setting.
Default value: 1.
!!! warning "Warning" Disable this setting if you use max_parallel_replicas.
totals_mode
How to calculate TOTALS when HAVING is present, as well as when max_rows_to_group_by and group_by_overflow_mode = ‘any’ are present. See the section “WITH TOTALS modifier”.
totals_auto_threshold
The threshold for totals_mode = 'auto'
.
See the section “WITH TOTALS modifier”.
max_parallel_replicas
The maximum number of replicas for each shard when executing a query. For consistency (to get different parts of the same data split), this option only works when the sampling key is set. Replica lag is not controlled.
compile
Enable compilation of queries. By default, 0 (disabled).
The compilation is only used for part of the query-processing pipeline: for the first stage of aggregation (GROUP BY). If this portion of the pipeline was compiled, the query may run faster due to deployment of short cycles and inlining aggregate function calls. The maximum performance improvement (up to four times faster in rare cases) is seen for queries with multiple simple aggregate functions. Typically, the performance gain is insignificant. In very rare cases, it may slow down query execution.
min_count_to_compile
How many times to potentially use a compiled chunk of code before running compilation. By default, 3. For testing, the value can be set to 0: compilation runs synchronously and the query waits for the end of the compilation process before continuing execution. For all other cases, use values starting with 1. Compilation normally takes about 5-10 seconds. If the value is 1 or more, compilation occurs asynchronously in a separate thread. The result will be used as soon as it is ready, including queries that are currently running.
Compiled code is required for each different combination of aggregate functions used in the query and the type of keys in the GROUP BY clause. The results of the compilation are saved in the build directory in the form of .so files. There is no restriction on the number of compilation results since they don’t use very much space. Old results will be used after server restarts, except in the case of a server upgrade – in this case, the old results are deleted.
output_format_json_quote_64bit_integers
If the value is true, integers appear in quotes when using JSON* Int64 and UInt64 formats (for compatibility with most JavaScript implementations); otherwise, integers are output without the quotes.
format_csv_delimiter
The character interpreted as a delimiter in the CSV data. By default, the delimiter is ,
.
input_format_csv_unquoted_null_literal_as_null
For CSV input format enables or disables parsing of unquoted NULL
as literal (synonym for \N
).
output_format_csv_crlf_end_of_line
Use DOS/Windows-style line separator (CRLF) in CSV instead of Unix style (LF).
output_format_tsv_crlf_end_of_line
Use DOC/Windows-style line separator (CRLF) in TSV instead of Unix style (LF).
insert_quorum
Enables the quorum writes.
- If
insert_quorum < 2
, the quorum writes are disabled. - If
insert_quorum >= 2
, the quorum writes are enabled.
Default value: 0.
Quorum writes
INSERT
succeeds only when ClickHouse manages to correctly write data to the insert_quorum
of replicas during the insert_quorum_timeout
. If for any reason the number of replicas with successful writes does not reach the insert_quorum
, the write is considered failed and ClickHouse will delete the inserted block from all the replicas where data has already been written.
All the replicas in the quorum are consistent, i.e., they contain data from all previous INSERT
queries. The INSERT
sequence is linearized.
When reading the data written from the insert_quorum
, you can use the select_sequential_consistency option.
ClickHouse generates an exception
- If the number of available replicas at the time of the query is less than the
insert_quorum
. - At an attempt to write data when the previous block has not yet been inserted in the
insert_quorum
of replicas. This situation may occur if the user tries to perform anINSERT
before the previous one with theinsert_quorum
is completed.
See also:
insert_quorum_timeout
Write to quorum timeout in seconds. If the timeout has passed and no write has taken place yet, ClickHouse will generate an exception and the client must repeat the query to write the same block to the same or any other replica.
Default value: 60 seconds.
See also:
select_sequential_consistency
Enables or disables sequential consistency for SELECT
queries:
Possible values:
- 0 — Disabled.
- 1 — Enabled.
Default value: 0.
Usage
When sequential consistency is enabled, ClickHouse allows the client to execute the SELECT
query only for those replicas that contain data from all previous INSERT
queries executed with insert_quorum
. If the client refers to a partial replica, ClickHouse will generate an exception. The SELECT query will not include data that has not yet been written to the quorum of replicas.
See also:
insert_deduplicate
Enables or disables block deduplication of INSERT
(for Replicated* tables).
Possible values:
- 0 — Disabled.
- 1 — Enabled.
Default value: 1.
By default, blocks inserted into replicated tables by the INSERT
statement are deduplicated (see [Data Replication] (../engines/table_engines/mergetree_family/replication.md).
deduplicate_blocks_in_dependent_materialized_views
Enables or disables the deduplication check for materialized views that receive data from Replicated* tables.
Possible values:
0 — Disabled.
1 — Enabled.
Default value: 0.
Usage
By default, deduplication is not performed for materialized views but is done upstream, in the source table.
If an INSERTed block is skipped due to deduplication in the source table, there will be no insertion into attached materialized views. This behaviour exists to enable insertion of highly aggregated data into materialized views, for cases where inserted blocks are the same after materialized view aggregation but derived from different INSERTs into the source table.
At the same time, this behaviour “breaks” INSERT
idempotency. If an INSERT
into the main table was successful and INSERT
into a materialized view failed (e.g. because of communication failure with Zookeeper) a client will get an error and can retry the operation. However, the materialized view won’t receive the second insert because it will be discarded by deduplication in the main (source) table. The setting deduplicate_blocks_in_dependent_materialized_views
allows for changing this behaviour. On retry, a materialized view will receive the repeat insert and will perform deduplication check by itself,
ignoring check result for the source table, and will insert rows lost because of the first failure.
max_network_bytes
Limits the data volume (in bytes) that is received or transmitted over the network when executing a query. This setting applies to every individual query.
Possible values:
- Positive integer.
- 0 — Data volume control is disabled.
Default value: 0.
max_network_bandwidth
Limits the speed of the data exchange over the network in bytes per second. This setting applies to every query.
Possible values:
- Positive integer.
- 0 — Bandwidth control is disabled.
Default value: 0.
max_network_bandwidth_for_user
Limits the speed of the data exchange over the network in bytes per second. This setting applies to all concurrently running queries performed by a single user.
Possible values:
- Positive integer.
- 0 — Control of the data speed is disabled.
Default value: 0.
max_network_bandwidth_for_all_users
Limits the speed that data is exchanged at over the network in bytes per second. This setting applies to all concurrently running queries on the server.
Possible values:
- Positive integer.
- 0 — Control of the data speed is disabled.
Default value: 0.
count_distinct_implementation
Specifies which of the uniq*
functions should be used to perform the COUNT(DISTINCT …) construction.
Possible values:
Default value: uniqExact
.
skip_unavailable_shards
Enables or disables silently skipping of unavailable shards.
Shard is considered unavailable if all its replicas are unavailable. A replica is unavailable in the following cases:
-
ClickHouse can’t connect to replica for any reason.
When connecting to a replica, ClickHouse performs several attempts. If all these attempts fail, the replica is considered unavailable.
-
Replica can’t be resolved through DNS.
If replica’s hostname can’t be resolved through DNS, it can indicate the following situations:
-
Replica’s host has no DNS record. It can occur in systems with dynamic DNS, for example, Kubernetes, where nodes can be unresolvable during downtime, and this is not an error.
-
Configuration error. ClickHouse configuration file contains a wrong hostname.
-
Possible values:
-
1 — skipping enabled.
If a shard is unavailable, ClickHouse returns a result based on partial data and doesn’t report node availability issues.
-
0 — skipping disabled.
If a shard is unavailable, ClickHouse throws an exception.
Default value: 0.
optimize_skip_unused_shards
Enables or disables skipping of unused shards for SELECT queries that have sharding key condition in PREWHERE/WHERE (assumes that the data is distributed by sharding key, otherwise do nothing).
Default value: 0
force_optimize_skip_unused_shards
Enables or disables query execution if optimize_skip_unused_shards
enabled and skipping of unused shards is not possible. If the skipping is not possible and the setting is enabled exception will be thrown.
Possible values:
- 0 - Disabled (do not throws)
- 1 - Disable query execution only if the table has sharding key
- 2 - Disable query execution regardless sharding key is defined for the table
Default value: 0
force_optimize_skip_unused_shards_no_nested
Reset optimize_skip_unused_shards
for nested Distributed
table
Possible values:
- 1 — Enabled.
- 0 — Disabled.
Default value: 0.
optimize_throw_if_noop
Enables or disables throwing an exception if an OPTIMIZE query didn’t perform a merge.
By default, OPTIMIZE
returns successfully even if it didn’t do anything. This setting lets you differentiate these situations and get the reason in an exception message.
Possible values:
- 1 — Throwing an exception is enabled.
- 0 — Throwing an exception is disabled.
Default value: 0.
distributed_replica_error_half_life
- Type: seconds
- Default value: 60 seconds
Controls how fast errors in distributed tables are zeroed. If a replica is unavailable for some time, accumulates 5 errors, and distributed_replica_error_half_life is set to 1 second, then the replica is considered normal 3 seconds after last error.
See also:
distributed_replica_error_cap
- Type: unsigned int
- Default value: 1000
Error count of each replica is capped at this value, preventing a single replica from accumulating too many errors.
See also:
distributed_directory_monitor_sleep_time_ms
Base interval for the Distributed table engine to send data. The actual interval grows exponentially in the event of errors.
Possible values:
- A positive integer number of milliseconds.
Default value: 100 milliseconds.
distributed_directory_monitor_max_sleep_time_ms
Maximum interval for the Distributed table engine to send data. Limits exponential growth of the interval set in the distributed_directory_monitor_sleep_time_ms setting.
Possible values:
- A positive integer number of milliseconds.
Default value: 30000 milliseconds (30 seconds).
distributed_directory_monitor_batch_inserts
Enables/disables sending of inserted data in batches.
When batch sending is enabled, the Distributed table engine tries to send multiple files of inserted data in one operation instead of sending them separately. Batch sending improves cluster performance by better-utilizing server and network resources.
Possible values:
- 1 — Enabled.
- 0 — Disabled.
Default value: 0.
os_thread_priority
Sets the priority (nice) for threads that execute queries. The OS scheduler considers this priority when choosing the next thread to run on each available CPU core.
!!! warning "Warning"
To use this setting, you need to set the CAP_SYS_NICE
capability. The clickhouse-server
package sets it up during installation. Some virtual environments don’t allow you to set the CAP_SYS_NICE
capability. In this case, clickhouse-server
shows a message about it at the start.
Possible values:
- You can set values in the range
[-20, 19]
.
Lower values mean higher priority. Threads with low nice
priority values are executed more frequently than threads with high values. High values are preferable for long-running non-interactive queries because it allows them to quickly give up resources in favour of short interactive queries when they arrive.
Default value: 0.
query_profiler_real_time_period_ns
Sets the period for a real clock timer of the query profiler. Real clock timer counts wall-clock time.
Possible values:
-
Positive integer number, in nanoseconds.
Recommended values:
- 10000000 (100 times a second) nanoseconds and less for single queries. - 1000000000 (once a second) for cluster-wide profiling.
-
0 for turning off the timer.
Type: UInt64.
Default value: 1000000000 nanoseconds (once a second).
See also:
- System table trace_log
query_profiler_cpu_time_period_ns
Sets the period for a CPU clock timer of the query profiler. This timer counts only CPU time.
Possible values:
-
A positive integer number of nanoseconds.
Recommended values:
- 10000000 (100 times a second) nanoseconds and more for single queries. - 1000000000 (once a second) for cluster-wide profiling.
-
0 for turning off the timer.
Type: UInt64.
Default value: 1000000000 nanoseconds.
See also:
- System table trace_log
allow_introspection_functions
Enables of disables introspections functions for query profiling.
Possible values:
- 1 — Introspection functions enabled.
- 0 — Introspection functions disabled.
Default value: 0.
See Also
- Sampling Query Profiler
- System table trace_log
input_format_parallel_parsing
- Type: bool
- Default value: True
Enable order-preserving parallel parsing of data formats. Supported only for TSV, TKSV, CSV and JSONEachRow formats.
min_chunk_bytes_for_parallel_parsing
- Type: unsigned int
- Default value: 1 MiB
The minimum chunk size in bytes, which each thread will parse in parallel.
output_format_avro_codec
Sets the compression codec used for output Avro file.
Type: string
Possible values:
null
— No compressiondeflate
— Compress with Deflate (zlib)snappy
— Compress with Snappy
Default value: snappy
(if available) or deflate
.
output_format_avro_sync_interval
Sets minimum data size (in bytes) between synchronization markers for output Avro file.
Type: unsigned int
Possible values: 32 (32 bytes) - 1073741824 (1 GiB)
Default value: 32768 (32 KiB)
format_avro_schema_registry_url
Sets Confluent Schema Registry URL to use with AvroConfluent format
Type: URL
Default value: Empty