ClickHouse/src/Functions/FunctionsCharsetClassification.cpp

249 lines
8.1 KiB
C++
Raw Normal View History

2021-02-07 18:40:55 +00:00
#include <Functions/FunctionsTextClassification.h>
2021-03-19 10:06:21 +00:00
#include <Common/FrequencyHolder.h>
2021-02-07 18:40:55 +00:00
#include <Functions/FunctionFactory.h>
#include <Common/UTF8Helpers.h>
2021-03-23 19:32:54 +00:00
#include <IO/ReadBufferFromString.h>
#include <IO/ReadHelpers.h>
2021-05-31 13:38:51 +00:00
2021-02-07 18:40:55 +00:00
#include <cstring>
2021-03-18 14:05:28 +00:00
#include <cmath>
#include <unordered_map>
2021-02-07 18:40:55 +00:00
#include <memory>
#include <utility>
namespace DB
{
/* Determine language and charset of text data. For each text, we build the distribution of bigrams bytes.
* Then we use marked-up dictionaries with distributions of bigram bytes of various languages and charsets.
* Using a naive Bayesian classifier, find the most likely charset and language and return it
*/
2021-03-23 18:55:14 +00:00
2021-05-07 14:18:06 +00:00
template <size_t N, bool detect_language>
2021-04-15 17:16:32 +00:00
struct CharsetClassificationImpl
2021-02-07 18:40:55 +00:00
{
2021-03-23 18:55:14 +00:00
using ResultType = String;
2021-02-07 18:40:55 +00:00
using CodePoint = UInt8;
2021-05-06 07:04:00 +00:00
/* We need to solve zero-frequency problem for Naive Bayes Classifier
* If the bigram is not found in the text, we assume that the probability of its meeting is 1e-06.
* 1e-06 is minimal value in our marked-up dictionary.
*/
static constexpr Float64 zero_frequency = 1e-06;
2021-02-07 18:40:55 +00:00
/// If the data size is bigger than this, behaviour is unspecified for this function.
static constexpr size_t max_string_size = 1u << 15;
/// Default padding to read safely.
static constexpr size_t default_padding = 16;
/// Max codepoints to store at once. 16 is for batching usage and PODArray has this padding.
static constexpr size_t simultaneously_codepoints_num = default_padding + N - 1;
2021-05-21 13:58:48 +00:00
static ALWAYS_INLINE inline Float64 Naive_bayes(std::unordered_map<UInt16, Float64>& standard,
2021-05-19 10:01:09 +00:00
std::unordered_map<UInt16, Float64>& model,
Float64 max_result)
2021-03-18 14:05:28 +00:00
{
2021-03-23 18:55:14 +00:00
Float64 res = 0;
2021-05-06 07:04:00 +00:00
for (auto & el : model)
{
/// Try to find bigram in the dictionary.
2021-05-21 13:58:48 +00:00
if (standard.find(el.first) != standard.end())
2021-05-06 07:04:00 +00:00
{
2021-05-21 13:58:48 +00:00
res += el.second * log(standard[el.first]);
2021-05-06 07:04:00 +00:00
} else
{
res += el.second * log(zero_frequency);
2021-03-18 14:05:28 +00:00
}
/// If at some step the result has become less than the current maximum, then it makes no sense to count it fully.
2021-05-21 13:58:48 +00:00
if (res < max_result)
{
2021-05-19 10:01:09 +00:00
return res;
}
2021-03-18 14:05:28 +00:00
}
return res;
}
2021-03-18 21:57:42 +00:00
2021-02-07 18:40:55 +00:00
static ALWAYS_INLINE size_t readCodePoints(CodePoint * code_points, const char *& pos, const char * end)
{
constexpr size_t padding_offset = default_padding - N + 1;
memcpy(code_points, code_points + padding_offset, roundUpToPowerOfTwoOrZero(N - 1) * sizeof(CodePoint));
memcpy(code_points + (N - 1), pos, default_padding * sizeof(CodePoint));
pos += padding_offset;
if (pos > end)
return default_padding - (pos - end);
return default_padding;
}
/// Сount how many times each bigram occurs in the text.
2021-02-07 18:40:55 +00:00
static ALWAYS_INLINE inline size_t calculateStats(
const char * data,
const size_t size,
size_t (*read_code_points)(CodePoint *, const char *&, const char *),
2021-05-06 07:04:00 +00:00
std::unordered_map<UInt16, Float64>& model)
2021-02-07 18:40:55 +00:00
{
2021-05-06 07:04:00 +00:00
2021-02-07 18:40:55 +00:00
const char * start = data;
const char * end = data + size;
CodePoint cp[simultaneously_codepoints_num] = {};
/// read_code_points returns the position of cp where it stopped reading codepoints.
size_t found = read_code_points(cp, start, end);
/// We need to start for the first time here, because first N - 1 codepoints mean nothing.
size_t i = N - 1;
size_t len = 0;
do
{
for (; i + N <= found; ++i)
{
2021-02-08 12:23:51 +00:00
UInt32 hash = 0;
2021-05-21 13:58:48 +00:00
for (size_t j = 0; j < N; ++j)
{
2021-02-07 18:40:55 +00:00
hash <<= 8;
hash += *(cp + i + j);
}
2021-05-21 13:58:48 +00:00
if (model[hash] == 0)
{
2021-05-06 07:04:00 +00:00
model[hash] = 1;
2021-02-07 18:40:55 +00:00
++len;
}
2021-05-06 07:04:00 +00:00
++model[hash];
2021-02-07 18:40:55 +00:00
}
i = 0;
} while (start < end && (found = read_code_points(cp, start, end)));
return len;
}
2021-03-18 14:05:28 +00:00
2021-05-23 16:39:40 +00:00
2021-03-23 18:55:14 +00:00
static void constant(String data, String & res)
2021-03-18 14:05:28 +00:00
{
2021-03-23 18:55:14 +00:00
static std::unordered_map<String, Float64> emotional_dict = FrequencyHolder::getInstance().getEmotionalDict();
static std::unordered_map<String, std::unordered_map<UInt16, Float64>> encodings_freq = FrequencyHolder::getInstance().getEncodingsFrequency();
2021-03-18 14:05:28 +00:00
2021-05-06 07:04:00 +00:00
std::unordered_map<UInt16, Float64> model;
calculateStats(data.data(), data.size(), readCodePoints, model);
2021-04-15 17:16:32 +00:00
2021-05-19 10:01:09 +00:00
Float64 max_result = log(zero_frequency) * (max_string_size);
2021-05-07 14:18:06 +00:00
String poss_ans;
/// Go through the dictionary and find the charset with the highest weight
2021-05-19 10:01:09 +00:00
for (auto& item : encodings_freq)
2021-04-15 17:16:32 +00:00
{
2021-05-19 10:01:09 +00:00
Float64 score = Naive_bayes(item.second, model, max_result);
if (max_result < score)
2021-05-06 07:04:00 +00:00
{
2021-05-07 14:18:06 +00:00
poss_ans = item.first;
max_result = score;
2021-05-06 07:04:00 +00:00
}
2021-03-18 14:05:28 +00:00
}
/* In our dictionary we have lines with form: <Language>_<Charset>
* If we need to find language of data, we return <Language>
* If we need to find charset of data, we return <Charset>.
*/
2021-05-23 16:39:40 +00:00
2021-05-07 14:18:06 +00:00
size_t sep = poss_ans.find('_');
if (detect_language)
{
res = poss_ans.erase(0, sep + 1);
}
else
{
res = poss_ans.erase(sep, poss_ans.size() - sep);
}
2021-02-07 18:40:55 +00:00
}
2021-02-07 18:40:55 +00:00
static void vector(
const ColumnString::Chars & data,
const ColumnString::Offsets & offsets,
2021-03-18 14:05:28 +00:00
ColumnString::Chars & res_data,
ColumnString::Offsets & res_offsets)
2021-02-07 18:40:55 +00:00
{
2021-03-23 18:55:14 +00:00
static std::unordered_map<String, std::unordered_map<UInt16, Float64>> encodings_freq = FrequencyHolder::getInstance().getEncodingsFrequency();
static std::unordered_map<String, Float64> emotional_dict = FrequencyHolder::getInstance().getEmotionalDict();
2021-03-18 14:05:28 +00:00
res_data.reserve(1024);
res_offsets.resize(offsets.size());
2021-02-07 18:40:55 +00:00
size_t prev_offset = 0;
2021-03-18 14:05:28 +00:00
size_t res_offset = 0;
2021-02-07 18:40:55 +00:00
2021-03-18 14:05:28 +00:00
for (size_t i = 0; i < offsets.size(); ++i)
2021-02-07 18:40:55 +00:00
{
const char * haystack = reinterpret_cast<const char *>(&data[prev_offset]);
2021-03-23 18:55:14 +00:00
String str = haystack;
2021-03-18 14:05:28 +00:00
2021-05-07 14:18:06 +00:00
String poss_ans;
2021-03-23 18:55:14 +00:00
std::unordered_map<UInt16, Float64> model;
2021-05-06 07:04:00 +00:00
calculateStats(str.data(), str.size(), readCodePoints, model);
2021-03-23 18:55:14 +00:00
2021-05-19 10:01:09 +00:00
Float64 max_result = log(zero_frequency) * (max_string_size);
for (auto& item : encodings_freq)
{
2021-05-19 10:01:09 +00:00
Float64 score = Naive_bayes(item.second, model, max_result);
if (max_result < score)
2021-05-06 07:04:00 +00:00
{
2021-05-07 14:18:06 +00:00
max_result = score;
poss_ans = item.first;
2021-05-06 07:04:00 +00:00
}
}
2021-05-23 16:39:40 +00:00
2021-05-07 14:18:06 +00:00
size_t sep = poss_ans.find('_');
String ans_str;
2021-05-23 16:39:40 +00:00
2021-05-07 14:18:06 +00:00
if (detect_language)
2021-05-06 10:04:38 +00:00
{
2021-05-07 14:18:06 +00:00
ans_str = poss_ans.erase(0, sep + 1);
2021-05-06 10:04:38 +00:00
}
2021-05-07 14:18:06 +00:00
else
2021-05-06 10:04:38 +00:00
{
2021-05-07 14:18:06 +00:00
ans_str = poss_ans.erase(sep, poss_ans.size() - sep);
}
2021-05-06 10:04:38 +00:00
2021-05-19 10:01:09 +00:00
ans_str = poss_ans;
2021-05-07 14:18:06 +00:00
const auto ans = ans_str.c_str();
2021-03-18 14:05:28 +00:00
size_t cur_offset = offsets[i];
2021-05-07 14:18:06 +00:00
size_t ans_size = strlen(ans);
res_data.resize(res_offset + ans_size + 1);
memcpy(&res_data[res_offset], ans, ans_size);
res_offset += ans_size;
2021-03-18 14:05:28 +00:00
res_data[res_offset] = 0;
++res_offset;
res_offsets[i] = res_offset;
prev_offset = cur_offset;
2021-02-07 18:40:55 +00:00
}
}
2021-03-18 14:05:28 +00:00
2021-02-07 18:40:55 +00:00
};
2021-03-23 18:55:14 +00:00
struct NameCharsetDetect
2021-02-07 18:40:55 +00:00
{
2021-05-07 14:18:06 +00:00
static constexpr auto name = "detectCharset";
};
struct NameLanguageDetect
{
2021-12-22 21:03:42 +00:00
static constexpr auto name = "detectLanguageUnknown";
2021-02-07 18:40:55 +00:00
};
2021-02-07 19:46:33 +00:00
2021-02-07 18:40:55 +00:00
2021-05-07 14:18:06 +00:00
using FunctionCharsetDetect = FunctionsTextClassification<CharsetClassificationImpl<2, true>, NameCharsetDetect>;
using FunctionLanguageDetect = FunctionsTextClassification<CharsetClassificationImpl<2, false>, NameLanguageDetect>;
2021-03-23 18:55:14 +00:00
2021-04-15 17:16:32 +00:00
void registerFunctionsCharsetClassification(FunctionFactory & factory)
2021-02-07 18:40:55 +00:00
{
2021-03-23 18:55:14 +00:00
factory.registerFunction<FunctionCharsetDetect>();
2021-05-07 14:18:06 +00:00
factory.registerFunction<FunctionLanguageDetect>();
2021-02-07 18:40:55 +00:00
}
}