ClickHouse/docs/en/engines/table-engines/integrations/s3.md

132 lines
5.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
toc_priority: 4
toc_title: S3
---
# S3 {#table_engines-s3}
This engine provides integration with [Amazon S3](https://aws.amazon.com/s3/) ecosystem. This engine is similar
to the [HDFS](../../../engines/table-engines/special/file.md#table_engines-hdfs) engine, but provides S3-specific features.
## Usage {#usage}
``` sql
ENGINE = S3(path, [aws_access_key_id, aws_secret_access_key,] format, structure, [compression])
```
**Input parameters**
- `path` — Bucket url with path to file. Supports following wildcards in readonly mode: *, ?, {abc,def} and {N..M} where N, M — numbers, `abc, def — strings.
- `format` — The [format](../../../interfaces/formats.md#formats) of the file.
- `structure` — Structure of the table. Format `'column1_name column1_type, column2_name column2_type, ...'`.
- `compression` — Parameter is optional. Supported values: none, gzip/gz, brotli/br, xz/LZMA, zstd/zst. By default, it will autodetect compression by file extension.
**Example:**
**1.** Set up the `s3_engine_table` table:
``` sql
CREATE TABLE s3_engine_table (name String, value UInt32) ENGINE=S3('https://storage.yandexcloud.net/my-test-bucket-768/test-data.csv.gz', 'CSV', 'name String, value UInt32', 'gzip')
```
**2.** Fill file:
``` sql
INSERT INTO s3_engine_table VALUES ('one', 1), ('two', 2), ('three', 3)
```
**3.** Query the data:
``` sql
SELECT * FROM s3_engine_table LIMIT 2
```
``` text
┌─name─┬─value─┐
│ one │ 1 │
│ two │ 2 │
└──────┴───────┘
```
## Implementation Details {#implementation-details}
- Reads and writes can be parallel
- Not supported:
- `ALTER` and `SELECT...SAMPLE` operations.
- Indexes.
- Replication.
**Globs in path**
Multiple path components can have globs. For being processed file should exist and match to the whole path pattern. Listing of files determines during `SELECT` (not at `CREATE` moment).
- `*` — Substitutes any number of any characters except `/` including empty string.
- `?` — Substitutes any single character.
- `{some_string,another_string,yet_another_one}` — Substitutes any of strings `'some_string', 'another_string', 'yet_another_one'`.
- `{N..M}` — Substitutes any number in range from N to M including both borders. N and M can have leading zeroes e.g. `000..078`.
Constructions with `{}` are similar to the [remote](../../../sql-reference/table-functions/remote.md) table function.
**Example**
1. Suppose we have several files in TSV format with the following URIs on HDFS:
- https://storage.yandexcloud.net/my-test-bucket-768/some_prefix/some_file_1.csv
- https://storage.yandexcloud.net/my-test-bucket-768/some_prefix/some_file_2.csv
- https://storage.yandexcloud.net/my-test-bucket-768/some_prefix/some_file_3.csv
- https://storage.yandexcloud.net/my-test-bucket-768/another_prefix/some_file_1.csv
- https://storage.yandexcloud.net/my-test-bucket-768/another_prefix/some_file_2.csv
- https://storage.yandexcloud.net/my-test-bucket-768/another_prefix/some_file_3.csv
2. There are several ways to make a table consisting of all six files:
<!-- -->
``` sql
CREATE TABLE table_with_range (name String, value UInt32) ENGINE = S3('https://storage.yandexcloud.net/my-test-bucket-768/{some,another}_prefix/some_file_{1..3}', 'CSV')
```
3. Another way:
``` sql
CREATE TABLE table_with_question_mark (name String, value UInt32) ENGINE = S3('https://storage.yandexcloud.net/my-test-bucket-768/{some,another}_prefix/some_file_?', 'CSV')
```
4. Table consists of all the files in both directories (all files should satisfy format and schema described in query):
``` sql
CREATE TABLE table_with_asterisk (name String, value UInt32) ENGINE = S3('https://storage.yandexcloud.net/my-test-bucket-768/{some,another}_prefix/*', 'CSV')
```
!!! warning "Warning"
If the listing of files contains number ranges with leading zeros, use the construction with braces for each digit separately or use `?`.
**Example**
Create table with files named `file-000.csv`, `file-001.csv`, … , `file-999.csv`:
``` sql
CREATE TABLE big_table (name String, value UInt32) ENGINE = S3('https://storage.yandexcloud.net/my-test-bucket-768/big_prefix/file-{000..999}.csv', 'CSV')
```
## Virtual Columns {#virtual-columns}
- `_path` — Path to the file.
- `_file` — Name of the file.
## S3-related settings {#settings}
The following settings can be set before query execution or placed into configuration file.
- `s3_max_single_part_upload_size` — Default value is `64Mb`. The maximum size of object to upload using singlepart upload to S3.
- `s3_min_upload_part_size` — Default value is `512Mb`. The minimum size of part to upload during multipart upload to [S3 Multipart upload](https://docs.aws.amazon.com/AmazonS3/latest/dev/uploadobjusingmpu.html).
- `s3_max_redirects` — Default value is `10`. Max number of S3 redirects hops allowed.
Security consideration: if malicious user can specify arbitrary S3 URLs, `s3_max_redirects` must be set to zero to avoid [SSRF](https://en.wikipedia.org/wiki/Server-side_request_forgery) attacks; or alternatively, `remote_host_filter` must be specified in server configuration.
**See Also**
- [Virtual columns](../../../engines/table-engines/index.md#table_engines-virtual_columns)
[Original article](https://clickhouse.tech/docs/en/operations/table_engines/s3/) <!--hide-->