ClickHouse/docs/ru/getting-started/example-datasets/brown-benchmark.md
2022-08-26 13:37:11 -04:00

416 lines
12 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
slug: /ru/getting-started/example-datasets/brown-benchmark
sidebar_position: 20
sidebar_label: Brown University Benchmark
---
# Brown University Benchmark
`MgBench` — это аналитический тест производительности для данных журнала событий, сгенерированных машиной. Бенчмарк разработан [Andrew Crotty](http://cs.brown.edu/people/acrotty/).
Скачать данные:
```
wget https://datasets.clickhouse.com/mgbench{1..3}.csv.xz
```
Распаковать данные:
```
xz -v -d mgbench{1..3}.csv.xz
```
Создание таблиц:
```
CREATE DATABASE mgbench;
CREATE TABLE mgbench.logs1 (
log_time DateTime,
machine_name LowCardinality(String),
machine_group LowCardinality(String),
cpu_idle Nullable(Float32),
cpu_nice Nullable(Float32),
cpu_system Nullable(Float32),
cpu_user Nullable(Float32),
cpu_wio Nullable(Float32),
disk_free Nullable(Float32),
disk_total Nullable(Float32),
part_max_used Nullable(Float32),
load_fifteen Nullable(Float32),
load_five Nullable(Float32),
load_one Nullable(Float32),
mem_buffers Nullable(Float32),
mem_cached Nullable(Float32),
mem_free Nullable(Float32),
mem_shared Nullable(Float32),
swap_free Nullable(Float32),
bytes_in Nullable(Float32),
bytes_out Nullable(Float32)
)
ENGINE = MergeTree()
ORDER BY (machine_group, machine_name, log_time);
CREATE TABLE mgbench.logs2 (
log_time DateTime,
client_ip IPv4,
request String,
status_code UInt16,
object_size UInt64
)
ENGINE = MergeTree()
ORDER BY log_time;
CREATE TABLE mgbench.logs3 (
log_time DateTime64,
device_id FixedString(15),
device_name LowCardinality(String),
device_type LowCardinality(String),
device_floor UInt8,
event_type LowCardinality(String),
event_unit FixedString(1),
event_value Nullable(Float32)
)
ENGINE = MergeTree()
ORDER BY (event_type, log_time);
```
Вставка данных:
```
clickhouse-client --query "INSERT INTO mgbench.logs1 FORMAT CSVWithNames" < mgbench1.csv
clickhouse-client --query "INSERT INTO mgbench.logs2 FORMAT CSVWithNames" < mgbench2.csv
clickhouse-client --query "INSERT INTO mgbench.logs3 FORMAT CSVWithNames" < mgbench3.csv
```
Запуск тестов производительности:
```
-- Q1.1: What is the CPU/network utilization for each web server since midnight?
SELECT machine_name,
MIN(cpu) AS cpu_min,
MAX(cpu) AS cpu_max,
AVG(cpu) AS cpu_avg,
MIN(net_in) AS net_in_min,
MAX(net_in) AS net_in_max,
AVG(net_in) AS net_in_avg,
MIN(net_out) AS net_out_min,
MAX(net_out) AS net_out_max,
AVG(net_out) AS net_out_avg
FROM (
SELECT machine_name,
COALESCE(cpu_user, 0.0) AS cpu,
COALESCE(bytes_in, 0.0) AS net_in,
COALESCE(bytes_out, 0.0) AS net_out
FROM logs1
WHERE machine_name IN ('anansi','aragog','urd')
AND log_time >= TIMESTAMP '2017-01-11 00:00:00'
) AS r
GROUP BY machine_name;
-- Q1.2: Which computer lab machines have been offline in the past day?
SELECT machine_name,
log_time
FROM logs1
WHERE (machine_name LIKE 'cslab%' OR
machine_name LIKE 'mslab%')
AND load_one IS NULL
AND log_time >= TIMESTAMP '2017-01-10 00:00:00'
ORDER BY machine_name,
log_time;
-- Q1.3: What are the hourly average metrics during the past 10 days for a specific workstation?
SELECT dt,
hr,
AVG(load_fifteen) AS load_fifteen_avg,
AVG(load_five) AS load_five_avg,
AVG(load_one) AS load_one_avg,
AVG(mem_free) AS mem_free_avg,
AVG(swap_free) AS swap_free_avg
FROM (
SELECT CAST(log_time AS DATE) AS dt,
EXTRACT(HOUR FROM log_time) AS hr,
load_fifteen,
load_five,
load_one,
mem_free,
swap_free
FROM logs1
WHERE machine_name = 'babbage'
AND load_fifteen IS NOT NULL
AND load_five IS NOT NULL
AND load_one IS NOT NULL
AND mem_free IS NOT NULL
AND swap_free IS NOT NULL
AND log_time >= TIMESTAMP '2017-01-01 00:00:00'
) AS r
GROUP BY dt,
hr
ORDER BY dt,
hr;
-- Q1.4: Over 1 month, how often was each server blocked on disk I/O?
SELECT machine_name,
COUNT(*) AS spikes
FROM logs1
WHERE machine_group = 'Servers'
AND cpu_wio > 0.99
AND log_time >= TIMESTAMP '2016-12-01 00:00:00'
AND log_time < TIMESTAMP '2017-01-01 00:00:00'
GROUP BY machine_name
ORDER BY spikes DESC
LIMIT 10;
-- Q1.5: Which externally reachable VMs have run low on memory?
SELECT machine_name,
dt,
MIN(mem_free) AS mem_free_min
FROM (
SELECT machine_name,
CAST(log_time AS DATE) AS dt,
mem_free
FROM logs1
WHERE machine_group = 'DMZ'
AND mem_free IS NOT NULL
) AS r
GROUP BY machine_name,
dt
HAVING MIN(mem_free) < 10000
ORDER BY machine_name,
dt;
-- Q1.6: What is the total hourly network traffic across all file servers?
SELECT dt,
hr,
SUM(net_in) AS net_in_sum,
SUM(net_out) AS net_out_sum,
SUM(net_in) + SUM(net_out) AS both_sum
FROM (
SELECT CAST(log_time AS DATE) AS dt,
EXTRACT(HOUR FROM log_time) AS hr,
COALESCE(bytes_in, 0.0) / 1000000000.0 AS net_in,
COALESCE(bytes_out, 0.0) / 1000000000.0 AS net_out
FROM logs1
WHERE machine_name IN ('allsorts','andes','bigred','blackjack','bonbon',
'cadbury','chiclets','cotton','crows','dove','fireball','hearts','huey',
'lindt','milkduds','milkyway','mnm','necco','nerds','orbit','peeps',
'poprocks','razzles','runts','smarties','smuggler','spree','stride',
'tootsie','trident','wrigley','york')
) AS r
GROUP BY dt,
hr
ORDER BY both_sum DESC
LIMIT 10;
-- Q2.1: Which requests have caused server errors within the past 2 weeks?
SELECT *
FROM logs2
WHERE status_code >= 500
AND log_time >= TIMESTAMP '2012-12-18 00:00:00'
ORDER BY log_time;
-- Q2.2: During a specific 2-week period, was the user password file leaked?
SELECT *
FROM logs2
WHERE status_code >= 200
AND status_code < 300
AND request LIKE '%/etc/passwd%'
AND log_time >= TIMESTAMP '2012-05-06 00:00:00'
AND log_time < TIMESTAMP '2012-05-20 00:00:00';
-- Q2.3: What was the average path depth for top-level requests in the past month?
SELECT top_level,
AVG(LENGTH(request) - LENGTH(REPLACE(request, '/', ''))) AS depth_avg
FROM (
SELECT SUBSTRING(request FROM 1 FOR len) AS top_level,
request
FROM (
SELECT POSITION(SUBSTRING(request FROM 2), '/') AS len,
request
FROM logs2
WHERE status_code >= 200
AND status_code < 300
AND log_time >= TIMESTAMP '2012-12-01 00:00:00'
) AS r
WHERE len > 0
) AS s
WHERE top_level IN ('/about','/courses','/degrees','/events',
'/grad','/industry','/news','/people',
'/publications','/research','/teaching','/ugrad')
GROUP BY top_level
ORDER BY top_level;
-- Q2.4: During the last 3 months, which clients have made an excessive number of requests?
SELECT client_ip,
COUNT(*) AS num_requests
FROM logs2
WHERE log_time >= TIMESTAMP '2012-10-01 00:00:00'
GROUP BY client_ip
HAVING COUNT(*) >= 100000
ORDER BY num_requests DESC;
-- Q2.5: What are the daily unique visitors?
SELECT dt,
COUNT(DISTINCT client_ip)
FROM (
SELECT CAST(log_time AS DATE) AS dt,
client_ip
FROM logs2
) AS r
GROUP BY dt
ORDER BY dt;
-- Q2.6: What are the average and maximum data transfer rates (Gbps)?
SELECT AVG(transfer) / 125000000.0 AS transfer_avg,
MAX(transfer) / 125000000.0 AS transfer_max
FROM (
SELECT log_time,
SUM(object_size) AS transfer
FROM logs2
GROUP BY log_time
) AS r;
-- Q3.1: Did the indoor temperature reach freezing over the weekend?
SELECT *
FROM logs3
WHERE event_type = 'temperature'
AND event_value <= 32.0
AND log_time >= '2019-11-29 17:00:00.000';
-- Q3.4: Over the past 6 months, how frequently were each door opened?
SELECT device_name,
device_floor,
COUNT(*) AS ct
FROM logs3
WHERE event_type = 'door_open'
AND log_time >= '2019-06-01 00:00:00.000'
GROUP BY device_name,
device_floor
ORDER BY ct DESC;
-- Q3.5: Where in the building do large temperature variations occur in winter and summer?
WITH temperature AS (
SELECT dt,
device_name,
device_type,
device_floor
FROM (
SELECT dt,
hr,
device_name,
device_type,
device_floor,
AVG(event_value) AS temperature_hourly_avg
FROM (
SELECT CAST(log_time AS DATE) AS dt,
EXTRACT(HOUR FROM log_time) AS hr,
device_name,
device_type,
device_floor,
event_value
FROM logs3
WHERE event_type = 'temperature'
) AS r
GROUP BY dt,
hr,
device_name,
device_type,
device_floor
) AS s
GROUP BY dt,
device_name,
device_type,
device_floor
HAVING MAX(temperature_hourly_avg) - MIN(temperature_hourly_avg) >= 25.0
)
SELECT DISTINCT device_name,
device_type,
device_floor,
'WINTER'
FROM temperature
WHERE dt >= DATE '2018-12-01'
AND dt < DATE '2019-03-01'
UNION
SELECT DISTINCT device_name,
device_type,
device_floor,
'SUMMER'
FROM temperature
WHERE dt >= DATE '2019-06-01'
AND dt < DATE '2019-09-01';
-- Q3.6: For each device category, what are the monthly power consumption metrics?
SELECT yr,
mo,
SUM(coffee_hourly_avg) AS coffee_monthly_sum,
AVG(coffee_hourly_avg) AS coffee_monthly_avg,
SUM(printer_hourly_avg) AS printer_monthly_sum,
AVG(printer_hourly_avg) AS printer_monthly_avg,
SUM(projector_hourly_avg) AS projector_monthly_sum,
AVG(projector_hourly_avg) AS projector_monthly_avg,
SUM(vending_hourly_avg) AS vending_monthly_sum,
AVG(vending_hourly_avg) AS vending_monthly_avg
FROM (
SELECT dt,
yr,
mo,
hr,
AVG(coffee) AS coffee_hourly_avg,
AVG(printer) AS printer_hourly_avg,
AVG(projector) AS projector_hourly_avg,
AVG(vending) AS vending_hourly_avg
FROM (
SELECT CAST(log_time AS DATE) AS dt,
EXTRACT(YEAR FROM log_time) AS yr,
EXTRACT(MONTH FROM log_time) AS mo,
EXTRACT(HOUR FROM log_time) AS hr,
CASE WHEN device_name LIKE 'coffee%' THEN event_value END AS coffee,
CASE WHEN device_name LIKE 'printer%' THEN event_value END AS printer,
CASE WHEN device_name LIKE 'projector%' THEN event_value END AS projector,
CASE WHEN device_name LIKE 'vending%' THEN event_value END AS vending
FROM logs3
WHERE device_type = 'meter'
) AS r
GROUP BY dt,
yr,
mo,
hr
) AS s
GROUP BY yr,
mo
ORDER BY yr,
mo;
```
Данные также доступны для работы с интерактивными запросами через [Playground](https://play.clickhouse.com/play?user=play), [пример](https://play.clickhouse.com/play?user=play#U0VMRUNUIG1hY2hpbmVfbmFtZSwKICAgICAgIE1JTihjcHUpIEFTIGNwdV9taW4sCiAgICAgICBNQVgoY3B1KSBBUyBjcHVfbWF4LAogICAgICAgQVZHKGNwdSkgQVMgY3B1X2F2ZywKICAgICAgIE1JTihuZXRfaW4pIEFTIG5ldF9pbl9taW4sCiAgICAgICBNQVgobmV0X2luKSBBUyBuZXRfaW5fbWF4LAogICAgICAgQVZHKG5ldF9pbikgQVMgbmV0X2luX2F2ZywKICAgICAgIE1JTihuZXRfb3V0KSBBUyBuZXRfb3V0X21pbiwKICAgICAgIE1BWChuZXRfb3V0KSBBUyBuZXRfb3V0X21heCwKICAgICAgIEFWRyhuZXRfb3V0KSBBUyBuZXRfb3V0X2F2ZwpGUk9NICgKICBTRUxFQ1QgbWFjaGluZV9uYW1lLAogICAgICAgICBDT0FMRVNDRShjcHVfdXNlciwgMC4wKSBBUyBjcHUsCiAgICAgICAgIENPQUxFU0NFKGJ5dGVzX2luLCAwLjApIEFTIG5ldF9pbiwKICAgICAgICAgQ09BTEVTQ0UoYnl0ZXNfb3V0LCAwLjApIEFTIG5ldF9vdXQKICBGUk9NIG1nYmVuY2gubG9nczEKICBXSEVSRSBtYWNoaW5lX25hbWUgSU4gKCdhbmFuc2knLCdhcmFnb2cnLCd1cmQnKQogICAgQU5EIGxvZ190aW1lID49IFRJTUVTVEFNUCAnMjAxNy0wMS0xMSAwMDowMDowMCcKKSBBUyByCkdST1VQIEJZIG1hY2hpbmVfbmFtZQ==).