ClickHouse/docs/ru/getting-started/example-datasets/uk-price-paid.md
2022-08-26 13:37:11 -04:00

645 lines
62 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
slug: /ru/getting-started/example-datasets/uk-price-paid
sidebar_position: 20
sidebar_label: Набор данных о стоимости недвижимости в Великобритании
---
# Набор данных о стоимости недвижимости в Великобритании {#uk-property-price-paid}
Набор содержит данные о стоимости недвижимости в Англии и Уэльсе. Данные доступны с 1995 года.
Размер набора данных в несжатом виде составляет около 4 GiB, а в ClickHouse он займет около 278 MiB.
Источник: https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
Описание полей таблицы: https://www.gov.uk/guidance/about-the-price-paid-data
Набор содержит данные HM Land Registry data © Crown copyright and database right 2021. Эти данные лицензированы в соответствии с Open Government Licence v3.0.
## Загрузите набор данных {#download-dataset}
Выполните команду:
```bash
wget http://prod.publicdata.landregistry.gov.uk.s3-website-eu-west-1.amazonaws.com/pp-complete.csv
```
Загрузка займет около 2 минут при хорошем подключении к интернету.
## Создайте таблицу {#create-table}
```sql
CREATE TABLE uk_price_paid
(
price UInt32,
date Date,
postcode1 LowCardinality(String),
postcode2 LowCardinality(String),
type Enum8('terraced' = 1, 'semi-detached' = 2, 'detached' = 3, 'flat' = 4, 'other' = 0),
is_new UInt8,
duration Enum8('freehold' = 1, 'leasehold' = 2, 'unknown' = 0),
addr1 String,
addr2 String,
street LowCardinality(String),
locality LowCardinality(String),
town LowCardinality(String),
district LowCardinality(String),
county LowCardinality(String),
category UInt8
) ENGINE = MergeTree ORDER BY (postcode1, postcode2, addr1, addr2);
```
## Обработайте и импортируйте данные {#preprocess-import-data}
В этом примере используется `clickhouse-local` для предварительной обработки данных и `clickhouse-client` для импорта данных.
Указывается структура исходных данных CSV-файла и запрос для предварительной обработки данных с помощью `clickhouse-local`.
Предварительная обработка включает:
- разделение почтового индекса на два разных столбца `postcode1` и `postcode2`, что лучше подходит для хранения данных и выполнения запросов к ним;
- преобразование поля `time` в дату, поскольку оно содержит только время 00:00;
- поле [UUid](../../sql-reference/data-types/uuid.md) игнорируется, потому что оно не будет использовано для анализа;
- преобразование полей `type` и `duration` в более читаемые поля типа `Enum` с помощью функции [transform](../../sql-reference/functions/other-functions.md#transform);
- преобразование полей `is_new` и `category` из односимвольной строки (`Y`/`N` и `A`/`B`) в поле [UInt8](../../sql-reference/data-types/int-uint.md#uint8-uint16-uint32-uint64-uint256-int8-int16-int32-int64-int128-int256) со значениями 0 и 1 соответственно.
Обработанные данные передаются в `clickhouse-client` и импортируются в таблицу ClickHouse потоковым способом.
```bash
clickhouse-local --input-format CSV --structure '
uuid String,
price UInt32,
time DateTime,
postcode String,
a String,
b String,
c String,
addr1 String,
addr2 String,
street String,
locality String,
town String,
district String,
county String,
d String,
e String
' --query "
WITH splitByChar(' ', postcode) AS p
SELECT
price,
toDate(time) AS date,
p[1] AS postcode1,
p[2] AS postcode2,
transform(a, ['T', 'S', 'D', 'F', 'O'], ['terraced', 'semi-detached', 'detached', 'flat', 'other']) AS type,
b = 'Y' AS is_new,
transform(c, ['F', 'L', 'U'], ['freehold', 'leasehold', 'unknown']) AS duration,
addr1,
addr2,
street,
locality,
town,
district,
county,
d = 'B' AS category
FROM table" --date_time_input_format best_effort < pp-complete.csv | clickhouse-client --query "INSERT INTO uk_price_paid FORMAT TSV"
```
Выполнение запроса займет около 40 секунд.
## Проверьте импортированные данные {#validate-data}
Запрос:
```sql
SELECT count() FROM uk_price_paid;
```
Результат:
```text
┌──count()─┐
│ 26321785 │
└──────────┘
```
Размер набора данных в ClickHouse составляет всего 278 MiB, проверьте это.
Запрос:
```sql
SELECT formatReadableSize(total_bytes) FROM system.tables WHERE name = 'uk_price_paid';
```
Результат:
```text
┌─formatReadableSize(total_bytes)─┐
│ 278.80 MiB │
└─────────────────────────────────┘
```
## Примеры запросов {#run-queries}
### Запрос 1. Средняя цена за год {#average-price}
Запрос:
```sql
SELECT toYear(date) AS year, round(avg(price)) AS price, bar(price, 0, 1000000, 80) FROM uk_price_paid GROUP BY year ORDER BY year;
```
Результат:
```text
┌─year─┬──price─┬─bar(round(avg(price)), 0, 1000000, 80)─┐
│ 1995 │ 67932 │ █████▍ │
│ 1996 │ 71505 │ █████▋ │
│ 1997 │ 78532 │ ██████▎ │
│ 1998 │ 85436 │ ██████▋ │
│ 1999 │ 96037 │ ███████▋ │
│ 2000 │ 107479 │ ████████▌ │
│ 2001 │ 118885 │ █████████▌ │
│ 2002 │ 137941 │ ███████████ │
│ 2003 │ 155889 │ ████████████▍ │
│ 2004 │ 178885 │ ██████████████▎ │
│ 2005 │ 189351 │ ███████████████▏ │
│ 2006 │ 203528 │ ████████████████▎ │
│ 2007 │ 219378 │ █████████████████▌ │
│ 2008 │ 217056 │ █████████████████▎ │
│ 2009 │ 213419 │ █████████████████ │
│ 2010 │ 236109 │ ██████████████████▊ │
│ 2011 │ 232805 │ ██████████████████▌ │
│ 2012 │ 238367 │ ███████████████████ │
│ 2013 │ 256931 │ ████████████████████▌ │
│ 2014 │ 279915 │ ██████████████████████▍ │
│ 2015 │ 297266 │ ███████████████████████▋ │
│ 2016 │ 313201 │ █████████████████████████ │
│ 2017 │ 346097 │ ███████████████████████████▋ │
│ 2018 │ 350116 │ ████████████████████████████ │
│ 2019 │ 351013 │ ████████████████████████████ │
│ 2020 │ 369420 │ █████████████████████████████▌ │
│ 2021 │ 386903 │ ██████████████████████████████▊ │
└──────┴────────┴────────────────────────────────────────┘
```
### Запрос 2. Средняя цена за год в Лондоне {#average-price-london}
Запрос:
```sql
SELECT toYear(date) AS year, round(avg(price)) AS price, bar(price, 0, 2000000, 100) FROM uk_price_paid WHERE town = 'LONDON' GROUP BY year ORDER BY year;
```
Результат:
```text
┌─year─┬───price─┬─bar(round(avg(price)), 0, 2000000, 100)───────────────┐
│ 1995 │ 109116 │ █████▍ │
│ 1996 │ 118667 │ █████▊ │
│ 1997 │ 136518 │ ██████▋ │
│ 1998 │ 152983 │ ███████▋ │
│ 1999 │ 180637 │ █████████ │
│ 2000 │ 215838 │ ██████████▋ │
│ 2001 │ 232994 │ ███████████▋ │
│ 2002 │ 263670 │ █████████████▏ │
│ 2003 │ 278394 │ █████████████▊ │
│ 2004 │ 304666 │ ███████████████▏ │
│ 2005 │ 322875 │ ████████████████▏ │
│ 2006 │ 356191 │ █████████████████▋ │
│ 2007 │ 404054 │ ████████████████████▏ │
│ 2008 │ 420741 │ █████████████████████ │
│ 2009 │ 427753 │ █████████████████████▍ │
│ 2010 │ 480306 │ ████████████████████████ │
│ 2011 │ 496274 │ ████████████████████████▋ │
│ 2012 │ 519442 │ █████████████████████████▊ │
│ 2013 │ 616212 │ ██████████████████████████████▋ │
│ 2014 │ 724154 │ ████████████████████████████████████▏ │
│ 2015 │ 792129 │ ███████████████████████████████████████▌ │
│ 2016 │ 843655 │ ██████████████████████████████████████████▏ │
│ 2017 │ 982642 │ █████████████████████████████████████████████████▏ │
│ 2018 │ 1016835 │ ██████████████████████████████████████████████████▋ │
│ 2019 │ 1042849 │ ████████████████████████████████████████████████████▏ │
│ 2020 │ 1011889 │ ██████████████████████████████████████████████████▌ │
│ 2021 │ 960343 │ ████████████████████████████████████████████████ │
└──────┴─────────┴───────────────────────────────────────────────────────┘
```
Что-то случилось в 2013 году. Я понятия не имею. Может быть, вы имеете представление о том, что произошло в 2020 году?
### Запрос 3. Самые дорогие районы {#most-expensive-neighborhoods}
Запрос:
```sql
SELECT
town,
district,
count() AS c,
round(avg(price)) AS price,
bar(price, 0, 5000000, 100)
FROM uk_price_paid
WHERE date >= '2020-01-01'
GROUP BY
town,
district
HAVING c >= 100
ORDER BY price DESC
LIMIT 100;
```
Результат:
```text
┌─town─────────────────┬─district───────────────┬────c─┬───price─┬─bar(round(avg(price)), 0, 5000000, 100)────────────────────────────┐
│ LONDON │ CITY OF WESTMINSTER │ 3606 │ 3280239 │ █████████████████████████████████████████████████████████████████▌ │
│ LONDON │ CITY OF LONDON │ 274 │ 3160502 │ ███████████████████████████████████████████████████████████████▏ │
│ LONDON │ KENSINGTON AND CHELSEA │ 2550 │ 2308478 │ ██████████████████████████████████████████████▏ │
│ LEATHERHEAD │ ELMBRIDGE │ 114 │ 1897407 │ █████████████████████████████████████▊ │
│ LONDON │ CAMDEN │ 3033 │ 1805404 │ ████████████████████████████████████ │
│ VIRGINIA WATER │ RUNNYMEDE │ 156 │ 1753247 │ ███████████████████████████████████ │
│ WINDLESHAM │ SURREY HEATH │ 108 │ 1677613 │ █████████████████████████████████▌ │
│ THORNTON HEATH │ CROYDON │ 546 │ 1671721 │ █████████████████████████████████▍ │
│ BARNET │ ENFIELD │ 124 │ 1505840 │ ██████████████████████████████ │
│ COBHAM │ ELMBRIDGE │ 387 │ 1237250 │ ████████████████████████▋ │
│ LONDON │ ISLINGTON │ 2668 │ 1236980 │ ████████████████████████▋ │
│ OXFORD │ SOUTH OXFORDSHIRE │ 321 │ 1220907 │ ████████████████████████▍ │
│ LONDON │ RICHMOND UPON THAMES │ 704 │ 1215551 │ ████████████████████████▎ │
│ LONDON │ HOUNSLOW │ 671 │ 1207493 │ ████████████████████████▏ │
│ ASCOT │ WINDSOR AND MAIDENHEAD │ 407 │ 1183299 │ ███████████████████████▋ │
│ BEACONSFIELD │ BUCKINGHAMSHIRE │ 330 │ 1175615 │ ███████████████████████▌ │
│ RICHMOND │ RICHMOND UPON THAMES │ 874 │ 1110444 │ ██████████████████████▏ │
│ LONDON │ HAMMERSMITH AND FULHAM │ 3086 │ 1053983 │ █████████████████████ │
│ SURBITON │ ELMBRIDGE │ 100 │ 1011800 │ ████████████████████▏ │
│ RADLETT │ HERTSMERE │ 283 │ 1011712 │ ████████████████████▏ │
│ SALCOMBE │ SOUTH HAMS │ 127 │ 1011624 │ ████████████████████▏ │
│ WEYBRIDGE │ ELMBRIDGE │ 655 │ 1007265 │ ████████████████████▏ │
│ ESHER │ ELMBRIDGE │ 485 │ 986581 │ ███████████████████▋ │
│ LEATHERHEAD │ GUILDFORD │ 202 │ 977320 │ ███████████████████▌ │
│ BURFORD │ WEST OXFORDSHIRE │ 111 │ 966893 │ ███████████████████▎ │
│ BROCKENHURST │ NEW FOREST │ 129 │ 956675 │ ███████████████████▏ │
│ HINDHEAD │ WAVERLEY │ 137 │ 953753 │ ███████████████████ │
│ GERRARDS CROSS │ BUCKINGHAMSHIRE │ 419 │ 951121 │ ███████████████████ │
│ EAST MOLESEY │ ELMBRIDGE │ 192 │ 936769 │ ██████████████████▋ │
│ CHALFONT ST GILES │ BUCKINGHAMSHIRE │ 146 │ 925515 │ ██████████████████▌ │
│ LONDON │ TOWER HAMLETS │ 4388 │ 918304 │ ██████████████████▎ │
│ OLNEY │ MILTON KEYNES │ 235 │ 910646 │ ██████████████████▏ │
│ HENLEY-ON-THAMES │ SOUTH OXFORDSHIRE │ 540 │ 902418 │ ██████████████████ │
│ LONDON │ SOUTHWARK │ 3885 │ 892997 │ █████████████████▋ │
│ KINGSTON UPON THAMES │ KINGSTON UPON THAMES │ 960 │ 885969 │ █████████████████▋ │
│ LONDON │ EALING │ 2658 │ 871755 │ █████████████████▍ │
│ CRANBROOK │ TUNBRIDGE WELLS │ 431 │ 862348 │ █████████████████▏ │
│ LONDON │ MERTON │ 2099 │ 859118 │ █████████████████▏ │
│ BELVEDERE │ BEXLEY │ 346 │ 842423 │ ████████████████▋ │
│ GUILDFORD │ WAVERLEY │ 143 │ 841277 │ ████████████████▋ │
│ HARPENDEN │ ST ALBANS │ 657 │ 841216 │ ████████████████▋ │
│ LONDON │ HACKNEY │ 3307 │ 837090 │ ████████████████▋ │
│ LONDON │ WANDSWORTH │ 6566 │ 832663 │ ████████████████▋ │
│ MAIDENHEAD │ BUCKINGHAMSHIRE │ 123 │ 824299 │ ████████████████▍ │
│ KINGS LANGLEY │ DACORUM │ 145 │ 821331 │ ████████████████▍ │
│ BERKHAMSTED │ DACORUM │ 543 │ 818415 │ ████████████████▎ │
│ GREAT MISSENDEN │ BUCKINGHAMSHIRE │ 226 │ 802807 │ ████████████████ │
│ BILLINGSHURST │ CHICHESTER │ 144 │ 797829 │ ███████████████▊ │
│ WOKING │ GUILDFORD │ 176 │ 793494 │ ███████████████▋ │
│ STOCKBRIDGE │ TEST VALLEY │ 178 │ 793269 │ ███████████████▋ │
│ EPSOM │ REIGATE AND BANSTEAD │ 172 │ 791862 │ ███████████████▋ │
│ TONBRIDGE │ TUNBRIDGE WELLS │ 360 │ 787876 │ ███████████████▋ │
│ TEDDINGTON │ RICHMOND UPON THAMES │ 595 │ 786492 │ ███████████████▋ │
│ TWICKENHAM │ RICHMOND UPON THAMES │ 1155 │ 786193 │ ███████████████▋ │
│ LYNDHURST │ NEW FOREST │ 102 │ 785593 │ ███████████████▋ │
│ LONDON │ LAMBETH │ 5228 │ 774574 │ ███████████████▍ │
│ LONDON │ BARNET │ 3955 │ 773259 │ ███████████████▍ │
│ OXFORD │ VALE OF WHITE HORSE │ 353 │ 772088 │ ███████████████▍ │
│ TONBRIDGE │ MAIDSTONE │ 305 │ 770740 │ ███████████████▍ │
│ LUTTERWORTH │ HARBOROUGH │ 538 │ 768634 │ ███████████████▎ │
│ WOODSTOCK │ WEST OXFORDSHIRE │ 140 │ 766037 │ ███████████████▎ │
│ MIDHURST │ CHICHESTER │ 257 │ 764815 │ ███████████████▎ │
│ MARLOW │ BUCKINGHAMSHIRE │ 327 │ 761876 │ ███████████████▏ │
│ LONDON │ NEWHAM │ 3237 │ 761784 │ ███████████████▏ │
│ ALDERLEY EDGE │ CHESHIRE EAST │ 178 │ 757318 │ ███████████████▏ │
│ LUTON │ CENTRAL BEDFORDSHIRE │ 212 │ 754283 │ ███████████████ │
│ PETWORTH │ CHICHESTER │ 154 │ 754220 │ ███████████████ │
│ ALRESFORD │ WINCHESTER │ 219 │ 752718 │ ███████████████ │
│ POTTERS BAR │ WELWYN HATFIELD │ 174 │ 748465 │ ██████████████▊ │
│ HASLEMERE │ CHICHESTER │ 128 │ 746907 │ ██████████████▊ │
│ TADWORTH │ REIGATE AND BANSTEAD │ 502 │ 743252 │ ██████████████▋ │
│ THAMES DITTON │ ELMBRIDGE │ 244 │ 741913 │ ██████████████▋ │
│ REIGATE │ REIGATE AND BANSTEAD │ 581 │ 738198 │ ██████████████▋ │
│ BOURNE END │ BUCKINGHAMSHIRE │ 138 │ 735190 │ ██████████████▋ │
│ SEVENOAKS │ SEVENOAKS │ 1156 │ 730018 │ ██████████████▌ │
│ OXTED │ TANDRIDGE │ 336 │ 729123 │ ██████████████▌ │
│ INGATESTONE │ BRENTWOOD │ 166 │ 728103 │ ██████████████▌ │
│ LONDON │ BRENT │ 2079 │ 720605 │ ██████████████▍ │
│ LONDON │ HARINGEY │ 3216 │ 717780 │ ██████████████▎ │
│ PURLEY │ CROYDON │ 575 │ 716108 │ ██████████████▎ │
│ WELWYN │ WELWYN HATFIELD │ 222 │ 710603 │ ██████████████▏ │
│ RICKMANSWORTH │ THREE RIVERS │ 798 │ 704571 │ ██████████████ │
│ BANSTEAD │ REIGATE AND BANSTEAD │ 401 │ 701293 │ ██████████████ │
│ CHIGWELL │ EPPING FOREST │ 261 │ 701203 │ ██████████████ │
│ PINNER │ HARROW │ 528 │ 698885 │ █████████████▊ │
│ HASLEMERE │ WAVERLEY │ 280 │ 696659 │ █████████████▊ │
│ SLOUGH │ BUCKINGHAMSHIRE │ 396 │ 694917 │ █████████████▊ │
│ WALTON-ON-THAMES │ ELMBRIDGE │ 946 │ 692395 │ █████████████▋ │
│ READING │ SOUTH OXFORDSHIRE │ 318 │ 691988 │ █████████████▋ │
│ NORTHWOOD │ HILLINGDON │ 271 │ 690643 │ █████████████▋ │
│ FELTHAM │ HOUNSLOW │ 763 │ 688595 │ █████████████▋ │
│ ASHTEAD │ MOLE VALLEY │ 303 │ 687923 │ █████████████▋ │
│ BARNET │ BARNET │ 975 │ 686980 │ █████████████▋ │
│ WOKING │ SURREY HEATH │ 283 │ 686669 │ █████████████▋ │
│ MALMESBURY │ WILTSHIRE │ 323 │ 683324 │ █████████████▋ │
│ AMERSHAM │ BUCKINGHAMSHIRE │ 496 │ 680962 │ █████████████▌ │
│ CHISLEHURST │ BROMLEY │ 430 │ 680209 │ █████████████▌ │
│ HYTHE │ FOLKESTONE AND HYTHE │ 490 │ 676908 │ █████████████▌ │
│ MAYFIELD │ WEALDEN │ 101 │ 676210 │ █████████████▌ │
│ ASCOT │ BRACKNELL FOREST │ 168 │ 676004 │ █████████████▌ │
└──────────────────────┴────────────────────────┴──────┴─────────┴────────────────────────────────────────────────────────────────────┘
```
## Ускорьте запросы с помощью проекций {#speedup-with-projections}
[Проекции](../../sql-reference/statements/alter/projection.md) позволяют повысить скорость запросов за счет хранения предварительно агрегированных данных.
### Создайте проекцию {#build-projection}
Создайте агрегирующую проекцию по параметрам `toYear(date)`, `district`, `town`:
```sql
ALTER TABLE uk_price_paid
ADD PROJECTION projection_by_year_district_town
(
SELECT
toYear(date),
district,
town,
avg(price),
sum(price),
count()
GROUP BY
toYear(date),
district,
town
);
```
Заполните проекцию для текущих данных (иначе проекция будет создана только для добавляемых данных):
```sql
ALTER TABLE uk_price_paid
MATERIALIZE PROJECTION projection_by_year_district_town
SETTINGS mutations_sync = 1;
```
## Проверьте производительность {#test-performance}
Давайте выполним те же 3 запроса.
### Запрос 1. Средняя цена за год {#average-price-projections}
Запрос:
```sql
SELECT
toYear(date) AS year,
round(avg(price)) AS price,
bar(price, 0, 1000000, 80)
FROM uk_price_paid
GROUP BY year
ORDER BY year ASC;
```
Результат:
```text
┌─year─┬──price─┬─bar(round(avg(price)), 0, 1000000, 80)─┐
│ 1995 │ 67932 │ █████▍ │
│ 1996 │ 71505 │ █████▋ │
│ 1997 │ 78532 │ ██████▎ │
│ 1998 │ 85436 │ ██████▋ │
│ 1999 │ 96037 │ ███████▋ │
│ 2000 │ 107479 │ ████████▌ │
│ 2001 │ 118885 │ █████████▌ │
│ 2002 │ 137941 │ ███████████ │
│ 2003 │ 155889 │ ████████████▍ │
│ 2004 │ 178885 │ ██████████████▎ │
│ 2005 │ 189351 │ ███████████████▏ │
│ 2006 │ 203528 │ ████████████████▎ │
│ 2007 │ 219378 │ █████████████████▌ │
│ 2008 │ 217056 │ █████████████████▎ │
│ 2009 │ 213419 │ █████████████████ │
│ 2010 │ 236109 │ ██████████████████▊ │
│ 2011 │ 232805 │ ██████████████████▌ │
│ 2012 │ 238367 │ ███████████████████ │
│ 2013 │ 256931 │ ████████████████████▌ │
│ 2014 │ 279915 │ ██████████████████████▍ │
│ 2015 │ 297266 │ ███████████████████████▋ │
│ 2016 │ 313201 │ █████████████████████████ │
│ 2017 │ 346097 │ ███████████████████████████▋ │
│ 2018 │ 350116 │ ████████████████████████████ │
│ 2019 │ 351013 │ ████████████████████████████ │
│ 2020 │ 369420 │ █████████████████████████████▌ │
│ 2021 │ 386903 │ ██████████████████████████████▊ │
└──────┴────────┴────────────────────────────────────────┘
```
### Запрос 2. Средняя цена за год в Лондоне {#average-price-london-projections}
Запрос:
```sql
SELECT
toYear(date) AS year,
round(avg(price)) AS price,
bar(price, 0, 2000000, 100)
FROM uk_price_paid
WHERE town = 'LONDON'
GROUP BY year
ORDER BY year ASC;
```
Результат:
```text
┌─year─┬───price─┬─bar(round(avg(price)), 0, 2000000, 100)───────────────┐
│ 1995 │ 109116 │ █████▍ │
│ 1996 │ 118667 │ █████▊ │
│ 1997 │ 136518 │ ██████▋ │
│ 1998 │ 152983 │ ███████▋ │
│ 1999 │ 180637 │ █████████ │
│ 2000 │ 215838 │ ██████████▋ │
│ 2001 │ 232994 │ ███████████▋ │
│ 2002 │ 263670 │ █████████████▏ │
│ 2003 │ 278394 │ █████████████▊ │
│ 2004 │ 304666 │ ███████████████▏ │
│ 2005 │ 322875 │ ████████████████▏ │
│ 2006 │ 356191 │ █████████████████▋ │
│ 2007 │ 404054 │ ████████████████████▏ │
│ 2008 │ 420741 │ █████████████████████ │
│ 2009 │ 427753 │ █████████████████████▍ │
│ 2010 │ 480306 │ ████████████████████████ │
│ 2011 │ 496274 │ ████████████████████████▋ │
│ 2012 │ 519442 │ █████████████████████████▊ │
│ 2013 │ 616212 │ ██████████████████████████████▋ │
│ 2014 │ 724154 │ ████████████████████████████████████▏ │
│ 2015 │ 792129 │ ███████████████████████████████████████▌ │
│ 2016 │ 843655 │ ██████████████████████████████████████████▏ │
│ 2017 │ 982642 │ █████████████████████████████████████████████████▏ │
│ 2018 │ 1016835 │ ██████████████████████████████████████████████████▋ │
│ 2019 │ 1042849 │ ████████████████████████████████████████████████████▏ │
│ 2020 │ 1011889 │ ██████████████████████████████████████████████████▌ │
│ 2021 │ 960343 │ ████████████████████████████████████████████████ │
└──────┴─────────┴───────────────────────────────────────────────────────┘
```
### Запрос 3. Самые дорогие районы {#most-expensive-neighborhoods-projections}
Условие (date >= '2020-01-01') необходимо изменить, чтобы оно соответствовало проекции (toYear(date) >= 2020).
Запрос:
```sql
SELECT
town,
district,
count() AS c,
round(avg(price)) AS price,
bar(price, 0, 5000000, 100)
FROM uk_price_paid
WHERE toYear(date) >= 2020
GROUP BY
town,
district
HAVING c >= 100
ORDER BY price DESC
LIMIT 100;
```
Результат:
```text
┌─town─────────────────┬─district───────────────┬────c─┬───price─┬─bar(round(avg(price)), 0, 5000000, 100)────────────────────────────┐
│ LONDON │ CITY OF WESTMINSTER │ 3606 │ 3280239 │ █████████████████████████████████████████████████████████████████▌ │
│ LONDON │ CITY OF LONDON │ 274 │ 3160502 │ ███████████████████████████████████████████████████████████████▏ │
│ LONDON │ KENSINGTON AND CHELSEA │ 2550 │ 2308478 │ ██████████████████████████████████████████████▏ │
│ LEATHERHEAD │ ELMBRIDGE │ 114 │ 1897407 │ █████████████████████████████████████▊ │
│ LONDON │ CAMDEN │ 3033 │ 1805404 │ ████████████████████████████████████ │
│ VIRGINIA WATER │ RUNNYMEDE │ 156 │ 1753247 │ ███████████████████████████████████ │
│ WINDLESHAM │ SURREY HEATH │ 108 │ 1677613 │ █████████████████████████████████▌ │
│ THORNTON HEATH │ CROYDON │ 546 │ 1671721 │ █████████████████████████████████▍ │
│ BARNET │ ENFIELD │ 124 │ 1505840 │ ██████████████████████████████ │
│ COBHAM │ ELMBRIDGE │ 387 │ 1237250 │ ████████████████████████▋ │
│ LONDON │ ISLINGTON │ 2668 │ 1236980 │ ████████████████████████▋ │
│ OXFORD │ SOUTH OXFORDSHIRE │ 321 │ 1220907 │ ████████████████████████▍ │
│ LONDON │ RICHMOND UPON THAMES │ 704 │ 1215551 │ ████████████████████████▎ │
│ LONDON │ HOUNSLOW │ 671 │ 1207493 │ ████████████████████████▏ │
│ ASCOT │ WINDSOR AND MAIDENHEAD │ 407 │ 1183299 │ ███████████████████████▋ │
│ BEACONSFIELD │ BUCKINGHAMSHIRE │ 330 │ 1175615 │ ███████████████████████▌ │
│ RICHMOND │ RICHMOND UPON THAMES │ 874 │ 1110444 │ ██████████████████████▏ │
│ LONDON │ HAMMERSMITH AND FULHAM │ 3086 │ 1053983 │ █████████████████████ │
│ SURBITON │ ELMBRIDGE │ 100 │ 1011800 │ ████████████████████▏ │
│ RADLETT │ HERTSMERE │ 283 │ 1011712 │ ████████████████████▏ │
│ SALCOMBE │ SOUTH HAMS │ 127 │ 1011624 │ ████████████████████▏ │
│ WEYBRIDGE │ ELMBRIDGE │ 655 │ 1007265 │ ████████████████████▏ │
│ ESHER │ ELMBRIDGE │ 485 │ 986581 │ ███████████████████▋ │
│ LEATHERHEAD │ GUILDFORD │ 202 │ 977320 │ ███████████████████▌ │
│ BURFORD │ WEST OXFORDSHIRE │ 111 │ 966893 │ ███████████████████▎ │
│ BROCKENHURST │ NEW FOREST │ 129 │ 956675 │ ███████████████████▏ │
│ HINDHEAD │ WAVERLEY │ 137 │ 953753 │ ███████████████████ │
│ GERRARDS CROSS │ BUCKINGHAMSHIRE │ 419 │ 951121 │ ███████████████████ │
│ EAST MOLESEY │ ELMBRIDGE │ 192 │ 936769 │ ██████████████████▋ │
│ CHALFONT ST GILES │ BUCKINGHAMSHIRE │ 146 │ 925515 │ ██████████████████▌ │
│ LONDON │ TOWER HAMLETS │ 4388 │ 918304 │ ██████████████████▎ │
│ OLNEY │ MILTON KEYNES │ 235 │ 910646 │ ██████████████████▏ │
│ HENLEY-ON-THAMES │ SOUTH OXFORDSHIRE │ 540 │ 902418 │ ██████████████████ │
│ LONDON │ SOUTHWARK │ 3885 │ 892997 │ █████████████████▋ │
│ KINGSTON UPON THAMES │ KINGSTON UPON THAMES │ 960 │ 885969 │ █████████████████▋ │
│ LONDON │ EALING │ 2658 │ 871755 │ █████████████████▍ │
│ CRANBROOK │ TUNBRIDGE WELLS │ 431 │ 862348 │ █████████████████▏ │
│ LONDON │ MERTON │ 2099 │ 859118 │ █████████████████▏ │
│ BELVEDERE │ BEXLEY │ 346 │ 842423 │ ████████████████▋ │
│ GUILDFORD │ WAVERLEY │ 143 │ 841277 │ ████████████████▋ │
│ HARPENDEN │ ST ALBANS │ 657 │ 841216 │ ████████████████▋ │
│ LONDON │ HACKNEY │ 3307 │ 837090 │ ████████████████▋ │
│ LONDON │ WANDSWORTH │ 6566 │ 832663 │ ████████████████▋ │
│ MAIDENHEAD │ BUCKINGHAMSHIRE │ 123 │ 824299 │ ████████████████▍ │
│ KINGS LANGLEY │ DACORUM │ 145 │ 821331 │ ████████████████▍ │
│ BERKHAMSTED │ DACORUM │ 543 │ 818415 │ ████████████████▎ │
│ GREAT MISSENDEN │ BUCKINGHAMSHIRE │ 226 │ 802807 │ ████████████████ │
│ BILLINGSHURST │ CHICHESTER │ 144 │ 797829 │ ███████████████▊ │
│ WOKING │ GUILDFORD │ 176 │ 793494 │ ███████████████▋ │
│ STOCKBRIDGE │ TEST VALLEY │ 178 │ 793269 │ ███████████████▋ │
│ EPSOM │ REIGATE AND BANSTEAD │ 172 │ 791862 │ ███████████████▋ │
│ TONBRIDGE │ TUNBRIDGE WELLS │ 360 │ 787876 │ ███████████████▋ │
│ TEDDINGTON │ RICHMOND UPON THAMES │ 595 │ 786492 │ ███████████████▋ │
│ TWICKENHAM │ RICHMOND UPON THAMES │ 1155 │ 786193 │ ███████████████▋ │
│ LYNDHURST │ NEW FOREST │ 102 │ 785593 │ ███████████████▋ │
│ LONDON │ LAMBETH │ 5228 │ 774574 │ ███████████████▍ │
│ LONDON │ BARNET │ 3955 │ 773259 │ ███████████████▍ │
│ OXFORD │ VALE OF WHITE HORSE │ 353 │ 772088 │ ███████████████▍ │
│ TONBRIDGE │ MAIDSTONE │ 305 │ 770740 │ ███████████████▍ │
│ LUTTERWORTH │ HARBOROUGH │ 538 │ 768634 │ ███████████████▎ │
│ WOODSTOCK │ WEST OXFORDSHIRE │ 140 │ 766037 │ ███████████████▎ │
│ MIDHURST │ CHICHESTER │ 257 │ 764815 │ ███████████████▎ │
│ MARLOW │ BUCKINGHAMSHIRE │ 327 │ 761876 │ ███████████████▏ │
│ LONDON │ NEWHAM │ 3237 │ 761784 │ ███████████████▏ │
│ ALDERLEY EDGE │ CHESHIRE EAST │ 178 │ 757318 │ ███████████████▏ │
│ LUTON │ CENTRAL BEDFORDSHIRE │ 212 │ 754283 │ ███████████████ │
│ PETWORTH │ CHICHESTER │ 154 │ 754220 │ ███████████████ │
│ ALRESFORD │ WINCHESTER │ 219 │ 752718 │ ███████████████ │
│ POTTERS BAR │ WELWYN HATFIELD │ 174 │ 748465 │ ██████████████▊ │
│ HASLEMERE │ CHICHESTER │ 128 │ 746907 │ ██████████████▊ │
│ TADWORTH │ REIGATE AND BANSTEAD │ 502 │ 743252 │ ██████████████▋ │
│ THAMES DITTON │ ELMBRIDGE │ 244 │ 741913 │ ██████████████▋ │
│ REIGATE │ REIGATE AND BANSTEAD │ 581 │ 738198 │ ██████████████▋ │
│ BOURNE END │ BUCKINGHAMSHIRE │ 138 │ 735190 │ ██████████████▋ │
│ SEVENOAKS │ SEVENOAKS │ 1156 │ 730018 │ ██████████████▌ │
│ OXTED │ TANDRIDGE │ 336 │ 729123 │ ██████████████▌ │
│ INGATESTONE │ BRENTWOOD │ 166 │ 728103 │ ██████████████▌ │
│ LONDON │ BRENT │ 2079 │ 720605 │ ██████████████▍ │
│ LONDON │ HARINGEY │ 3216 │ 717780 │ ██████████████▎ │
│ PURLEY │ CROYDON │ 575 │ 716108 │ ██████████████▎ │
│ WELWYN │ WELWYN HATFIELD │ 222 │ 710603 │ ██████████████▏ │
│ RICKMANSWORTH │ THREE RIVERS │ 798 │ 704571 │ ██████████████ │
│ BANSTEAD │ REIGATE AND BANSTEAD │ 401 │ 701293 │ ██████████████ │
│ CHIGWELL │ EPPING FOREST │ 261 │ 701203 │ ██████████████ │
│ PINNER │ HARROW │ 528 │ 698885 │ █████████████▊ │
│ HASLEMERE │ WAVERLEY │ 280 │ 696659 │ █████████████▊ │
│ SLOUGH │ BUCKINGHAMSHIRE │ 396 │ 694917 │ █████████████▊ │
│ WALTON-ON-THAMES │ ELMBRIDGE │ 946 │ 692395 │ █████████████▋ │
│ READING │ SOUTH OXFORDSHIRE │ 318 │ 691988 │ █████████████▋ │
│ NORTHWOOD │ HILLINGDON │ 271 │ 690643 │ █████████████▋ │
│ FELTHAM │ HOUNSLOW │ 763 │ 688595 │ █████████████▋ │
│ ASHTEAD │ MOLE VALLEY │ 303 │ 687923 │ █████████████▋ │
│ BARNET │ BARNET │ 975 │ 686980 │ █████████████▋ │
│ WOKING │ SURREY HEATH │ 283 │ 686669 │ █████████████▋ │
│ MALMESBURY │ WILTSHIRE │ 323 │ 683324 │ █████████████▋ │
│ AMERSHAM │ BUCKINGHAMSHIRE │ 496 │ 680962 │ █████████████▌ │
│ CHISLEHURST │ BROMLEY │ 430 │ 680209 │ █████████████▌ │
│ HYTHE │ FOLKESTONE AND HYTHE │ 490 │ 676908 │ █████████████▌ │
│ MAYFIELD │ WEALDEN │ 101 │ 676210 │ █████████████▌ │
│ ASCOT │ BRACKNELL FOREST │ 168 │ 676004 │ █████████████▌ │
└──────────────────────┴────────────────────────┴──────┴─────────┴────────────────────────────────────────────────────────────────────┘
```
### Резюме {#summary}
Все три запроса работают намного быстрее и читают меньшее количество строк.
```text
Query 1
no projection: 27 rows in set. Elapsed: 0.158 sec. Processed 26.32 million rows, 157.93 MB (166.57 million rows/s., 999.39 MB/s.)
projection: 27 rows in set. Elapsed: 0.007 sec. Processed 105.96 thousand rows, 3.33 MB (14.58 million rows/s., 458.13 MB/s.)
Query 2
no projection: 27 rows in set. Elapsed: 0.163 sec. Processed 26.32 million rows, 80.01 MB (161.75 million rows/s., 491.64 MB/s.)
projection: 27 rows in set. Elapsed: 0.008 sec. Processed 105.96 thousand rows, 3.67 MB (13.29 million rows/s., 459.89 MB/s.)
Query 3
no projection: 100 rows in set. Elapsed: 0.069 sec. Processed 26.32 million rows, 62.47 MB (382.13 million rows/s., 906.93 MB/s.)
projection: 100 rows in set. Elapsed: 0.029 sec. Processed 8.08 thousand rows, 511.08 KB (276.06 thousand rows/s., 17.47 MB/s.)
```
### Online Playground {#playground}
Этот набор данных доступен в [Online Playground](https://gh-api.clickhouse.tech/play?user=play#U0VMRUNUIHRvd24sIGRpc3RyaWN0LCBjb3VudCgpIEFTIGMsIHJvdW5kKGF2ZyhwcmljZSkpIEFTIHByaWNlLCBiYXIocHJpY2UsIDAsIDUwMDAwMDAsIDEwMCkgRlJPTSB1a19wcmljZV9wYWlkIFdIRVJFIGRhdGUgPj0gJzIwMjAtMDEtMDEnIEdST1VQIEJZIHRvd24sIGRpc3RyaWN0IEhBVklORyBjID49IDEwMCBPUkRFUiBCWSBwcmljZSBERVNDIExJTUlUIDEwMA==).