ClickHouse/docs/en/getting-started/example-datasets/youtube-dislikes.md
2023-04-14 14:32:55 -06:00

21 KiB
Raw Blame History

slug sidebar_label description
/en/getting-started/example-datasets/youtube-dislikes YouTube Dislikes A collection is dislikes of YouTube videos.

YouTube dataset of dislikes

In November of 2021, YouTube removed the public dislike count from all of its videos. While creators can still see the number of dislikes, viewers can only see how many likes a video has received.

:::important The dataset has over 4.55 billion records, so be careful just copying-and-pasting the commands below unless your resources can handle that type of volume. The commands below were executed on a Production instance of ClickHouse Cloud. :::

The data is in a JSON format and can be downloaded from archive.org. We have made this same data available in S3 so that it can be downloaded more efficiently into a ClickHouse Cloud instance.

Here are the steps to create a table in ClickHouse Cloud and insert the data.

:::note The steps below will easily work on a local install of ClickHouse too. The only change would be to use the s3 function instead of s3cluster (unless you have a cluster configured - in which case change default to the name of your cluster). :::

Step-by-step instructions

  1. Let's see what the data looks like. The s3cluster table function returns a table, so we can DESCRIBE the reult:
DESCRIBE s3Cluster(
    'default',
    'https://clickhouse-public-datasets.s3.amazonaws.com/youtube/original/files/*.zst',
    'JSONLines'
);

ClickHouse infers the following schema from the JSON file:

┌─name────────────────┬─type─────────────────────────────────┐
│ id                  │ Nullable(String)                     │
│ fetch_date          │ Nullable(Int64)                      │
│ upload_date         │ Nullable(String)                     │
│ title               │ Nullable(String)                     │
│ uploader_id         │ Nullable(String)                     │
│ uploader            │ Nullable(String)                     │
│ uploader_sub_count  │ Nullable(Int64)                      │
│ is_age_limit        │ Nullable(Bool)                       │
│ view_count          │ Nullable(Int64)                      │
│ like_count          │ Nullable(Int64)                      │
│ dislike_count       │ Nullable(Int64)                      │
│ is_crawlable        │ Nullable(Bool)                       │
│ is_live_content     │ Nullable(Bool)                       │
│ has_subtitles       │ Nullable(Bool)                       │
│ is_ads_enabled      │ Nullable(Bool)                       │
│ is_comments_enabled │ Nullable(Bool)                       │
│ description         │ Nullable(String)                     │
│ rich_metadata       │ Array(Map(String, Nullable(String))) │
│ super_titles        │ Array(Map(String, Nullable(String))) │
│ uploader_badges     │ Nullable(String)                     │
│ video_badges        │ Nullable(String)                     │
└─────────────────────┴──────────────────────────────────────┘
  1. Based on the inferred schema, we cleaned up the data types and added a primary key. Define the following table:
CREATE TABLE youtube
(
    `id` String,
    `fetch_date` DateTime,
    `upload_date_str` String,
    `upload_date` Date,
    `title` String,
    `uploader_id` String,
    `uploader` String,
    `uploader_sub_count` Int64,
    `is_age_limit` Bool,
    `view_count` Int64,
    `like_count` Int64,
    `dislike_count` Int64,
    `is_crawlable` Bool,
    `has_subtitles` Bool,
    `is_ads_enabled` Bool,
    `is_comments_enabled` Bool,
    `description` String,
    `rich_metadata` Array(Map(String, String)),
    `super_titles` Array(Map(String, String)),
    `uploader_badges` String,
    `video_badges` String
)
ENGINE = MergeTree
ORDER BY (uploader, upload_date);
  1. The following command streams the records from the S3 files into the youtube table.

:::important This inserts a lot of data - 4.65 billion rows. If you do not want the entire dataset, simply add a LIMIT clause with the desired number of rows. :::

INSERT INTO youtube
SETTINGS input_format_null_as_default = 1
SELECT
    id,
    parseDateTimeBestEffortUSOrZero(toString(fetch_date)) AS fetch_date,
    upload_date AS upload_date_str,
    toDate(parseDateTimeBestEffortUSOrZero(upload_date::String)) AS upload_date,
    ifNull(title, '') AS title,
    uploader_id,
    ifNull(uploader, '') AS uploader,
    uploader_sub_count,
    is_age_limit,
    view_count,
    like_count,
    dislike_count,
    is_crawlable,
    has_subtitles,
    is_ads_enabled,
    is_comments_enabled,
    ifNull(description, '') AS description,
    rich_metadata,
    super_titles,
    ifNull(uploader_badges, '') AS uploader_badges,
    ifNull(video_badges, '') AS video_badges
FROM s3(
    'https://clickhouse-public-datasets.s3.amazonaws.com/youtube/original/files/*.zst',
    'JSONLines'
)

Some comments about our INSERT command:

  • The parseDateTimeBestEffortUSOrZero function is handy when the incoming date fields may not be in the proper format. If fetch_date does not get parsed properly, it will be set to 0
  • The upload_date column contains valid dates, but it also contains strings like "4 hours ago" - which is certainly not a valid date. We decided to store the original value in upload_date_str and attempt to parse it with toDate(parseDateTimeBestEffortUSOrZero(upload_date::String)). If the parsing fails we just get 0
  • We used ifNull to avoid getting NULL values in our table. If an incoming value is NULL, the ifNull function is setting the value to an empty string
  1. Open a new tab in the SQL Console of ClickHouse Cloud (or a new clickhouse-client window) and watch the count increase. It will take a while to insert 4.56B rows, depending on your server resources. (Without any tweaking of settings, it takes about 4.5 hours.)
SELECT formatReadableQuantity(count())
FROM youtube
┌─formatReadableQuantity(count())─┐
│ 4.56 billion                    │
└─────────────────────────────────┘
  1. Once the data is inserted, go ahead and count the number of dislikes of your favorite videos or channels. Let's see how many videos were uploaded by ClickHouse:
SELECT count()
FROM youtube
WHERE uploader = 'ClickHouse';
┌─count()─┐
│      84 │
└─────────┘

1 row in set. Elapsed: 0.570 sec. Processed 237.57 thousand rows, 5.77 MB (416.54 thousand rows/s., 10.12 MB/s.)

:::note The query above runs so quickly because we chose uploader as the first column of the primary key - so it only had to process 237k rows. :::

  1. Let's look and likes and dislikes of ClickHouse videos:
SELECT
    title,
    like_count,
    dislike_count
FROM youtube
WHERE uploader = 'ClickHouse'
ORDER BY dislike_count DESC;

The response looks like:

┌─title────────────────────────────────────────────────────────────────────────────────────────────────┬─like_count─┬─dislike_count─┐
│ ClickHouse v21.11 Release Webinar                                                                    │         52 │             3 │
│ ClickHouse Introduction                                                                              │         97 │             3 │
│ Casa Modelo Algarve                                                                                  │        180 │             3 │
│ Профайлер запросов:  трудный путь                                                                    │         33 │             3 │
│ ClickHouse в Курсометре                                                                              │          4 │             2 │
│ 10 Good Reasons to Use ClickHouse                                                                    │         27 │             2 │
...

84 rows in set. Elapsed: 0.013 sec. Processed 155.65 thousand rows, 16.94 MB (11.96 million rows/s., 1.30 GB/s.)
  1. Here is a search for videos with ClickHouse in the title or description fields:
SELECT
    view_count,
    like_count,
    dislike_count,
    concat('https://youtu.be/', id) AS url,
    title
FROM youtube
WHERE (title ILIKE '%ClickHouse%') OR (description ILIKE '%ClickHouse%')
ORDER BY
    like_count DESC,
    view_count DESC;

This query has to process every row, and also parse through two columns of strings. Even then, we get decent performance at 4.15M rows/second:

1174 rows in set. Elapsed: 1099.368 sec. Processed 4.56 billion rows, 1.98 TB (4.15 million rows/s., 1.80 GB/s.)

The results look like:

┌─view_count─┬─like_count─┬─dislike_count─┬─url──────────────────────────┬─title──────────────────────────────────────────────────────────────────────────────────────────────────┐
│       1919 │         63 │             1 │ https://youtu.be/b9MeoOtAivQ │ ClickHouse v21.10 Release Webinar                                                                      │
│       8710 │         62 │             4 │ https://youtu.be/PeV1mC2z--M │ What is JDBC DriverManager? | JDBC                                                                     │
│       3534 │         62 │             1 │ https://youtu.be/8nWRhK9gw10 │ CLICKHOUSE - Arquitetura Modular                                                                       │

Questions

If someone disables comments does it lower the chance someone will actually click like or dislike?

When commenting is disabled, are people more likely to like or dislike to express their feelings about a video?

SELECT
    concat('< ', formatReadableQuantity(view_range)) AS views,
    is_comments_enabled,
    total_clicks / num_views AS prob_like_dislike
FROM
(
    SELECT
        is_comments_enabled,
        power(10, CEILING(log10(view_count + 1))) AS view_range,
        sum(like_count + dislike_count) AS total_clicks,
        sum(view_count) AS num_views
    FROM youtube
    GROUP BY
        view_range,
        is_comments_enabled
) WHERE view_range > 1
ORDER BY
    is_comments_enabled ASC,
    num_views ASC;
┌─views─────────────┬─is_comments_enabled─┬────prob_like_dislike─┐
│ < 10.00           │ false               │  0.08224180712685371 │
│ < 100.00          │ false               │  0.06346337759167248 │
│ < 1.00 thousand   │ false               │  0.03201883652987105 │
│ < 10.00 thousand  │ false               │  0.01716073540410903 │
│ < 10.00 billion   │ false               │ 0.004555639481829971 │
│ < 100.00 thousand │ false               │  0.01293351460515323 │
│ < 1.00 billion    │ false               │ 0.004761811192464957 │
│ < 1.00 million    │ false               │ 0.010472604018980551 │
│ < 10.00 million   │ false               │  0.00788902538420125 │
│ < 100.00 million  │ false               │  0.00579152804250582 │
│ < 10.00           │ true                │  0.09819517478134059 │
│ < 100.00          │ true                │  0.07403784478585775 │
│ < 1.00 thousand   │ true                │  0.03846294910067627 │
│ < 10.00 billion   │ true                │ 0.005615217329358215 │
│ < 10.00 thousand  │ true                │  0.02505881391701455 │
│ < 1.00 billion    │ true                │ 0.007434998802482997 │
│ < 100.00 thousand │ true                │ 0.022694648130822004 │
│ < 100.00 million  │ true                │ 0.011761563746575625 │
│ < 1.00 million    │ true                │ 0.020776022304589435 │
│ < 10.00 million   │ true                │ 0.016917095718089584 │
└───────────────────┴─────────────────────┴──────────────────────┘

22 rows in set. Elapsed: 8.460 sec. Processed 4.56 billion rows, 77.48 GB (538.73 million rows/s., 9.16 GB/s.)

Enabling comments seems to be correlated with a higher rate of engagement.

How does the number of videos change over time - notable events?

SELECT
    toStartOfMonth(toDateTime(upload_date)) AS month,
    uniq(uploader_id) AS uploaders,
    count() as num_videos,
    sum(view_count) as view_count
FROM youtube
GROUP BY month
ORDER BY month ASC;
┌──────month─┬─uploaders─┬─num_videos─┬───view_count─┐
│ 2005-04-01 │         5 │          6 │    213597737 │
│ 2005-05-01 │         6 │          9 │      2944005 │
│ 2005-06-01 │       165 │        351 │     18624981 │
│ 2005-07-01 │       395 │       1168 │     94164872 │
│ 2005-08-01 │      1171 │       3128 │    124540774 │
│ 2005-09-01 │      2418 │       5206 │    475536249 │
│ 2005-10-01 │      6750 │      13747 │    737593613 │
│ 2005-11-01 │     13706 │      28078 │   1896116976 │
│ 2005-12-01 │     24756 │      49885 │   2478418930 │
│ 2006-01-01 │     49992 │     100447 │   4532656581 │
│ 2006-02-01 │     67882 │     138485 │   5677516317 │
│ 2006-03-01 │    103358 │     212237 │   8430301366 │
│ 2006-04-01 │    114615 │     234174 │   9980760440 │
│ 2006-05-01 │    152682 │     332076 │  14129117212 │
│ 2006-06-01 │    193962 │     429538 │  17014143263 │
│ 2006-07-01 │    234401 │     530311 │  18721143410 │
│ 2006-08-01 │    281280 │     614128 │  20473502342 │
│ 2006-09-01 │    312434 │     679906 │  23158422265 │
│ 2006-10-01 │    404873 │     897590 │  27357846117 │

A spike of uploaders around covid is noticeable.

More subtitiles over time and when

With advances in speech recognition, its easier than ever to create subtitles for video with youtube adding auto-captioning in late 2009 - was the jump then?

SELECT
    toStartOfMonth(upload_date) AS month,
    countIf(has_subtitles) / count() AS percent_subtitles,
    percent_subtitles - any(percent_subtitles) OVER (
        ORDER BY month ASC ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING
    ) AS previous
FROM youtube
GROUP BY month
ORDER BY month ASC;
┌──────month─┬───percent_subtitles─┬────────────────previous─┐
│ 2015-01-01 │  0.2652653881082824 │      0.2652653881082824 │
│ 2015-02-01 │  0.3147556050309162 │    0.049490216922633834 │
│ 2015-03-01 │ 0.32460464492371877 │    0.009849039892802558 │
│ 2015-04-01 │ 0.33471963051468445 │    0.010114985590965686 │
│ 2015-05-01 │  0.3168087575501062 │   -0.017910872964578273 │
│ 2015-06-01 │  0.3162609788438222 │  -0.0005477787062839745 │
│ 2015-07-01 │ 0.31828767677518033 │   0.0020266979313581235 │
│ 2015-08-01 │  0.3045551564286859 │   -0.013732520346494415 │
│ 2015-09-01 │   0.311221133995152 │    0.006665977566466086 │
│ 2015-10-01 │ 0.30574870926812175 │   -0.005472424727030245 │
│ 2015-11-01 │ 0.31125409712077234 │   0.0055053878526505895 │
│ 2015-12-01 │  0.3190967954651779 │    0.007842698344405541 │
│ 2016-01-01 │ 0.32636021432496176 │    0.007263418859783877 │

The data results show a spike in 2009. Apparently at that, time YouTube was removing their community captions feature, which allowed you to upload captions for other people's video. This prompted a very successful campaign to have creators add captions to their videos for hard of hearing and deaf viewers.

Top uploaders over time

WITH uploaders AS
    (
        SELECT uploader
        FROM youtube
        GROUP BY uploader
        ORDER BY sum(view_count) DESC
        LIMIT 10
    )
SELECT
    month,
    uploader,
    sum(view_count) AS total_views,
    avg(dislike_count / like_count) AS like_to_dislike_ratio
FROM youtube
WHERE uploader IN (uploaders)
GROUP BY
    toStartOfMonth(upload_date) AS month,
    uploader
ORDER BY
    month ASC,
    total_views DESC;
┌──────month─┬─uploader───────────────────┬─total_views─┬─like_to_dislike_ratio─┐
│ 1970-01-01 │ T-Series                   │    10957099 │  0.022784656361208206 │
│ 1970-01-01 │ Ryan's World               │           0 │  0.003035559410234172 │
│ 1970-01-01 │ SET India                  │           0 │                   nan │
│ 2006-09-01 │ Cocomelon - Nursery Rhymes │   256406497 │    0.7005566715978622 │
│ 2007-06-01 │ Cocomelon - Nursery Rhymes │    33641320 │    0.7088650914344298 │
│ 2008-02-01 │ WWE                        │    43733469 │   0.07198856488734842 │
│ 2008-03-01 │ WWE                        │    16514541 │    0.1230603715431997 │
│ 2008-04-01 │ WWE                        │     5907295 │    0.2089399470159618 │
│ 2008-05-01 │ WWE                        │     7779627 │   0.09101676560436774 │
│ 2008-06-01 │ WWE                        │     7018780 │    0.0974184753155297 │
│ 2008-07-01 │ WWE                        │     4686447 │    0.1263845422065158 │
│ 2008-08-01 │ WWE                        │     4514312 │   0.08384574274791441 │
│ 2008-09-01 │ WWE                        │     3717092 │   0.07872802579349912 │

How do like ratio changes as views go up?

SELECT
    concat('< ', formatReadableQuantity(view_range)) AS view_range,
    is_comments_enabled,
    round(like_ratio, 2) AS like_ratio
FROM
(
SELECT
    power(10, CEILING(log10(view_count + 1))) as view_range,
    is_comments_enabled,
    avg(like_count / dislike_count) as like_ratio
FROM youtube WHERE dislike_count > 0
GROUP BY
    view_range,
    is_comments_enabled HAVING view_range > 1
ORDER BY
    view_range ASC,
    is_comments_enabled ASC
);
┌─view_range────────┬─is_comments_enabled─┬─like_ratio─┐
│ < 10.00           │ false               │       0.66 │
│ < 10.00           │ true                │       0.66 │
│ < 100.00          │ false               │          3 │
│ < 100.00          │ true                │       3.95 │
│ < 1.00 thousand   │ false               │       8.45 │
│ < 1.00 thousand   │ true                │      13.07 │
│ < 10.00 thousand  │ false               │      18.57 │
│ < 10.00 thousand  │ true                │      30.92 │
│ < 100.00 thousand │ false               │      23.55 │
│ < 100.00 thousand │ true                │      42.13 │
│ < 1.00 million    │ false               │      19.23 │
│ < 1.00 million    │ true                │      37.86 │
│ < 10.00 million   │ false               │      12.13 │
│ < 10.00 million   │ true                │      30.72 │
│ < 100.00 million  │ false               │       6.67 │
│ < 100.00 million  │ true                │      23.32 │
│ < 1.00 billion    │ false               │       3.08 │
│ < 1.00 billion    │ true                │      20.69 │
│ < 10.00 billion   │ false               │       1.77 │
│ < 10.00 billion   │ true                │       19.5 │
└───────────────────┴─────────────────────┴────────────┘

How are views distributed?

SELECT
    labels AS percentile,
    round(quantiles) AS views
FROM
(
    SELECT
        quantiles(0.999, 0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1)(view_count) AS quantiles,
        ['99.9th', '99th', '95th', '90th', '80th', '70th','60th', '50th', '40th', '30th', '20th', '10th'] AS labels
    FROM youtube
)
ARRAY JOIN
    quantiles,
    labels;
┌─percentile─┬───views─┐
│ 99.9th     │ 1216624 │
│ 99th       │  143519 │
│ 95th       │   13542 │
│ 90th       │    4054 │
│ 80th       │     950 │
│ 70th       │     363 │
│ 60th       │     177 │
│ 50th       │      97 │
│ 40th       │      57 │
│ 30th       │      32 │
│ 20th       │      16 │
│ 10th       │       6 │
└────────────┴─────────┘