mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-14 19:45:11 +00:00
134eaa55e5
Co-authored-by: ana-uvarova <ana-uvarova@yandex-team.ru> Co-authored-by: AnaUvarova <64017504+AnaUvarova@users.noreply.github.com> Co-authored-by: vdimir <vdimir@yandex-team.ru> Co-authored-by: Olga Revyakina <revolg@yandex-team.ru> Co-authored-by: Anna <42538400+adevyatova@users.noreply.github.com>
14 lines
3.3 KiB
Markdown
14 lines
3.3 KiB
Markdown
---
|
||
title: Why not use something like MapReduce?
|
||
toc_hidden: true
|
||
toc_priority: 110
|
||
---
|
||
|
||
# Почему бы не использовать системы типа MapReduce? {#why-not-use-something-like-mapreduce}
|
||
|
||
Системами типа MapReduce будем называть системы распределённых вычислений, в которых операция свёртки реализована на основе распределённой сортировки. Наиболее распространённое решение с открытым кодом в данном классе — [Apache Hadoop](http://hadoop.apache.org). Яндекс пользуется собственным решением — YT.
|
||
|
||
Такие системы не подходят для онлайн запросов в силу слишком большой задержки. То есть не могут быть использованы в качестве бэкенда для веб-интерфейса. Также эти системы не подходят для обновления данных в реальном времени. Распределённая сортировка является не оптимальным способом для выполнения операции свёртки в случае запросов, выполняющихся в режиме онлайн, потому что результат выполнения операции и все промежуточные результаты (если такие есть) помещаются в оперативную память на одном сервере. В таком случае оптимальным способом выполнения операции свёртки является хеш-таблица. Частым способом оптимизации "map-reduce" задач является предагрегация (частичная свёртка) с использованием хеш-таблицы в оперативной памяти. Пользователь делает эту оптимизацию в ручном режиме. Распределённая сортировка — основная причина тормозов при выполнении несложных задач типа "map-reduce".
|
||
|
||
Большинство реализаций MapReduce позволяют выполнять произвольный код на кластере. Но для OLAP-задач лучше подходит декларативный язык запросов, который позволяет быстро проводить исследования. Например, для Hadoop существуют Hive и Pig. Также посмотрите на Cloudera Impala, Shark (устаревший) для Spark, а также Spark SQL, Presto, Apache Drill. Впрочем, производительность при выполнении таких задач очень неоптимальная, если сравнивать со специализированными системами, а относительно высокая задержка не позволяет использовать эти системы в качестве бэкенда для веб-интерфейса.
|