ClickHouse/src/Functions/PerformanceAdaptors.h

259 lines
8.4 KiB
C++
Raw Normal View History

2020-04-02 13:48:14 +00:00
#pragma once
#include <Functions/TargetSpecific.h>
2020-04-05 12:01:33 +00:00
#include <Functions/IFunctionImpl.h>
#include <Common/Stopwatch.h>
#include <Interpreters/Context.h>
2020-04-05 12:01:33 +00:00
#include <random>
/// This file contains Adaptors which help to combine several implementations of the function.
/// Adaptors check that implementation can be executed on the current platform and choose
/// that one which works faster according to previous runs.
2020-04-02 13:48:14 +00:00
namespace DB
{
2020-04-02 13:48:14 +00:00
2020-05-16 06:59:08 +00:00
namespace ErrorCodes
{
extern const int NO_SUITABLE_FUNCTION_IMPLEMENTATION;
}
// TODO(dakovalkov): This is copied and pasted struct from LZ4_decompress_faster.h with little changes.
2020-04-05 12:01:33 +00:00
struct PerformanceStatistics
2020-04-02 13:48:14 +00:00
{
2020-04-05 12:01:33 +00:00
struct Element
2020-04-02 13:48:14 +00:00
{
2020-04-05 12:01:33 +00:00
double count = 0;
double sum = 0;
double adjustedCount() const
{
return count - NUM_INVOCATIONS_TO_THROW_OFF;
}
double mean() const
{
return sum / adjustedCount();
}
/// For better convergence, we don't use proper estimate of stddev.
/// We want to eventually separate between two algorithms even in case
/// when there is no statistical significant difference between them.
double sigma() const
{
return mean() / sqrt(adjustedCount());
2020-04-02 13:48:14 +00:00
}
2020-04-05 12:01:33 +00:00
void update(double seconds, double bytes)
{
++count;
if (count > NUM_INVOCATIONS_TO_THROW_OFF)
sum += seconds / bytes;
}
double sample(pcg64 & stat_rng) const
{
/// If there is a variant with not enough statistics, always choose it.
/// And in that case prefer variant with less number of invocations.
if (adjustedCount() < 2)
return adjustedCount() - 1;
else
return std::normal_distribution<>(mean(), sigma())(stat_rng);
}
};
/// Cold invocations may be affected by additional memory latencies. Don't take first invocations into account.
static constexpr double NUM_INVOCATIONS_TO_THROW_OFF = 2;
/// How to select method to run.
/// -1 - automatically, based on statistics (default);
/// -2 - choose methods in round robin fashion (for performance testing).
/// >= 0 - always choose specified method (for performance testing);
ssize_t choose_method = -1;
std::vector<Element> data;
/// It's Ok that generator is not seeded.
pcg64 rng;
/// To select from different algorithms we use a kind of "bandits" algorithm.
/// Sample random values from estimated normal distributions and choose the minimal.
size_t select()
{
if (choose_method < 0)
{
std::vector<double> samples(data.size());
for (size_t i = 0; i < data.size(); ++i)
samples[i] = choose_method == -1
? data[i].sample(rng)
: data[i].adjustedCount();
return std::min_element(samples.begin(), samples.end()) - samples.begin();
}
else
return choose_method;
}
2020-05-16 06:59:08 +00:00
size_t size() const
{
2020-04-05 12:01:33 +00:00
return data.size();
}
2020-05-16 06:59:08 +00:00
bool empty() const
{
return size() == 0;
}
2020-05-16 06:59:08 +00:00
void emplace_back()
{
2020-04-05 12:01:33 +00:00
data.emplace_back();
}
PerformanceStatistics() {}
PerformanceStatistics(ssize_t choose_method_) : choose_method(choose_method_) {}
};
2020-05-15 10:10:34 +00:00
struct PerformanceAdaptorOptions
{
std::optional<std::vector<String>> implementations;
};
2020-05-16 06:59:08 +00:00
/// Redirects IExecutableFunctionImpl::execute() and IFunction:executeImpl() to executeFunctionImpl();
template <typename DefaultFunction, typename Dummy = void>
class FunctionExecutor;
template <typename DefaultFunction>
class FunctionExecutor<DefaultFunction, std::enable_if_t<std::is_base_of_v<IExecutableFunctionImpl, DefaultFunction>>>
: public DefaultFunction
{
public:
using BaseFunctionPtr = ExecutableFunctionImplPtr;
template <typename ...Args>
2020-05-16 17:21:23 +00:00
FunctionExecutor(Args&&... args) : DefaultFunction(std::forward<Args>(args)...) {}
2020-05-15 10:10:34 +00:00
virtual void executeFunctionImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) = 0;
virtual void execute(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) override
{
executeFunctionImpl(block, arguments, result, input_rows_count);
}
};
template <typename DefaultFunction>
class FunctionExecutor<DefaultFunction, std::enable_if_t<std::is_base_of_v<IFunction, DefaultFunction>>>
: public DefaultFunction
{
public:
using BaseFunctionPtr = FunctionPtr;
template <typename ...Args>
2020-05-16 17:21:23 +00:00
FunctionExecutor(Args&&... args) : DefaultFunction(std::forward<Args>(args)...) {}
virtual void executeFunctionImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) = 0;
virtual void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) override
{
executeFunctionImpl(block, arguments, result, input_rows_count);
}
2020-05-15 10:10:34 +00:00
};
/// Combine several IExecutableFunctionImpl into one.
/// All the implementations should be equivalent.
/// Implementation to execute will be selected based on performance on previous runs.
/// DefaultFunction should be executable on every supported platform, while alternative implementations
/// could use extended set of instructions (AVX, NEON, etc).
/// It's convenient to inherit your func from this and register all alternative implementations in the constructor.
template <typename DefaultFunction>
class FunctionPerformanceAdaptor : public FunctionExecutor<DefaultFunction>
{
public:
2020-05-18 08:48:35 +00:00
using BaseFunctionPtr = typename FunctionExecutor<DefaultFunction>::BaseFunctionPtr;
template <typename ...Params>
FunctionPerformanceAdaptor(const Context & context_, Params&&... params)
2020-05-16 17:21:23 +00:00
: FunctionExecutor<DefaultFunction>(std::forward<Params>(params)...)
, context(context_)
{
2020-05-16 06:59:08 +00:00
if (isImplementationEnabled(DefaultFunction::getImplementationTag()))
statistics.emplace_back();
}
2020-05-16 06:59:08 +00:00
/// Register alternative implementation.
template<typename Function, typename ...Params>
2020-05-16 17:21:23 +00:00
void registerImplementation(TargetArch arch, Params&&... params)
{
2020-05-16 06:59:08 +00:00
if (IsArchSupported(arch) && isImplementationEnabled(Function::getImplementationTag()))
{
2020-05-16 17:21:23 +00:00
impls.emplace_back(std::make_shared<Function>(std::forward<Params>(params)...));
statistics.emplace_back();
}
}
2020-04-05 12:01:33 +00:00
2020-05-16 17:21:23 +00:00
bool isImplementationEnabled(const String & impl_tag)
{
const String & tag = context.getSettingsRef().function_implementation.value;
return tag.empty() || tag == impl_tag;
// if (!options.implementations)
// return true;
// for (const auto & tag : *options.implementations)
// {
// if (tag == impl_tag)
// return true;
// }
// return false;
2020-04-05 12:01:33 +00:00
}
protected:
virtual void executeFunctionImpl(Block & block, const ColumnNumbers & arguments,
size_t result, size_t input_rows_count) override
2020-04-05 12:01:33 +00:00
{
if (statistics.empty())
2020-05-16 06:59:08 +00:00
throw Exception("All available implementations are disabled by user config",
ErrorCodes::NO_SUITABLE_FUNCTION_IMPLEMENTATION);
auto id = statistics.select();
Stopwatch watch;
2020-05-16 06:59:08 +00:00
if (id == impls.size())
{
if constexpr (std::is_base_of_v<IFunction, FunctionPerformanceAdaptor>)
DefaultFunction::executeImpl(block, arguments, result, input_rows_count);
else
DefaultFunction::execute(block, arguments, result, input_rows_count);
2020-05-16 06:59:08 +00:00
}
else
{
if constexpr (std::is_base_of_v<IFunction, FunctionPerformanceAdaptor>)
impls[id]->executeImpl(block, arguments, result, input_rows_count);
else
impls[id]->execute(block, arguments, result, input_rows_count);
2020-04-05 13:14:59 +00:00
}
watch.stop();
2020-05-16 06:59:08 +00:00
// TODO(dakovalkov): Calculate something more informative.
size_t rows_summary = 0;
2020-05-16 06:59:08 +00:00
for (auto i : arguments)
{
rows_summary += block.getByPosition(i).column->size();
}
2020-05-16 06:59:08 +00:00
if (rows_summary >= 1000)
{
statistics.data[id].update(watch.elapsedSeconds(), rows_summary);
}
2020-04-05 12:01:33 +00:00
}
2020-04-02 13:48:14 +00:00
private:
std::vector<BaseFunctionPtr> impls; // Alternative implementations.
2020-04-05 12:01:33 +00:00
PerformanceStatistics statistics;
const Context & context;
2020-04-13 09:25:53 +00:00
};
2020-04-05 12:01:33 +00:00
2020-05-16 06:59:08 +00:00
}