ClickHouse/docs/en/sql-reference/functions/nlp-functions.md
2024-06-25 17:01:14 +02:00

399 lines
10 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
slug: /en/sql-reference/functions/nlp-functions
sidebar_position: 130
sidebar_label: NLP (experimental)
---
# Natural Language Processing (NLP) Functions
:::warning
This is an experimental feature that is currently in development and is not ready for general use. It will change in unpredictable backwards-incompatible ways in future releases. Set `allow_experimental_nlp_functions = 1` to enable it.
:::
## detectCharset
The `detectCharset` function detects the character set of the non-UTF8-encoded input string.
*Syntax*
``` sql
detectCharset('text_to_be_analyzed')
```
*Arguments*
- `text_to_be_analyzed` — A collection (or sentences) of strings to analyze. [String](../data-types/string.md#string).
*Returned value*
- A `String` containing the code of the detected character set
*Examples*
Query:
```sql
SELECT detectCharset('Ich bleibe für ein paar Tage.');
```
Result:
```response
┌─detectCharset('Ich bleibe für ein paar Tage.')─┐
│ WINDOWS-1252 │
└────────────────────────────────────────────────┘
```
## detectLanguage
Detects the language of the UTF8-encoded input string. The function uses the [CLD2 library](https://github.com/CLD2Owners/cld2) for detection, and it returns the 2-letter ISO language code.
The `detectLanguage` function works best when providing over 200 characters in the input string.
*Syntax*
``` sql
detectLanguage('text_to_be_analyzed')
```
*Arguments*
- `text_to_be_analyzed` — A collection (or sentences) of strings to analyze. [String](../data-types/string.md#string).
*Returned value*
- The 2-letter ISO code of the detected language
Other possible results:
- `un` = unknown, can not detect any language.
- `other` = the detected language does not have 2 letter code.
*Examples*
Query:
```sql
SELECT detectLanguage('Je pense que je ne parviendrai jamais à parler français comme un natif. Where theres a will, theres a way.');
```
Result:
```response
fr
```
## detectLanguageMixed
Similar to the `detectLanguage` function, but `detectLanguageMixed` returns a `Map` of 2-letter language codes that are mapped to the percentage of the certain language in the text.
*Syntax*
``` sql
detectLanguageMixed('text_to_be_analyzed')
```
*Arguments*
- `text_to_be_analyzed` — A collection (or sentences) of strings to analyze. [String](../data-types/string.md#string).
*Returned value*
- `Map(String, Float32)`: The keys are 2-letter ISO codes and the values are a percentage of text found for that language
*Examples*
Query:
```sql
SELECT detectLanguageMixed('二兎を追う者は一兎をも得ず二兎を追う者は一兎をも得ず A vaincre sans peril, on triomphe sans gloire.');
```
Result:
```response
┌─detectLanguageMixed()─┐
│ {'ja':0.62,'fr':0.36 │
└───────────────────────┘
```
## detectProgrammingLanguage
Determines the programming language from the source code. Calculates all the unigrams and bigrams of commands in the source code.
Then using a marked-up dictionary with weights of unigrams and bigrams of commands for various programming languages finds the biggest weight of the programming language and returns it.
*Syntax*
``` sql
detectProgrammingLanguage('source_code')
```
*Arguments*
- `source_code` — String representation of the source code to analyze. [String](../data-types/string.md#string).
*Returned value*
- Programming language. [String](../data-types/string.md).
*Examples*
Query:
```sql
SELECT detectProgrammingLanguage('#include <iostream>');
```
Result:
```response
┌─detectProgrammingLanguage('#include <iostream>')─┐
│ C++ │
└──────────────────────────────────────────────────┘
```
## detectLanguageUnknown
Similar to the `detectLanguage` function, except the `detectLanguageUnknown` function works with non-UTF8-encoded strings. Prefer this version when your character set is UTF-16 or UTF-32.
*Syntax*
``` sql
detectLanguageUnknown('text_to_be_analyzed')
```
*Arguments*
- `text_to_be_analyzed` — A collection (or sentences) of strings to analyze. [String](../data-types/string.md#string).
*Returned value*
- The 2-letter ISO code of the detected language
Other possible results:
- `un` = unknown, can not detect any language.
- `other` = the detected language does not have 2 letter code.
*Examples*
Query:
```sql
SELECT detectLanguageUnknown('Ich bleibe für ein paar Tage.');
```
Result:
```response
┌─detectLanguageUnknown('Ich bleibe für ein paar Tage.')─┐
│ de │
└────────────────────────────────────────────────────────┘
```
## detectTonality
Determines the sentiment of text data. Uses a marked-up sentiment dictionary, in which each word has a tonality ranging from `-12` to `6`.
For each text, it calculates the average sentiment value of its words and returns it in the range `[-1,1]`.
:::note
This function is limited in its current form. Currently it makes use of the embedded emotional dictionary at `/contrib/nlp-data/tonality_ru.zst` and only works for the Russian language.
:::
*Syntax*
``` sql
detectTonality(text)
```
*Arguments*
- `text` — The text to be analyzed. [String](../data-types/string.md#string).
*Returned value*
- The average sentiment value of the words in `text`. [Float32](../data-types/float.md).
*Examples*
Query:
```sql
SELECT detectTonality('Шарик - хороший пёс'), -- Sharik is a good dog
detectTonality('Шарик - пёс'), -- Sharik is a dog
detectTonality('Шарик - плохой пёс'); -- Sharkik is a bad dog
```
Result:
```response
┌─detectTonality('Шарик - хороший пёс')─┬─detectTonality('Шарик - пёс')─┬─detectTonality('Шарик - плохой пёс')─┐
│ 0.44445 │ 0 │ -0.3 │
└───────────────────────────────────────┴───────────────────────────────┴──────────────────────────────────────┘
```
## lemmatize
Performs lemmatization on a given word. Needs dictionaries to operate, which can be obtained [here](https://github.com/vpodpecan/lemmagen3/tree/master/src/lemmagen3/models).
*Syntax*
``` sql
lemmatize('language', word)
```
*Arguments*
- `language` — Language which rules will be applied. [String](../data-types/string.md#string).
- `word` — Word that needs to be lemmatized. Must be lowercase. [String](../data-types/string.md#string).
*Examples*
Query:
``` sql
SELECT lemmatize('en', 'wolves');
```
Result:
``` text
┌─lemmatize("wolves")─┐
│ "wolf" │
└─────────────────────┘
```
*Configuration*
This configuration specifies that the dictionary `en.bin` should be used for lemmatization of English (`en`) words. The `.bin` files can be downloaded from
[here](https://github.com/vpodpecan/lemmagen3/tree/master/src/lemmagen3/models).
``` xml
<lemmatizers>
<lemmatizer>
<!-- highlight-start -->
<lang>en</lang>
<path>en.bin</path>
<!-- highlight-end -->
</lemmatizer>
</lemmatizers>
```
## stem
Performs stemming on a given word.
*Syntax*
``` sql
stem('language', word)
```
*Arguments*
- `language` — Language which rules will be applied. Use the two letter [ISO 639-1 code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes).
- `word` — word that needs to be stemmed. Must be in lowercase. [String](../data-types/string.md#string).
*Examples*
Query:
``` sql
SELECT arrayMap(x -> stem('en', x), ['I', 'think', 'it', 'is', 'a', 'blessing', 'in', 'disguise']) as res;
```
Result:
``` text
┌─res────────────────────────────────────────────────┐
│ ['I','think','it','is','a','bless','in','disguis'] │
└────────────────────────────────────────────────────┘
```
*Supported languages for stem()*
:::note
The stem() function uses the [Snowball stemming](https://snowballstem.org/) library, see the Snowball website for updated languages etc.
:::
- Arabic
- Armenian
- Basque
- Catalan
- Danish
- Dutch
- English
- Finnish
- French
- German
- Greek
- Hindi
- Hungarian
- Indonesian
- Irish
- Italian
- Lithuanian
- Nepali
- Norwegian
- Porter
- Portuguese
- Romanian
- Russian
- Serbian
- Spanish
- Swedish
- Tamil
- Turkish
- Yiddish
## synonyms
Finds synonyms to a given word. There are two types of synonym extensions: `plain` and `wordnet`.
With the `plain` extension type we need to provide a path to a simple text file, where each line corresponds to a certain synonym set. Words in this line must be separated with space or tab characters.
With the `wordnet` extension type we need to provide a path to a directory with WordNet thesaurus in it. Thesaurus must contain a WordNet sense index.
*Syntax*
``` sql
synonyms('extension_name', word)
```
*Arguments*
- `extension_name` — Name of the extension in which search will be performed. [String](../data-types/string.md#string).
- `word` — Word that will be searched in extension. [String](../data-types/string.md#string).
*Examples*
Query:
``` sql
SELECT synonyms('list', 'important');
```
Result:
``` text
┌─synonyms('list', 'important')────────────┐
│ ['important','big','critical','crucial'] │
└──────────────────────────────────────────┘
```
*Configuration*
``` xml
<synonyms_extensions>
<extension>
<name>en</name>
<type>plain</type>
<path>en.txt</path>
</extension>
<extension>
<name>en</name>
<type>wordnet</type>
<path>en/</path>
</extension>
</synonyms_extensions>
```