mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-17 13:13:36 +00:00
665 lines
22 KiB
Markdown
665 lines
22 KiB
Markdown
---
|
||
toc_priority: 12
|
||
toc_title: "\u6559\u7A0B"
|
||
---
|
||
|
||
# 点击教程 {#clickhouse-tutorial}
|
||
|
||
## 从本教程中可以期待什么? {#what-to-expect-from-this-tutorial}
|
||
|
||
通过本教程,您将学习如何设置一个简单的ClickHouse集群。 它会很小,但却是容错和可扩展的。 然后,我们将使用其中一个示例数据集来填充数据并执行一些演示查询。
|
||
|
||
## 单节点设置 {#single-node-setup}
|
||
|
||
为了推迟分布式环境的复杂性,我们将首先在单个服务器或虚拟机上部署ClickHouse。 ClickHouse通常是从[deb](install.md#install-from-deb-packages) 或 [rpm](install.md#from-rpm-packages) 包安装,但对于不支持它们的操作系统也有 [替代方法](install.md#from-docker-image) 。
|
||
|
||
例如,您选择了从 `deb` 包安装,执行:
|
||
|
||
``` bash
|
||
{% include 'install/deb.sh' %}
|
||
```
|
||
|
||
在我们安装的软件中包含这些包:
|
||
|
||
- `clickhouse-client` 包,包含 [clickhouse-client](../interfaces/cli.md) 应用程序,它是交互式ClickHouse控制台客户端。
|
||
- `clickhouse-common` 包,包含一个ClickHouse可执行文件。
|
||
- `clickhouse-server` 包,包含要作为服务端运行的ClickHouse配置文件。
|
||
|
||
服务端配置文件位于 `/etc/clickhouse-server/`。 在进一步讨论之前,请注意 `config.xml`文件中的`<path>` 元素. Path决定了数据存储的位置,因此该位置应该位于磁盘容量较大的卷上;默认值为 `/var/lib/clickhouse/`。 如果你想调整配置,考虑到它可能会在未来的软件包更新中被重写,直接编辑`config.xml` 文件并不方便。 推荐的方法是在[配置文件](../operations/configuration-files.md)目录创建文件,作为config.xml文件的“补丁”,用以复写配置元素。
|
||
|
||
你可能已经注意到了, `clickhouse-server` 安装后不会自动启动。 它也不会在更新后自动重新启动。 您启动服务端的方式取决于您的初始系统,通常情况下是这样:
|
||
|
||
``` bash
|
||
sudo service clickhouse-server start
|
||
```
|
||
|
||
或
|
||
|
||
``` bash
|
||
sudo /etc/init.d/clickhouse-server start
|
||
```
|
||
|
||
服务端日志的默认位置是 `/var/log/clickhouse-server/`。当服务端在日志中记录 `Ready for connections` 消息,即表示服务端已准备好处理客户端连接。
|
||
|
||
一旦 `clickhouse-server` 启动并运行,我们可以利用 `clickhouse-client` 连接到服务端,并运行一些测试查询,如 `SELECT "Hello, world!";`.
|
||
|
||
<details markdown="1">
|
||
|
||
<summary>Clickhouse-client的快速提示</summary>
|
||
|
||
交互模式:
|
||
|
||
``` bash
|
||
clickhouse-client
|
||
clickhouse-client --host=... --port=... --user=... --password=...
|
||
```
|
||
|
||
启用多行查询:
|
||
|
||
``` bash
|
||
clickhouse-client -m
|
||
clickhouse-client --multiline
|
||
```
|
||
|
||
以批处理模式运行查询:
|
||
|
||
``` bash
|
||
clickhouse-client --query='SELECT 1'
|
||
echo 'SELECT 1' | clickhouse-client
|
||
clickhouse-client <<< 'SELECT 1'
|
||
```
|
||
|
||
从指定格式的文件中插入数据:
|
||
|
||
``` bash
|
||
clickhouse-client --query='INSERT INTO table VALUES' < data.txt
|
||
clickhouse-client --query='INSERT INTO table FORMAT TabSeparated' < data.tsv
|
||
```
|
||
|
||
</details>
|
||
|
||
## 导入示例数据集 {#import-sample-dataset}
|
||
|
||
现在是时候用一些示例数据填充我们的ClickHouse服务端。 在本教程中,我们将使用Yandex.Metrica的匿名数据,它是在ClickHouse成为开源之前作为生产环境运行的第一个服务(关于这一点的更多内容请参阅[ClickHouse历史](../introduction/history.md))。有 [多种导入Yandex.Metrica数据集的的方法](example-datasets/metrica.md),为了本教程,我们将使用最现实的一个。
|
||
|
||
### 下载并提取表数据 {#download-and-extract-table-data}
|
||
|
||
``` bash
|
||
curl https://clickhouse-datasets.s3.yandex.net/hits/tsv/hits_v1.tsv.xz | unxz --threads=`nproc` > hits_v1.tsv
|
||
curl https://clickhouse-datasets.s3.yandex.net/visits/tsv/visits_v1.tsv.xz | unxz --threads=`nproc` > visits_v1.tsv
|
||
```
|
||
|
||
提取的文件大小约为10GB。
|
||
|
||
### 创建表 {#create-tables}
|
||
|
||
与大多数数据库管理系统一样,ClickHouse在逻辑上将表分组为数据库。包含一个 `default` 数据库,但我们将创建一个新的数据库 `tutorial`:
|
||
|
||
``` bash
|
||
clickhouse-client --query "CREATE DATABASE IF NOT EXISTS tutorial"
|
||
```
|
||
|
||
与创建数据库相比,创建表的语法要复杂得多(请参阅 [参考资料](../sql-reference/statements/create.md). 一般 `CREATE TABLE` 声明必须指定三个关键的事情:
|
||
|
||
1. 要创建的表的名称。
|
||
2. 表结构,例如:列名和对应的[数据类型](../sql-reference/data-types/index.md)。
|
||
3. [表引擎](../engines/table-engines/index.md) 及其设置,这决定了对此表的查询操作是如何在物理层面执行的所有细节。
|
||
|
||
Yandex.Metrica是一个网络分析服务,样本数据集不包括其全部功能,因此只有两个表可以创建:
|
||
|
||
- `hits` 表包含所有用户在服务所涵盖的所有网站上完成的每个操作。
|
||
- `visits` 表包含预先构建的会话,而不是单个操作。
|
||
|
||
让我们看看并执行这些表的实际创建表查询:
|
||
|
||
``` sql
|
||
CREATE TABLE tutorial.hits_v1
|
||
(
|
||
`WatchID` UInt64,
|
||
`JavaEnable` UInt8,
|
||
`Title` String,
|
||
`GoodEvent` Int16,
|
||
`EventTime` DateTime,
|
||
`EventDate` Date,
|
||
`CounterID` UInt32,
|
||
`ClientIP` UInt32,
|
||
`ClientIP6` FixedString(16),
|
||
`RegionID` UInt32,
|
||
`UserID` UInt64,
|
||
`CounterClass` Int8,
|
||
`OS` UInt8,
|
||
`UserAgent` UInt8,
|
||
`URL` String,
|
||
`Referer` String,
|
||
`URLDomain` String,
|
||
`RefererDomain` String,
|
||
`Refresh` UInt8,
|
||
`IsRobot` UInt8,
|
||
`RefererCategories` Array(UInt16),
|
||
`URLCategories` Array(UInt16),
|
||
`URLRegions` Array(UInt32),
|
||
`RefererRegions` Array(UInt32),
|
||
`ResolutionWidth` UInt16,
|
||
`ResolutionHeight` UInt16,
|
||
`ResolutionDepth` UInt8,
|
||
`FlashMajor` UInt8,
|
||
`FlashMinor` UInt8,
|
||
`FlashMinor2` String,
|
||
`NetMajor` UInt8,
|
||
`NetMinor` UInt8,
|
||
`UserAgentMajor` UInt16,
|
||
`UserAgentMinor` FixedString(2),
|
||
`CookieEnable` UInt8,
|
||
`JavascriptEnable` UInt8,
|
||
`IsMobile` UInt8,
|
||
`MobilePhone` UInt8,
|
||
`MobilePhoneModel` String,
|
||
`Params` String,
|
||
`IPNetworkID` UInt32,
|
||
`TraficSourceID` Int8,
|
||
`SearchEngineID` UInt16,
|
||
`SearchPhrase` String,
|
||
`AdvEngineID` UInt8,
|
||
`IsArtifical` UInt8,
|
||
`WindowClientWidth` UInt16,
|
||
`WindowClientHeight` UInt16,
|
||
`ClientTimeZone` Int16,
|
||
`ClientEventTime` DateTime,
|
||
`SilverlightVersion1` UInt8,
|
||
`SilverlightVersion2` UInt8,
|
||
`SilverlightVersion3` UInt32,
|
||
`SilverlightVersion4` UInt16,
|
||
`PageCharset` String,
|
||
`CodeVersion` UInt32,
|
||
`IsLink` UInt8,
|
||
`IsDownload` UInt8,
|
||
`IsNotBounce` UInt8,
|
||
`FUniqID` UInt64,
|
||
`HID` UInt32,
|
||
`IsOldCounter` UInt8,
|
||
`IsEvent` UInt8,
|
||
`IsParameter` UInt8,
|
||
`DontCountHits` UInt8,
|
||
`WithHash` UInt8,
|
||
`HitColor` FixedString(1),
|
||
`UTCEventTime` DateTime,
|
||
`Age` UInt8,
|
||
`Sex` UInt8,
|
||
`Income` UInt8,
|
||
`Interests` UInt16,
|
||
`Robotness` UInt8,
|
||
`GeneralInterests` Array(UInt16),
|
||
`RemoteIP` UInt32,
|
||
`RemoteIP6` FixedString(16),
|
||
`WindowName` Int32,
|
||
`OpenerName` Int32,
|
||
`HistoryLength` Int16,
|
||
`BrowserLanguage` FixedString(2),
|
||
`BrowserCountry` FixedString(2),
|
||
`SocialNetwork` String,
|
||
`SocialAction` String,
|
||
`HTTPError` UInt16,
|
||
`SendTiming` Int32,
|
||
`DNSTiming` Int32,
|
||
`ConnectTiming` Int32,
|
||
`ResponseStartTiming` Int32,
|
||
`ResponseEndTiming` Int32,
|
||
`FetchTiming` Int32,
|
||
`RedirectTiming` Int32,
|
||
`DOMInteractiveTiming` Int32,
|
||
`DOMContentLoadedTiming` Int32,
|
||
`DOMCompleteTiming` Int32,
|
||
`LoadEventStartTiming` Int32,
|
||
`LoadEventEndTiming` Int32,
|
||
`NSToDOMContentLoadedTiming` Int32,
|
||
`FirstPaintTiming` Int32,
|
||
`RedirectCount` Int8,
|
||
`SocialSourceNetworkID` UInt8,
|
||
`SocialSourcePage` String,
|
||
`ParamPrice` Int64,
|
||
`ParamOrderID` String,
|
||
`ParamCurrency` FixedString(3),
|
||
`ParamCurrencyID` UInt16,
|
||
`GoalsReached` Array(UInt32),
|
||
`OpenstatServiceName` String,
|
||
`OpenstatCampaignID` String,
|
||
`OpenstatAdID` String,
|
||
`OpenstatSourceID` String,
|
||
`UTMSource` String,
|
||
`UTMMedium` String,
|
||
`UTMCampaign` String,
|
||
`UTMContent` String,
|
||
`UTMTerm` String,
|
||
`FromTag` String,
|
||
`HasGCLID` UInt8,
|
||
`RefererHash` UInt64,
|
||
`URLHash` UInt64,
|
||
`CLID` UInt32,
|
||
`YCLID` UInt64,
|
||
`ShareService` String,
|
||
`ShareURL` String,
|
||
`ShareTitle` String,
|
||
`ParsedParams` Nested(
|
||
Key1 String,
|
||
Key2 String,
|
||
Key3 String,
|
||
Key4 String,
|
||
Key5 String,
|
||
ValueDouble Float64),
|
||
`IslandID` FixedString(16),
|
||
`RequestNum` UInt32,
|
||
`RequestTry` UInt8
|
||
)
|
||
ENGINE = MergeTree()
|
||
PARTITION BY toYYYYMM(EventDate)
|
||
ORDER BY (CounterID, EventDate, intHash32(UserID))
|
||
SAMPLE BY intHash32(UserID)
|
||
SETTINGS index_granularity = 8192
|
||
```
|
||
|
||
``` sql
|
||
CREATE TABLE tutorial.visits_v1
|
||
(
|
||
`CounterID` UInt32,
|
||
`StartDate` Date,
|
||
`Sign` Int8,
|
||
`IsNew` UInt8,
|
||
`VisitID` UInt64,
|
||
`UserID` UInt64,
|
||
`StartTime` DateTime,
|
||
`Duration` UInt32,
|
||
`UTCStartTime` DateTime,
|
||
`PageViews` Int32,
|
||
`Hits` Int32,
|
||
`IsBounce` UInt8,
|
||
`Referer` String,
|
||
`StartURL` String,
|
||
`RefererDomain` String,
|
||
`StartURLDomain` String,
|
||
`EndURL` String,
|
||
`LinkURL` String,
|
||
`IsDownload` UInt8,
|
||
`TraficSourceID` Int8,
|
||
`SearchEngineID` UInt16,
|
||
`SearchPhrase` String,
|
||
`AdvEngineID` UInt8,
|
||
`PlaceID` Int32,
|
||
`RefererCategories` Array(UInt16),
|
||
`URLCategories` Array(UInt16),
|
||
`URLRegions` Array(UInt32),
|
||
`RefererRegions` Array(UInt32),
|
||
`IsYandex` UInt8,
|
||
`GoalReachesDepth` Int32,
|
||
`GoalReachesURL` Int32,
|
||
`GoalReachesAny` Int32,
|
||
`SocialSourceNetworkID` UInt8,
|
||
`SocialSourcePage` String,
|
||
`MobilePhoneModel` String,
|
||
`ClientEventTime` DateTime,
|
||
`RegionID` UInt32,
|
||
`ClientIP` UInt32,
|
||
`ClientIP6` FixedString(16),
|
||
`RemoteIP` UInt32,
|
||
`RemoteIP6` FixedString(16),
|
||
`IPNetworkID` UInt32,
|
||
`SilverlightVersion3` UInt32,
|
||
`CodeVersion` UInt32,
|
||
`ResolutionWidth` UInt16,
|
||
`ResolutionHeight` UInt16,
|
||
`UserAgentMajor` UInt16,
|
||
`UserAgentMinor` UInt16,
|
||
`WindowClientWidth` UInt16,
|
||
`WindowClientHeight` UInt16,
|
||
`SilverlightVersion2` UInt8,
|
||
`SilverlightVersion4` UInt16,
|
||
`FlashVersion3` UInt16,
|
||
`FlashVersion4` UInt16,
|
||
`ClientTimeZone` Int16,
|
||
`OS` UInt8,
|
||
`UserAgent` UInt8,
|
||
`ResolutionDepth` UInt8,
|
||
`FlashMajor` UInt8,
|
||
`FlashMinor` UInt8,
|
||
`NetMajor` UInt8,
|
||
`NetMinor` UInt8,
|
||
`MobilePhone` UInt8,
|
||
`SilverlightVersion1` UInt8,
|
||
`Age` UInt8,
|
||
`Sex` UInt8,
|
||
`Income` UInt8,
|
||
`JavaEnable` UInt8,
|
||
`CookieEnable` UInt8,
|
||
`JavascriptEnable` UInt8,
|
||
`IsMobile` UInt8,
|
||
`BrowserLanguage` UInt16,
|
||
`BrowserCountry` UInt16,
|
||
`Interests` UInt16,
|
||
`Robotness` UInt8,
|
||
`GeneralInterests` Array(UInt16),
|
||
`Params` Array(String),
|
||
`Goals` Nested(
|
||
ID UInt32,
|
||
Serial UInt32,
|
||
EventTime DateTime,
|
||
Price Int64,
|
||
OrderID String,
|
||
CurrencyID UInt32),
|
||
`WatchIDs` Array(UInt64),
|
||
`ParamSumPrice` Int64,
|
||
`ParamCurrency` FixedString(3),
|
||
`ParamCurrencyID` UInt16,
|
||
`ClickLogID` UInt64,
|
||
`ClickEventID` Int32,
|
||
`ClickGoodEvent` Int32,
|
||
`ClickEventTime` DateTime,
|
||
`ClickPriorityID` Int32,
|
||
`ClickPhraseID` Int32,
|
||
`ClickPageID` Int32,
|
||
`ClickPlaceID` Int32,
|
||
`ClickTypeID` Int32,
|
||
`ClickResourceID` Int32,
|
||
`ClickCost` UInt32,
|
||
`ClickClientIP` UInt32,
|
||
`ClickDomainID` UInt32,
|
||
`ClickURL` String,
|
||
`ClickAttempt` UInt8,
|
||
`ClickOrderID` UInt32,
|
||
`ClickBannerID` UInt32,
|
||
`ClickMarketCategoryID` UInt32,
|
||
`ClickMarketPP` UInt32,
|
||
`ClickMarketCategoryName` String,
|
||
`ClickMarketPPName` String,
|
||
`ClickAWAPSCampaignName` String,
|
||
`ClickPageName` String,
|
||
`ClickTargetType` UInt16,
|
||
`ClickTargetPhraseID` UInt64,
|
||
`ClickContextType` UInt8,
|
||
`ClickSelectType` Int8,
|
||
`ClickOptions` String,
|
||
`ClickGroupBannerID` Int32,
|
||
`OpenstatServiceName` String,
|
||
`OpenstatCampaignID` String,
|
||
`OpenstatAdID` String,
|
||
`OpenstatSourceID` String,
|
||
`UTMSource` String,
|
||
`UTMMedium` String,
|
||
`UTMCampaign` String,
|
||
`UTMContent` String,
|
||
`UTMTerm` String,
|
||
`FromTag` String,
|
||
`HasGCLID` UInt8,
|
||
`FirstVisit` DateTime,
|
||
`PredLastVisit` Date,
|
||
`LastVisit` Date,
|
||
`TotalVisits` UInt32,
|
||
`TraficSource` Nested(
|
||
ID Int8,
|
||
SearchEngineID UInt16,
|
||
AdvEngineID UInt8,
|
||
PlaceID UInt16,
|
||
SocialSourceNetworkID UInt8,
|
||
Domain String,
|
||
SearchPhrase String,
|
||
SocialSourcePage String),
|
||
`Attendance` FixedString(16),
|
||
`CLID` UInt32,
|
||
`YCLID` UInt64,
|
||
`NormalizedRefererHash` UInt64,
|
||
`SearchPhraseHash` UInt64,
|
||
`RefererDomainHash` UInt64,
|
||
`NormalizedStartURLHash` UInt64,
|
||
`StartURLDomainHash` UInt64,
|
||
`NormalizedEndURLHash` UInt64,
|
||
`TopLevelDomain` UInt64,
|
||
`URLScheme` UInt64,
|
||
`OpenstatServiceNameHash` UInt64,
|
||
`OpenstatCampaignIDHash` UInt64,
|
||
`OpenstatAdIDHash` UInt64,
|
||
`OpenstatSourceIDHash` UInt64,
|
||
`UTMSourceHash` UInt64,
|
||
`UTMMediumHash` UInt64,
|
||
`UTMCampaignHash` UInt64,
|
||
`UTMContentHash` UInt64,
|
||
`UTMTermHash` UInt64,
|
||
`FromHash` UInt64,
|
||
`WebVisorEnabled` UInt8,
|
||
`WebVisorActivity` UInt32,
|
||
`ParsedParams` Nested(
|
||
Key1 String,
|
||
Key2 String,
|
||
Key3 String,
|
||
Key4 String,
|
||
Key5 String,
|
||
ValueDouble Float64),
|
||
`Market` Nested(
|
||
Type UInt8,
|
||
GoalID UInt32,
|
||
OrderID String,
|
||
OrderPrice Int64,
|
||
PP UInt32,
|
||
DirectPlaceID UInt32,
|
||
DirectOrderID UInt32,
|
||
DirectBannerID UInt32,
|
||
GoodID String,
|
||
GoodName String,
|
||
GoodQuantity Int32,
|
||
GoodPrice Int64),
|
||
`IslandID` FixedString(16)
|
||
)
|
||
ENGINE = CollapsingMergeTree(Sign)
|
||
PARTITION BY toYYYYMM(StartDate)
|
||
ORDER BY (CounterID, StartDate, intHash32(UserID), VisitID)
|
||
SAMPLE BY intHash32(UserID)
|
||
SETTINGS index_granularity = 8192
|
||
```
|
||
|
||
您可以使用`clickhouse-client`的交互模式执行这些查询(只需在终端中启动它,而不需要提前指定查询)。或者如果你愿意,可以尝试一些[替代接口](../interfaces/index.md)。
|
||
|
||
正如我们所看到的, `hits_v1` 使用 [基本的MergeTree引擎](../engines/table-engines/mergetree-family/mergetree.md),而 `visits_v1` 使用 [折叠树](../engines/table-engines/mergetree-family/collapsingmergetree.md) 变体。
|
||
|
||
### 导入数据 {#import-data}
|
||
|
||
数据导入到ClickHouse是通过以下方式完成的 [INSERT INTO](../sql-reference/statements/insert-into.md) 查询像许多其他SQL数据库。 然而,数据通常是在一个提供 [支持的序列化格式](../interfaces/formats.md) 而不是 `VALUES` 子句(也支持)。
|
||
|
||
我们之前下载的文件是以制表符分隔的格式,所以这里是如何通过控制台客户端导入它们:
|
||
|
||
``` bash
|
||
clickhouse-client --query "INSERT INTO tutorial.hits_v1 FORMAT TSV" --max_insert_block_size=100000 < hits_v1.tsv
|
||
clickhouse-client --query "INSERT INTO tutorial.visits_v1 FORMAT TSV" --max_insert_block_size=100000 < visits_v1.tsv
|
||
```
|
||
|
||
ClickHouse有很多 [要调整的设置](../operations/settings/index.md) 在控制台客户端中指定它们的一种方法是通过参数,就像我们看到上面语句中的 `--max_insert_block_size`。找出可用的设置、含义及其默认值的最简单方法是查询 `system.settings` 表:
|
||
|
||
``` sql
|
||
SELECT name, value, changed, description
|
||
FROM system.settings
|
||
WHERE name LIKE '%max_insert_b%'
|
||
FORMAT TSV
|
||
|
||
max_insert_block_size 1048576 0 "The maximum block size for insertion, if we control the creation of blocks for insertion."
|
||
```
|
||
|
||
您也可以 [OPTIMIZE](../sql-reference/statements/misc.md#misc_operations-optimize) 导入后的表。 使用MergeTree-family引擎配置的表总是在后台合并数据部分以优化数据存储(或至少检查是否有意义)。 这些查询强制表引擎立即进行存储优化,而不是稍后一段时间执行:
|
||
|
||
``` bash
|
||
clickhouse-client --query "OPTIMIZE TABLE tutorial.hits_v1 FINAL"
|
||
clickhouse-client --query "OPTIMIZE TABLE tutorial.visits_v1 FINAL"
|
||
```
|
||
|
||
这些查询开始一个I/O和CPU密集型操作,所以如果表一直接收到新数据,最好不要管它,让合并在后台运行。
|
||
|
||
现在我们可以检查表导入是否成功:
|
||
|
||
``` bash
|
||
clickhouse-client --query "SELECT COUNT(*) FROM tutorial.hits_v1"
|
||
clickhouse-client --query "SELECT COUNT(*) FROM tutorial.visits_v1"
|
||
```
|
||
|
||
## 查询示例 {#example-queries}
|
||
|
||
``` sql
|
||
SELECT
|
||
StartURL AS URL,
|
||
AVG(Duration) AS AvgDuration
|
||
FROM tutorial.visits_v1
|
||
WHERE StartDate BETWEEN '2014-03-23' AND '2014-03-30'
|
||
GROUP BY URL
|
||
ORDER BY AvgDuration DESC
|
||
LIMIT 10
|
||
```
|
||
|
||
``` sql
|
||
SELECT
|
||
sum(Sign) AS visits,
|
||
sumIf(Sign, has(Goals.ID, 1105530)) AS goal_visits,
|
||
(100. * goal_visits) / visits AS goal_percent
|
||
FROM tutorial.visits_v1
|
||
WHERE (CounterID = 912887) AND (toYYYYMM(StartDate) = 201403) AND (domain(StartURL) = 'yandex.ru')
|
||
```
|
||
|
||
## 集群部署 {#cluster-deployment}
|
||
|
||
ClickHouse集群是一个同质集群。 设置步骤:
|
||
|
||
1. 在群集的所有机器上安装ClickHouse服务端
|
||
2. 在配置文件中设置群集配置
|
||
3. 在每个实例上创建本地表
|
||
4. 创建一个 [分布式表](../engines/table-engines/special/distributed.md)
|
||
|
||
[分布式表](../engines/table-engines/special/distributed.md) 实际上是一种 “视图”,映射到ClickHouse集群的本地表。 从分布式表中执行 **SELECT** 查询会使用集群所有分片的资源。 您可以为多个集群指定configs,并创建多个分布式表,为不同的集群提供视图。
|
||
|
||
具有三个分片,每个分片一个副本的集群的示例配置:
|
||
|
||
``` xml
|
||
<remote_servers>
|
||
<perftest_3shards_1replicas>
|
||
<shard>
|
||
<replica>
|
||
<host>example-perftest01j.yandex.ru</host>
|
||
<port>9000</port>
|
||
</replica>
|
||
</shard>
|
||
<shard>
|
||
<replica>
|
||
<host>example-perftest02j.yandex.ru</host>
|
||
<port>9000</port>
|
||
</replica>
|
||
</shard>
|
||
<shard>
|
||
<replica>
|
||
<host>example-perftest03j.yandex.ru</host>
|
||
<port>9000</port>
|
||
</replica>
|
||
</shard>
|
||
</perftest_3shards_1replicas>
|
||
</remote_servers>
|
||
```
|
||
|
||
为了进一步演示,让我们使用和创建 `hits_v1` 表相同的 `CREATE TABLE` 语句创建一个新的本地表,但表名不同:
|
||
|
||
``` sql
|
||
CREATE TABLE tutorial.hits_local (...) ENGINE = MergeTree() ...
|
||
```
|
||
|
||
创建提供集群本地表视图的分布式表:
|
||
|
||
``` sql
|
||
CREATE TABLE tutorial.hits_all AS tutorial.hits_local
|
||
ENGINE = Distributed(perftest_3shards_1replicas, tutorial, hits_local, rand());
|
||
```
|
||
|
||
常见的做法是在集群的所有计算机上创建类似的分布式表。 它允许在群集的任何计算机上运行分布式查询。 还有一个替代选项可以使用以下方法为给定的SELECT查询创建临时分布式表 [远程](../sql-reference/table-functions/remote.md) 表功能。
|
||
|
||
让我们运行 [INSERT SELECT](../sql-reference/statements/insert-into.md) 将该表传播到多个服务器。
|
||
|
||
``` sql
|
||
INSERT INTO tutorial.hits_all SELECT * FROM tutorial.hits_v1;
|
||
```
|
||
|
||
!!! warning "注意:"
|
||
这种方法不适合大型表的分片。 有一个单独的工具 [clickhouse-copier](../operations/utilities/clickhouse-copier.md) 这可以重新分片任意大表。
|
||
|
||
正如您所期望的那样,如果计算量大的查询使用3台服务器而不是一个,则运行速度快N倍。
|
||
|
||
在这种情况下,我们使用了具有3个分片的集群,每个分片都包含一个副本。
|
||
|
||
为了在生产环境中提供弹性,我们建议每个分片应包含分布在多个可用区或数据中心(或至少机架)之间的2-3个副本。 请注意,ClickHouse支持无限数量的副本。
|
||
|
||
包含三个副本的一个分片集群的示例配置:
|
||
|
||
``` xml
|
||
<remote_servers>
|
||
...
|
||
<perftest_1shards_3replicas>
|
||
<shard>
|
||
<replica>
|
||
<host>example-perftest01j.yandex.ru</host>
|
||
<port>9000</port>
|
||
</replica>
|
||
<replica>
|
||
<host>example-perftest02j.yandex.ru</host>
|
||
<port>9000</port>
|
||
</replica>
|
||
<replica>
|
||
<host>example-perftest03j.yandex.ru</host>
|
||
<port>9000</port>
|
||
</replica>
|
||
</shard>
|
||
</perftest_1shards_3replicas>
|
||
</remote_servers>
|
||
```
|
||
|
||
启用本机复制 [Zookeeper](http://zookeeper.apache.org/) 是必需的。 ClickHouse负责所有副本的数据一致性,并在失败后自动运行恢复过程。 建议将ZooKeeper集群部署在单独的服务器上(其中没有其他进程,包括运行的ClickHouse)。
|
||
|
||
!!! note "注"
|
||
ZooKeeper不是一个严格的要求:在某些简单的情况下,您可以通过将数据写入应用程序代码中的所有副本来复制数据。 这种方法是 **不** 建议的,在这种情况下,ClickHouse将无法保证所有副本上的数据一致性。 因此需要由您的应用来保证这一点。
|
||
|
||
ZooKeeper位置在配置文件中指定:
|
||
|
||
``` xml
|
||
<zookeeper>
|
||
<node>
|
||
<host>zoo01.yandex.ru</host>
|
||
<port>2181</port>
|
||
</node>
|
||
<node>
|
||
<host>zoo02.yandex.ru</host>
|
||
<port>2181</port>
|
||
</node>
|
||
<node>
|
||
<host>zoo03.yandex.ru</host>
|
||
<port>2181</port>
|
||
</node>
|
||
</zookeeper>
|
||
```
|
||
|
||
此外,我们需要设置宏来识别每个用于创建表的分片和副本:
|
||
|
||
``` xml
|
||
<macros>
|
||
<shard>01</shard>
|
||
<replica>01</replica>
|
||
</macros>
|
||
```
|
||
|
||
如果在创建复制表时没有副本,则会实例化新的第一个副本。 如果已有实时副本,则新副本将克隆现有副本中的数据。 您可以选择首先创建所有复制的表,然后向其中插入数据。 另一种选择是创建一些副本,并在数据插入之后或期间添加其他副本。
|
||
|
||
``` sql
|
||
CREATE TABLE tutorial.hits_replica (...)
|
||
ENGINE = ReplcatedMergeTree(
|
||
'/clickhouse_perftest/tables/{shard}/hits',
|
||
'{replica}'
|
||
)
|
||
...
|
||
```
|
||
|
||
在这里,我们使用 [ReplicatedMergeTree](../engines/table-engines/mergetree-family/replication.md) 表引擎。 在参数中,我们指定包含分片和副本标识符的ZooKeeper路径。
|
||
|
||
``` sql
|
||
INSERT INTO tutorial.hits_replica SELECT * FROM tutorial.hits_local;
|
||
```
|
||
|
||
复制在多主机模式下运行。 数据可以加载到任何副本中,然后系统会自动将其与其他实例同步。 复制是异步的,因此在给定时刻,并非所有副本都可能包含最近插入的数据。 至少应有一个副本允许数据摄取。 其他人将同步数据和修复一致性,一旦他们将再次变得活跃。 请注意,这种方法允许最近插入的数据丢失的可能性很低。
|
||
|
||
[原始文章](https://clickhouse.tech/docs/en/getting_started/tutorial/) <!--hide-->
|