* Typo fix. * Links fix. * Fixed links in docs. * More fixes. * docs/en: cleaning some files * docs/en: cleaning data_types * docs/en: cleaning database_engines * docs/en: cleaning development * docs/en: cleaning getting_started * docs/en: cleaning interfaces * docs/en: cleaning operations * docs/en: cleaning query_lamguage * docs/en: cleaning en * docs/ru: cleaning data_types * docs/ru: cleaning index * docs/ru: cleaning database_engines * docs/ru: cleaning development * docs/ru: cleaning general * docs/ru: cleaning getting_started * docs/ru: cleaning interfaces * docs/ru: cleaning operations * docs/ru: cleaning query_language * docs: cleaning interfaces/http * Update docs/en/data_types/array.md decorated ``` Co-Authored-By: BayoNet <da-daos@yandex.ru> * Update docs/en/getting_started/example_datasets/nyc_taxi.md fixed typo Co-Authored-By: BayoNet <da-daos@yandex.ru> * Update docs/en/getting_started/example_datasets/ontime.md fixed typo Co-Authored-By: BayoNet <da-daos@yandex.ru> * Update docs/en/interfaces/formats.md fixed error Co-Authored-By: BayoNet <da-daos@yandex.ru> * Update docs/en/operations/table_engines/custom_partitioning_key.md Co-Authored-By: BayoNet <da-daos@yandex.ru> * Update docs/en/operations/utils/clickhouse-local.md Co-Authored-By: BayoNet <da-daos@yandex.ru> * Update docs/en/query_language/dicts/external_dicts_dict_sources.md Co-Authored-By: BayoNet <da-daos@yandex.ru> * Update docs/en/operations/utils/clickhouse-local.md Co-Authored-By: BayoNet <da-daos@yandex.ru> * Update docs/en/query_language/functions/json_functions.md Co-Authored-By: BayoNet <da-daos@yandex.ru> * Update docs/en/query_language/functions/json_functions.md Co-Authored-By: BayoNet <da-daos@yandex.ru> * Update docs/en/query_language/functions/other_functions.md Co-Authored-By: BayoNet <da-daos@yandex.ru> * Update docs/en/query_language/functions/other_functions.md Co-Authored-By: BayoNet <da-daos@yandex.ru> * Update docs/en/query_language/functions/date_time_functions.md Co-Authored-By: BayoNet <da-daos@yandex.ru> * Update docs/en/operations/table_engines/jdbc.md Co-Authored-By: BayoNet <da-daos@yandex.ru> * docs: fixed error * docs: fixed error
8.7 KiB
Параметрические агрегатные функции
Некоторые агрегатные функции могут принимать не только столбцы-аргументы (по которым производится свёртка), но и набор параметров - констант для инициализации. Синтаксис - две пары круглых скобок вместо одной. Первая - для параметров, вторая - для аргументов.
sequenceMatch(pattern)(time, cond1, cond2, ...)
Сопоставление с образцом для цепочки событий.
pattern
- строка, содержащая шаблон для сопоставления. Шаблон похож на регулярное выражение.
time
- время события, тип DateTime
cond1
, cond2
... - от одного до 32 аргументов типа UInt8 - признаков, было ли выполнено некоторое условие для события.
Функция собирает в оперативке последовательность событий. Затем производит проверку на соответствие этой последовательности шаблону. Возвращает UInt8 - 0, если шаблон не подходит и 1, если шаблон подходит.
Пример: sequenceMatch('(?1).*(?2)')(EventTime, URL LIKE '%company%', URL LIKE '%cart%')
- была ли цепочка событий, в которой посещение страницы с адресом, содержащим company было раньше по времени посещения страницы с адресом, содержащим cart.
Это вырожденный пример. Его можно записать с помощью других агрегатных функций:
minIf(EventTime, URL LIKE '%company%') < maxIf(EventTime, URL LIKE '%cart%').
Но в более сложных случаях, такого решения нет.
Синтаксис шаблонов:
(?1)
- ссылка на условие (вместо 1 - любой номер);
.*
- произвольное количество любых событий;
(?t>=1800)
- условие на время;
за указанное время допускается любое количество любых событий;
вместо >=
могут использоваться операторы <
, >
, <=
;
вместо 1800 может быть любое число;
События, произошедшие в одну секунду, могут оказаться в цепочке в произвольном порядке. От этого может зависеть результат работы функции.
sequenceCount(pattern)(time, cond1, cond2, ...)
Аналогично функции sequenceMatch, но возвращает не факт наличия цепочки событий, а UInt64 - количество найденных цепочек. Цепочки ищутся без перекрытия. То есть, следующая цепочка может начаться только после окончания предыдущей.
windowFunnel(window)(timestamp, cond1, cond2, cond3, ...)
Отыскивает цепочки событий в скользящем окне по времени и вычисляет максимальное количество произошедших событий из цепочки.
windowFunnel(window)(timestamp, cond1, cond2, cond3, ...)
Параметры
window
— ширина скользящего окна по времени в секундах.timestamp
— имя столбца, содержащего отметки времени. Тип данных Date, DateTime или UInt*. Заметьте, что в случает хранения меток времени в столбцах с типомUInt64
, максимально допустимое значение соответствует ограничению для типаInt64
, т.е. равно2^63-1
.cond1
,cond2
... — условия или данные, описывающие цепочку событий. Тип данных —UInt8
. Значения могут быть 0 или 1.
Алгоритм
- Функция отыскивает данные, на которых срабатывает первое условие из цепочки, и присваивает счетчику событий значение 1. С этого же момента начинается отсчет времени скользящего окна.
- Если в пределах окна последовательно попадаются события из цепочки, то счетчик увеличивается. Если последовательность событий нарушается, то счетчик не растёт.
- Если в данных оказалось несколько цепочек разной степени завершенности, то функция выдаст только размер самой длинной цепочки.
Возвращаемое значение
- Целое число. Максимальное количество последовательно сработавших условий из цепочки в пределах скользящего окна по времени. Исследуются все цепочки в выборке.
Пример
Определим, успевает ли пользователь за час выбрать телефон в интернет-магазине и купить его.
Зададим следующую цепочку событий:
- Пользователь вошел в личный кабинет магазина (
eventID=1001
). - Пользователь ищет телефон (
eventID = 1003, product = 'phone'
). - Пользователь сделал заказ (
eventID = 1009
).
Чтобы узнать, как далеко пользователь user_id
смог пройти по цепочке за час в январе 2017-го года, составим запрос:
SELECT
level,
count() AS c
FROM
(
SELECT
user_id,
windowFunnel(3600)(timestamp, eventID = 1001, eventID = 1003 AND product = 'phone', eventID = 1009) AS level
FROM trend_event
WHERE (event_date >= '2017-01-01') AND (event_date <= '2017-01-31')
GROUP BY user_id
)
GROUP BY level
ORDER BY level
В результате мы можем получить 0, 1, 2 или 3 в зависимости от действий пользователя.
uniqUpTo(N)(x)
Вычисляет количество различных значений аргумента, если оно меньше или равно N. В случае, если количество различных значений аргумента больше N, возвращает N + 1.
Рекомендуется использовать для маленьких N - до 10. Максимальное значение N - 100.
Для состояния агрегатной функции используется количество оперативки равное 1 + N * размер одного значения байт. Для строк запоминается некриптографический хэш, имеющий размер 8 байт. То есть, для строк вычисление приближённое.
Функция также работает для нескольких аргументов.
Работает максимально быстро за исключением патологических случаев, когда используется большое значение N и количество уникальных значений чуть меньше N.
Пример применения:
Задача: показывать в отчёте только поисковые фразы, по которым было хотя бы 5 уникальных посетителей.
Решение: пишем в запросе GROUP BY SearchPhrase HAVING uniqUpTo(4)(UserID) >= 5